symmetry

Article

POMLE of a Partially Linear Varying Coefficient Spatial
Autoregressive Panel Model with Random Effects

Shuangshuang Li !, Jianbao Chen ** and Danqing Chen 12

check for

updates
Citation: Li, S.; Chen, J.; Chen, D.
PQMLE of a Partially Linear, Varying
Coefficient Spatial Autoregressive
Panel Model with Random Effects.
Symmetry 2021, 13, 2057.
https://doi.org/10.3390/
sym13112057

Academic Editors: Célia Nunes,

Miguel Fonseca and Elsa Moreira

Received: 26 September 2021
Accepted: 19 October 2021
Published: 1 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, China;
qbx20190068@yjs.finu.edu.cn (S.L.); 19851523@fjut.edu.cn (D.C.)

School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China
Correspondence: jbchen@fjnu.edu.cn

Abstract: This article deals with asymmetrical spatial data which can be modeled by a partially
linear varying coefficient spatial autoregressive panel model (PLVCSARPM) with random effects.
We constructed its profile quasi-maximum likelihood estimators (PQMLE). The consistency and
asymptotic normality of the estimators were proved under some regular conditions. Monte Carlo
simulations implied our estimators have good finite sample performance. Finally, a set of asymmetric
real data applications was analyzed for illustrating the performance of the provided method.
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1. Introduction

Spatial regression models are used to deal with spatially dependent data which
widely exist in many fields, such as economics, environmental science and geogra-
phy. According to the different types of spatial interaction effects, spatial regression
models can be sorted into three basic categories (see [1]). The first category is spatial
autoregressive (SAR) models, which include endogenous interaction effects among ob-
servations of response variables at different spatial scales (see [2]). The second category
is spatial durbin models (SDM), which include exogenous interaction effects among
observations of covariates and endogenous interaction effects among observations of
response variables at different spatial scales (see [3,4]). The third category is spatial error
models (SEM), which include interaction effects among disturbance terms of different
spatial scales (see [5]). Among them, the SAR models proposed by [6] may be the most
popular. The developments in the testing and estimation of SAR models for sectional
data were summarized in the books by [7-9] and the surveys by [10-16], among others.
Compared to sectional data models, panel data models exhibit an excellent capacity for
capturing the complex situations by using abundant datasets built up over time and
adding individual-specific or time-specific fixed or random effects. Their theories, meth-
ods and applications can be found in the books by [17-20] and the surveys by [21-26],
among others.

The above mentioned research literature mainly focuses on linear parametric models.
Although the estimations and properties of these models have been well established, they
are often unrealistic in application, for the reason that they are unable to accommodate
sufficient flexibility to accommodate complex structures (e.g., nonlinearity). Moreover,
mis-specification of the data generation mechanism by a linear parametric model could
lead to excessive modeling biases or even erroneous conclusions.

Ref. [27] pointed out that the relationship between variables in space usually ex-
hibits highly complexity in reality. Therefore, researches have proposed a number of
solution methods. In video coding systems, transmission problems are usually dealt with
wavelet-based methods. Ref. [28] proposed a low-band-shift method which avoids the
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shift-variant property of the wavelet transform and performs the motion compensation
more precisely and efficiently. Ref. [29] obtained a wavelet-based lossless video coding
scheme that switches between two operations based on the different amount of motion
activities between two consecutive frames. More theories and applications can be found
in [30-32]. In econometrics, some nonparametric and semiparametric spatial regression
models have been developed to relax the linear parametric model settings. For sectional
spatial data, ref. [33] studied the GMM estimation of a nonparametric SAR model; Ref. [34]
investigated the POMLE of a partially linear nonparametric SAR model. However, such
nonparametric SAR models may cause the “curse of dimensionality” when the dimension
of covariates is higher. In order to overcome this drawback, ref. [35] studied two-step
SGMM estimators and their asymptotic properties for spatial models with space-varying
coefficients. Ref. [36] proposed a semiparametric series-based least squares estimating
procedure for a semiparametric varying coefficient mixed regressive SAR model and de-
rived the asymptotical normality of the estimators. Some other related research works can
be found in [37-42]. For panel spatial data, ref. [43] obtained PMLE and its asymptotical
normality of varying the coefficient SAR panel model with random effects; Ref. [44] applied
instrumental variable estimation to a semiparametric varying coefficient spatial panel data
model with random effects and the investigated asymptotical normality of the estimators.

In this paper, we extend the varying coefficient spatial panel model with random
effects given in [43] to a PLVCSARPM with random effects. By adding a linear part to
the model of [43], we can simultaneously capture linearity, non-linearity and the spatial
correlation relationships of exogenous variables in a response variable. By using the profile
quasimaximum likelihood method to estimate PLVCSARPM with random effects, we
proved the consistency and asymptotic normality of the estimators under some regular
conditions. Monte Carlo simulations and real data analysis show that our estimators
perform well.

This paper is organized as follows: Section 2 introduces the PLVCSARPM with random
effects and constructs its POMLE. Section 3 proves the asymptotic properties of estimators.
Section 4 presents the small sample estimates using Monte Carlo simulations. Section 5
analyzes a set of asymmetric real data applications for illustrating the performance of
the proposed method. A summary is given in Section 6. The proofs of some important
theorems and lemmas are given in Appendix A.

2. The Model and Estimators

Consider the following partially linear varying coefficient spatial autoregressive panel
model (PLVCSARPM) with random effects:

yir = p(WoYt); + x;tﬁ(uit) +Z;tﬂé +bi+e;,1<i<N1<t<T, 1)

where i refers to a spatial unit; ¢ refers to a given time period; y;; are observations
of a response variable; Y; = (y1t, Yo, - - - /yNt)/; Xip = (Xir, Xirg, - /xitp)l and z;; =
(zir1, Zitp, * ,zitq)/ are observations of p-dimensional and g-dimensional covariates, re-
spectively; B(uir) = (B1(uit), B2 (uit), - -, Bp(uir))" is an unknown univariate varying coef-
ficient function vector; Bs(u) (s = 1,2,- - -, p) are unknown smoothing functions of u; p
(o] < 1) is an unknown spatial correlation coefficient; & = (a1, a2, - -, ;) is a regression
coefficient vector of z;;; Wy is an N x N predetermined spatial weight matrix; (WpY:);
is the ith component of WyY}; ¢j; are i.i.d. error terms with zero means and variance (782 ;
b; are i.i.d. variables with zero means and variance Ug, ¢; are independent of b;. Let
60 = (po, &), 0y, 0%)’ be the true parameter vector of 8 = (p,a’,07,02)" and Bo(u;;) be the
true varying coefficient function of B(u;;).
The model (1) can be simplified as the following matrix form:

Y = pWY + XB(u) + Za + Ub + ¢, @)
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where Y = (yi1, 12+, ynt)s X = (K300 2ng) s Z = (233,210 2yp)s € =
(811,812,' . ,ENT),; W=Wy®Ir; b = (b],bz,' .- ,bN)/; U=Iy®er; Iyisan N X N
identity matrix; It is a T x T identity matrix; ® denotes the Kronecker product; er is a
T x 1 vector consisting of 1.

Define A(p) = I — pW; then the model (2) can be rewritten as:

A(p)Y = XB(u) + Za+ Ub + ¢, (©)]
where I'is an NT x NT unit matrix. For the model (3), it is easy to get the following facts:
A(Ub+¢)/9(Y) = A(p), £ = Var(Ub +¢) = 021 + 02 Iy @ (erer),

1 1 1 1

Sl (e — — )N ® (~erer).
2 (052+T(T§ TUZ)N (gerer)

2N(T-1), 2 2\N -1 _
Y| = To2)N, 571 =
| | 0'8 (Ub + US) 0.8 T

According to [12], the quasi-log-likelihood function of the model (3) can be written

as follows:
InL(0) = - wln(ﬁ - gln(ag2 + To?)
1 !
" oz Ton) AR — XB(u) — Za HIA(R)Y = Xp(u) — Za]
- 2(172 [A(p)Y — XB(u) — Za)' (I — H)[A(p)Y — XB(u) — Za&] + In|A(p)| + ¢, W

where H = Iy ® (T~ lere’;), and c is a constant.
By maximizing the above quasi-log-likelihood function with respect to 0, the quasi-
maximum likelihood estimators of «, (75 and 07 can be easily obtained as

H I-H
02 + To? o2

H +I—H
02 + To? o?

a=[Z'(1-5)( (I =8)Z] 1 Z(1 - 5)( )JA(p)Y, (5)

0 = [N(T = 1)] "' A(0)Y — XB(u) — Za] (I - H)[A(p)Y — XB(u) — Za],  (6)

03 = (NT)'[A(p)Y — XB(u) — Za]'H[A(p)Y — Xp(u) — Za] = T~'¢. @)
By substituting (5)-(7) into (4), we have the concentrated quasi-log-likelihood function of
0 as
Ini(p) = wlm‘z ~ i@ +163) - 5L 4 mlao)]

It is obvious that we cannot directly obtain the quasi-maximum likelihood estimator of p
by maximizing the above formula because (u;;) is an unknown function. In order to over-
come this problem, we use the POMLE method and working independence theory ([45,46])
to estimate the unknown parameters and varying coefficient functions of the model (1).
The main steps are as follows:
Step1 Suppose that 6 is known. Bs(-) can be approximated by the first-order Taylor
expansion

Bs(uit) = Bs(u) + (uy — u)Bs(u)Zars + ans(uiyy —u),s =1,2,- -+, p
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for u;; in a neighborhood of u, where ay; is the first order derivative of p(u). Let a; =
(ay1,a12, - ,alp)’ and a; = (ap1, a0, - ,azp)’; then estimators of a; and a4, can be ob-
tained by

T P
(&1, 82) = argmin oo NT Z Z it — ; a1 + s (uip — u)) Xigs) Ky (uiy — 1),
where i = yi; — p(WoYt); — zh, Ky (uy — u) = h=1K((uyy — u)/h), K(-) is a kernel func-
tion and # is the bandwidth. Therefore the feasible initial estimator of (1) can be obtained
by Bin(u) = ay = (f11, 812, - ,d1p)'. )

Denote Wy, = diag(Kj(u11 —u), Ky(u1a —u), -, Ky(unr —u)) , Y = (?11,?1,2,' -,
_ X11 T XNT
gnr)', 6 = (a1, -+ a1p, hag, - - hayy)" and Dy = ( L N ) ,then
we have

a ~ ~

0 = arg mm

Therefore, we obtain
6= (D/W,D,) D/ W,Y.

LetS, = ﬁD’uWuDu, T, = ﬁD{[WuY and eg = (Ip,0p). It is easy to know that

P

Bin(u) = (811,812, -+ ,81p)" = ¢Sy ' Ty, (8)
where eéSu = s(u). Consequently, the initial estimator of Xp(u) is given by

(xil 0)(D u11WM11 D”ll) 1Diln Wiy,

(xiz 0)(D u12WM12 D”lZ) 1D1/412 Wiy, c

Xbint) = ,
(xyr  0)(D UNT WMNTDHNT> 1D1/4NT Wiy
where / / .
(xll 0)(Dllll WMU DM11> Dull W“ll
S — (x112 0)(D{112 WulzDuu) 1D;12Wu12
(xNT 0)(DMNTWMNTDMNT) 1D7//1NTW”NT

Step 2 Replacing B(u) of (4) with By (u), the estimator  of # can be obtained by
maximizing approximate quasi-log-likelihood function:

NI =Dz - L (A(o)Y - Za]/(1 - SYH(I - S)[A(p)Y — Za]

Inl(6) = —
nL(6) 2 2(02 + To?)

;’g[A(P)Y —Za)' (1= 8)(I—H)(I—-8)[A(p)Y — Za]

+In|A(p)| + c. )

- gln((f(;_2 + To?) —

In the real estimation of 6, the procedure is realized by following steps:
Firstly, assume p is known. The initial estimators of 07, 0? and « are obtained by
maximizing (9). Then, we find

04N = IN(T = D] MY = XBinv(w)])' (I = H)[Y — XBn(u)], (10)

Opn = (NT) Y = XBin () HIY = Xpin(u)] — T~ 07, (11)
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H Wy sziz0-s), 2 I-H

A /
IXIN:[Z (I*S)(Az - ) )
Oan + 10N Oan oan T 10Ny Oan

)JA(p)Y. (12)

Secondly, with the estimated 67, 0%, and &y, update p by maximizing the concen-
trated quasi-log-likelihood function of p:

- N(T—-1), ., N, A
InL(p) = _¥ZHU§IN - El"(%ZIN + Toppy) + In|Ap)| +c.

Therefore, the estimator of p is obtained by:
0= argm;lx InL(p).

Step 3 By substituting g into (10), (11) and (12), respectively, the final estimators of
(sz, 0?2 and « are computed as follows:

62 = [N(T —1)] 'Y (I - S)/(I - H)(I - S)Y, (13)
62 = (NT) YW/ (I—- S)H(I - S)Y — T 162,

H I-H H I-H
1-8)7)7'72'(1-5§ +
02 + To? 0?2 ) )2l ( )(&€2+T€7§ 02

&= [2/(1-S)( JA(D)Y.

Step4 By replacing p with g in (8), we get the ultimate estimator of S(u):
B(u) = eg[D,W,D,] ' Dy W, Y.
where Y = A(p)Y — Z&, A(p) = I — pW.

3. Asymptotic Properties for the Estimators

In this section, we focus on studying consistency and asymptotic normality of the
PQMLEs given in Section 2. To prove these asymptotic properties, we need the following
assumptions to hold.

To provide a rigorous analysis, we make the following assumptions.

Assumption 1. (i) ¢;; and b; are uncorrelated to x;; and z;;, and satisfy E(b;|xj, zi) =
0, Var(bxiz) = 02 < co, E([bixhl) < eo, E(biz)]) < oo, E(eilxzie) = O,
E(|leixly]]) < oo, Var(e;|xis, zit) = 02 < oo and E(||¢;z},||) < oo, where || - || represents
the Euclidean norm. Moreover, E(|e|") < oo and E(|b|") < co for some r > 4.

(ii) {(uy, Sit)}fi{f:l are i.i.d random sequences. The density function fy(u) of uj; is non-
zero, uniformly bounded and second-order continuously differentiable on U, where U is the
supporting set of K(u). Q1 (u) = E(x;X),|ujy = u) < oo exists, and it has a second-order
continuous derivative; Oqp(u) = E(xjz}|uy = u) and Qop(u) = E(ziz,|uy = u) are
second-order continuously differentiable on U; E(x; X/ |uy = u) = 0, E(zjz} |uj = u) =0
and E(xyzjuy = u) = 0 for t # s; E(xyx,luy = u) # 0, E(xyei|uy) = 0 and
E(xitbit|uit) = 0.

(iii) Real valued function Bs(u)(s = 1,2,- -, p) is second-order, continuously differentiable
and satisfies the first order Lipschitz condition, |x,Bs(u)| < mg at any u, |zja| < my,
where mg and my are positive and constant.

(iv) {xit, zit}fi{ 11 arei.id. random variables from the population. Moreover, max E(|x;|") <

co and max E(|z;|") < oo forr > 4.
it
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Assumption 2. (i) As a normalization, the diagonal elements @;; of Wy are O for all i and

@ are at most of order 15!, denoted by O(1/1y).

(ii) The ratio Iy /N — 0 as N goes to infinity.
(iii) A(p) is nonsingular for any |p| < 1.

(iv) The matrices W and A~(p) are uniformly bounded in both row and column sums in
absolute value.

Assumption 3. K(-) is a nonnegative continuous even function. Let yuy = [ k(v)vldv, v; =
[ k2 (v)vldv; then p; = vy = 0 for any positive odd number. Meanwhile, yg = 1, p # 0.

Assumption 4. If N — 0o, T — ccand h — 0, then NTh — oo.
Assumption 5. There is an unique 6y to make the model (1) tenable.

Assumption 6. ¢q, Zgbg%gb’QO 7 +¢0,0, = 0, where

9o,z = lim lim ——Q(I1—S)(I-S)Z, ¢pz= lim lim LTz’(I—S)/(I—S)z,

N—ooT—oo NT N—oco T—00

PQoQy = Lim lim %Qé(f = 8)'(I-5)Qo, Qo= Go(Zag + XPo), Go = WA (po).
Remark 1. Assumption 1 provides the essential features of the regressors and disturbances for
the model (see [47]). Assumption 2 concerns the basic features of the spatial weights matrix and
the parallel Assumptions 2-5 of [12]. Assumption 2(i) is always satisfied if Iy is a bounded
sequence. We allow I to be divergent, but at a rate smaller than N, as specified in Assumption

2(ii). Assumption 2(iii) guarantees that model (2) has an equilibrium given by (3). Assumption

2(iv) is also assumed in [12], and it limits the spatial correlation to some degree but facilitates the
study of the asymptotic properties of the spatial parameter estimators. Assumptions 3 and 4 concern
the kernel function and bandwidth sequence. Assumption 5 offers a unique identification condition,
and Assumption 6 is necessary for proof of asymptotic normality.

In order to prove large sample properties of estimators, we need introduce the fol-
lowing useful lemmas. Before that, we simplify the model (2) and obtain reduced form
equation of Y as follows:

Y = XBo(u) + Zag + pG(Zag + XBo(u)) + A~ (po) (Ub + ¢),

where A~ (pg) = I + poGo; Go = WA~ !(pp). The above equations are frequently used in a
later derivation.

Lemma 1. Let {(Xq,Y1), (X2, Y2), -+, (Xn, Yu)} e iid. random vectors, where Y; are scalar
random variables. Further, assume that E|y|" f(x,y)dy < oo, where f denotes the joint density
of (X,Y). Let K be a bounded positive function with a bounded support, satisfying a Lipschitz

condition. Given that n?*='h — oo for some T < 1 —r71,

1 & log(1/h
sup | L Y216,(% — 0)Y; - EKy (%, - x| = 0, ({BU M2y
X i=1
The proof can be found in [48].

Lemma 2. Under Assumptions 1-4, we have

Qn) 0
Su i)F(u)< 161/{ I’tZQll(u) )/
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where F(u) = Tlim %ZiTzl fi(u) and Oqq = E(x,-tx;-t|uit =u),i=12,---,Nt=12,---,T.
—00
Proof See the Appendix A.

Lemma 3. Under Assumptions 1—4, we have By (u) N Bo(u).
Proof See the Appendix A.

Lemma 4. Under Assumptions 1—4, we have

(@) N Z'(I=S)'(I= H)(I = $)Z = O () Oy () o (w);
(i) (I—S)XB(u) =op(1), (I —S)Za = o0p(1);

(i) (I —S)GXB(u) =0p(1), (I - S)GZa = Op(1);

(iv) S(Ub+e) =0p(1), SG(Ub+€) = 0p(1).

The proof can be found in [37].

Lemma 5. Under Assumptions 1-6, Xg) = E[—~ Plnl (6)

| is a positive definite matrix and

VNT 060¢
1 9%InL(6y)
VNT 06000'
02 E[Q)PQo] o2y [tr(G)Go) +tr(GyHGy)] I tr(GyGo)—tr(G3) N N N
N (0’820+T(7§0)0'€20 NoZ, NT
tr(GhH) | (03+Toz)[tr(G))—tr(GHH)) 1 . .
NT NToh 2%
tT(G()H) _ 1 _ T F3
NT(0%+To2)) 2(0%+Top))? 2(02)+Tof,)?
M 0 0 _ E[Z’Pz]
N (‘7520 + Tabzo )(730 N T(ffo (‘7520 + T(szo)
+o0p(1).
Proof See the Appendix A.

With the above lemmas, we state main results as follows. Their detailed proofs are
given in the Appendix A.

Theorem 1. Under Assumptions 1-5, we have p — py = op(1) and & — ay = op(1).
Theorem 2. Under Assumptions 1-5, we have p(u) — Bo(u) = op(1).
Theorem 3. Under Assumptions 1-5, we have 0% — 03, = op(1) and 67 — 0y = op(1).
Theorem 4. Under Assumptions 1-6, we have

VNT(0 - 69) = N(0, 25! + 5107 1),

w D, . . . . 2 .
where “—" represents convergence in distribution, Yo, = —E[ﬁa la';s(g?(’)] is the average

Hessian matrix (information matrix when € and b are normally distributed, respectively), Qy =

_ 1 dlnL(6y) 1 dlnL(6y) 1 9%InL(fy)
E(Qoyp) and Qo = =55 35 a0r ~ + NT —opo07

Theorem 5. Under Assumptions 1-5, we have

VNTh(B (1) — Bo(ut) — @) 5 N(0,92 (1)),
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where v (u) and ¢ (u) satisfy (u) = gh*uap(u) and v*(u) = vo(02y + 07) [F (1) Q1 (u)] 7,
F(u) = Tlim %Zthl fe(u), Qq(u) = E(xitx;t|uit = u) and B(u) is the second-order derivative
—00

of B(u),i=1,2,--- ,N,t =1,2,-- -, T. Furthermore, ifNTh5 — 0, then we have

VNTh(B(u) — Bo(u)) 2+ N(0,72(u)).

4. Monte Carlo Simulation

In this section, Monte Carlo simulations are presented, which were carried out to
investigate the finite sample performance of POMLEs. The sample standard deviation
(SD) and two root mean square errors (RMSE1 and RMSE2) were used to measure the
estimation performance. RMSE1 and RMSE2 are defined as:

mcn

1 A 3 A Bo.75 — 6
RMSE1 = [@ 2(91‘ —60)%]2, RMSE2 = (85— 60)* + %,
=

where mcn is the number of iterations; 9i(i =1,2,---,mcn) are estimates of 0 for each
iteration, 6 is the true value of 6; 55, 05 and 6, 75 are the upper quartile, median and
lower quartile of parametric estimates, respectively. For the nonparametric estimates, we
took the mean absolute deviation error (M ADE) as the evaluation criterion:

Q A
MADE; = Q"' 21 |Bi(ug) — Bj(ug)l, j=1,2,--- ,men,
q:

where {1, };2:1 are Q fixed grid points in the support set of u. In the simulations, we applied
the rule of thumb method of [48] to choose the optimal width and let kernel function be an
Epanechnikov kernel K(u) = (%)( — Lu?)1(u? < 5) (see [33]).

We ran a small simulation experiment with mcn = 500 and generated the simulation
data from following model:

Yit :p(WOYt)i—{_x;t:B(uit) +Z;t“+bi+€itli: 1/2/"' rN/t = 1r2r"' rT/

where we assume that x;; ~ U[—2,2], z;; ~ U[-2,2], u; ~ U[-3,3], &; ~ i.i.d.N(0,0.5),
bj ~ i.id.N(0,1), By (uir) = 0.5u + sin(1.5u;), Bo(ui) = u? + 0.5uy, (a1,a2) = (1,1.5)
and p = 0.25,0.5 and 0.75, respectively. Furthermore, we chose the Rook weight matrix
(see [7]) to investigate the influence of the spatial weight matrix on the estimates. Our
simulation results for both cases T = 10 and T = 15 are presented in Tables 1-6.

Table 1. The medians and SDs of MADE values for 51 (u).

T=10 T=15
Parameter
N =49 N =64 N =381 N =100 N =49 N =64 N =81 N =100
Median 0.1681 0.1519 0.1415 0.1326 0.1472 0.1340 0.1337 0.1301
o =025 SD 0.0352 0.0337 0.0283 0.0247 0.0289 0.0248 0.0240 0.0203
Median 0.1769 0.1617 0.1498 0.1424 0.1587 0.1475 0.1400 0.1385
0=05 SD 0.0377 0.0338 0.0295 0.0256 0.0298 0.0296 0.0243 0.0220
Median 0.1553 0.1421 0.1316 0.1219 0.1384 0.1205 0.1137 0.1048
o =075 SD 0.0335 0.0280 0.0254 0.0239 0.0256 0.0226 0.0211 0.0200
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Table 2. The medians and SDs of MADE values for B, (u).

T=10 T=15
Parameter
N=49 N =64 N =81 N =100 N=49 N =64 N=81 N =100
Median 0.0944 0.0864 0.0777 0.0677 0.084 0.0724 0.0704 0.0677
o =025 SD 0.0326 0.0313 0.0249 0.0224 0.0274 0.0230 0.0201 0.0178
Median 0.0985 0.0891 0.0836 0.0768 0.0868 0.0785 0.074 0.0724
0=05 SD 0.0322 0.0304 0.0258 0.0238 0.0276 0.0234 0.0206 0.0186
Median 0.0957 0.0863 0.0795 0.0729 0.0807 0.0743 0.0648 0.0608
o =075 SD 0.0314 0.0257 0.0211 0.0213 0.0254 0.0223 0.0191 0.0173
Table 3. The results of parametric estimates with T = 10(1).
True N=49 N =64
Parameter
Value MEAN SD RMSE1 RMSE2 MEAN SD RMSE1 RMSE2
0 0.2500 0.2836 0.0685 0.0859 0.0657 0.2720 0.0662 0.0851 0.0622
(73 0.5000 0.5949 0.0625 0.1136 0.0608 0.5844 0.0619 0.1046 0.0592
(sz 1.0000 0.9070 0.1971 0.2176 0.1979 0.9226 0.1786 0.1944 0.1874
o1 1.0000 0.8755 0.0511 0.0072 0.0057 0.8879 0.0439 0.0065 0.0042
1) 1.5000 1.5721 0.0111 0.0155 0.0097 1.5983 0.0039 0.0126 0.0052
0 0.5000 0.5236 0.0532 0.0896 0.0599 0.5222 0.0480 0.0878 0.0544
(782 0.5000 0.6026 0.0729 0.1258 0.0688 0.5913 0.0644 0.1116 0.0639
sz 1.0000 0.8785 0.2026 0.2360 0.2107 0.9059 0.1819 0.2046 0.1999
oy 1.0000 0.8690 0.0058 0.0076 0.0098 0.9145 0.0036 0.0049 0.0044
an 1.5000 1.5764 0.0079 0.0172 0.0286 1.6692 0.0056 0.0073 0.0058
0 0.7500 0.8083 0.0253 0.0635 0.0295 0.8110 0.0246 0.0657 0.0294
(782 0.5000 0.6059 0.0702 0.1270 0.0734 0.6048 0.0659 0.1237 0.0679
sz 1.0000 0.8864 0.2063 0.2352 0.2212 0.8623 0.1694 0.2181 0.1944
o1 1.0000 0.8421 0.0472 0.0091 0.0009 0.8935 0.0442 0.0061 0.0007
an 1.5000 1.5260 0.0023 0.0249 0.0002 1.5152 0.0012 0.0113 0.0001
Table 4. The results of parametric estimates with T = 10(2).
True N =81 N =100
Parameter
Value MEAN SD RMSE1 RMSE2 MEAN SD RMSE1 RMSE2
0 0.2500 0.3033 0.0578 0.0785 0.0620 0.3051 0.0527 0.0762 0.0531
(73 0.5000 0.5585 0.0456 0.0741 0.0432 0.5530 0.0389 0.0657 0.0369
(sz 1.0000 0.9289 0.1596 0.1745 0.1691 0.9616 0.1524 0.1569 0.1477
o1 1.0000 0.9468 0.0364 0.0032 0.0075 1.0757 0.0363 0.0044 0.0036
o 1.5000 1.5410 0.0402 0.0476 0.0089 1.5246 0.0373 0.0057 0.0039
0 0.5000 0.5112 0.0396 0.0814 0.0465 0.5033 0.0339 0.0808 0.0414
(752 0.5000 0.5765 0.0505 0.0916 0.0537 0.5679 0.0436 0.0806 0.0457
0’5 1.0000 0.9203 0.1575 0.1763 0.1481 0.9352 0.1480 0.1613 0.1565
o 1.0000 0.8403 0.0082 0.0092 0.0017 0.9422 0.0014 0.0033 0.0015
1) 1.5000 1.4713 0.0034 0.0255 0.0008 1.4743 0.0032 0.0033 0.0007
0 0.7500 0.8094 0.0208 0.0629 0.0218 0.8101 0.0178 0.0627 0.0215
‘752 0.5000 0.5823 0.0548 0.1057 0.0600 0.5821 0.0522 0.0933 0.052
(sz 1.0000 0.8966 0.1520 0.1837 0.1669 0.9054 0.1464 0.1741 0.1610
o 1.0000 0.8568 0.0061 0.0083 0.0088 0.9889 0.0035 0.0006 0.0005

ap 1.5000 1.6519 0.0022 0.0205 0.0231 1.4913 0.0017 0.0001 0.0001
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Table 5. The results of parametric estimates with T = 15(1).

True N=49 N =64
Parameter

Value MEAN SD RMSE1 RMSE2 MEAN SD RMSE1 RMSE2
0 0.2500 0.2751 0.0670 0.0801 0.0608 0.2740 0.0637 0.0780 0.0614
o? 0.5000 0.5761 0.0556 0.0942 0.0548 0.5626 0.0523 0.0815 0.0385
(75 1.0000 0.9374 0.2005 0.1989 0.1046 0.9363 0.1752 0.1861 0.1872
o1 1.0000 1.1449 0.0356 0.0054 0.0049 0.9441 0.0335 0.0032 0.0025
ay 1.5000 1.4568 0.0052 0.0210 0.0073 1.5855 0.0034 0.0031 0.0019
0 0.5000 0.5749 0.0517 0.0910 0.0613 0.5766 0.0433 0.0879 0.0439
(762 0.5000 0.5922 0.0596 0.1098 0.0614 0.5779 0.0598 0.0982 0.0515
(sz 1.0000 0.9193 0.2160 0.2303 0.2313 0.9126 0.1729 0.1935 0.1814
o] 1.0000 1.0623 0.0202 0.0036 0.0101 1.0652 0.0021 0.0038 0.0038
%) 1.5000 1.3248 0.0026 0.0039 0.0307 1.3651 0.0023 0.0043 0.0182
0 0.7500 0.8118 0.0270 0.0674 0.0331 0.8146 0.0226 0.0684 0.0264
o? 0.5000 0.6058 0.0707 0.1272 0.0671 0.5929 0.0611 0.1112 0.0622
Ug 1.0000 0.8746 0.2018 0.2173 0.2024 0.8788 0.1688 0.2076 0.1708
o1 1.0000 1.0408 0.0093 0.0024 0.0008 1.0420 0.0046 0.0024 0.0016
ap 1.5000 1.4716 0.0006 0.0017 0.0002 1.4956 0.0004 0.0015 0.0008

Table 6. The results of parametric estimates with T = 15(2).
True N =81 N =100
Parameter

Value MEAN SD RMSE1 RMSE2 MEAN SD RMSE1 RMSE2
0 0.2500 0.2662 0.0545 0.0714 0.0576 0.2646 0.0493 0.0664 0.0525
o? 0.5000 0.5566 0.0441 0.0717 0.0397 0.5490 0.0392 0.0627 0.0330
(TZ 1.0000 0.9508 0.1555 0.1629 0.1524 0.9772 0.1507 0.1522 0.1565
o1 1.0000 0.9450 0.0202 0.0031 0.0055 0.9862 0.0008 0.0106 0.0024
%) 1.5000 1.5622 0.0413 0.0030 0.0169 1.3702 0.0332 0.0028 0.0017
0 0.5000 0.5750 0.0343 0.0733 0.0448 0.4930 0.0297 0.0063 0.0204
(782 0.5000 0.5633 0.0488 0.0800 0.0476 0.5364 0.0366 0.0602 0.0433
Ug 1.0000 0.9311 0.1517 0.1634 0.1525 0.9532 0.0880 0.1337 0.0935
o1 1.0000 0.9822 0.0351 0.0026 0.0018 0.9673 0.0283 0.0013 0.0013
ap 1.5000 1.4033 0.0029 0.0020 0.0005 1.4980 0.0203 0.0011 0.0007
0 0.7500 0.8156 0.0205 0.0687 0.0235 0.8066 0.0153 0.0543 0.0137
o? 0.5000 0.5904 0.0522 0.0974 0.0564 0.5806 0.0501 0.0949 0.0512
(sz 1.0000 0.8806 0.1486 0.1783 0.1680 0.9254 0.1369 0.1635 0.1597
o1 1.0000 1.0338 0.0049 0.0023 0.0077 0.9856 0.0026 0.0002 0.0005
a 1.5000 1.3659 0.0326 0.0018 0.0180 1.4977 0.0008 0.0001 0.0001

By observing the simulation results in Tables 1-6, one can obtain the following findings:
(1) The RMSE1s and RMSE2s for p, 62, &1 and &, were fairly small for almost all cases,
and they decreased as N increased. The SDs and RMSEs for 07 are not negligible for small
sample sizes, but they decreased as N increased. (2) For fixed T, as N increased, the SDs for
0, 6'82, [713, &1 and &, decreased for all cases. RMSE1s and RMSE2s for &; and &, decreased
rapidly, whereas the RMSEs for estimates of the others parameters did not change much.
For fixed N, as T increased, the behavior of the estimates of parameters was similar to the
case where N changed under the fixed T. (3) The SDs for MADEs of varying coefficient
functions B1(u) and By (u) decreased as T or N increased. Combined with the above three
findings, we conclude that the estimates of the parameter and unknown varying coefficient
functions were convergent.
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Figures 1 and 2 present the fitting results and 95% confidence intervals of B1(u) and
B2(u) under p = 0.5, respectively, where the short dashed curves are the average fits over
500 simulations fs(u) (s = 1,2) by PQMLE, the solid curves are the true values of fs(u)
(s = 1,2) and the two long dashed curves are the corresponding 95% confidence bands.
By observing every subgraph in Figures 1 and 2, we can see that the short dashed curve is
fairly close to solid curve and the corresponding confidence bandwidth is narrow. This
illustrates that the nonparametric estimation procedure works well for small samples. To
save space, we do not present the cases p = 0.25 and p = 0.75 because they had similar
results as the case p = 0.5.

T=10,N=49,p=0.5 T=15,N=49,p=0.5

Figure 1. The fitting results and 95% confidence intervals of f1(u) under p = 0.5.
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T=10,N=49,p=0.5 T=15,N=49,p=0.5

Figure 2. The fitting results and 95% confidence intervals of B, (1) under p = 0.5.

5. Real Data Analysis

We applied the housing prices of Chinese city data to analyze the proposed model
with real data. The data were obtained from the China Statistical Yearbook, the China City
Statistical Yearbook and the China Statistical Yearbook for Regional Economies. Based
on the panel data of related variables of 287 cities at/above the prefecture level (except
the cities in Taiwan, Hong Kong and Macau) in China from 2011 to 2018, we explored the
influencing factors of housing prices of Chinese cities by PLVCSARPM with random effects.

Taking [49-51] as references, we collected nine variables related to housing prices
of China cities, including each city’s average selling price of residential houses (denoted
by HP, yuan/sq.m), the expectation of housing price trends (EHP, %), population density
(POD, person), annual per capita disposable income of urban households (ADI, yuan),
loan—to-GDP ratio (MON, %), natural growth rate of population (NGR, ), sulphur dioxide
emission (SDE, 10,000 tons), area of grassland (AOG, 10,000 hectares) and the value of
buildings completed (VBC, yuan/sq.m). According to result of non-linear regression, the
established model is given by

yir = p(WoY)i + x;, Btir) 4zt + by + 5,1 <1< 287,1 <t <8, (14)
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where y;; represents the ith observation of In(HP) at time ¢; z;; represents the ith observation
of EHP at time f; x;; means the ith observation of POD, In(ADI), MON, NGR, SDE and
AOG at time t, respectively, u;; represents the ith observation of In(VBC) at time ¢.

In order to transfer the asymmetric distribution of POD to nearly uniform distribution
on (0,1), we set

POD = (PODY?® — min(POD'/?)) / (max(POD'?) — min(POD'/3)).
The spatial weight matrix Wy we adopted is calculated as follows:

264
wij = exp( = ls; —Sj\l)/lgexp( = lIsi = sll)

where s; = (longitude;, latitude;).

Figure 3 presents the estimation results and corresponding 95% confidence intervals
of varying coefficient functions Bs(s = 1,2, - - - ,6), where the black dashed line curves are
the average fits over 500 simulations and the red solid lines are the corresponding 95%
confidence bands. It can be seen from Figure 3 that all covariates variables have obvious
non-linear effects on housing prices of Chinese cities.

ADI MON
0.32 0.6
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Figure 3. The estimated functions Bs(u) and corresponding 95% confidence intervals for the housing
prices of Chinese cities.

The estimation results of parameters in the model (14) are reported in Table 7. It can be
seen from Table 7: (1) all estimates of parameters are all significant; (2) spatial correlation
coefficient p = 0.3820 > 0, which means there exists a spatial spill over effect for housing
prices of Chinese cities; (3) & = 0.9869 > 0 indicates that the expectation of housing price
trends (EHP) has a promotional effect on housing prices of Chinese cities; (4) 62 = 0.0163
shows that the growth of housing prices in different regions is relatively stable and is less
affected by external fluctuations.
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Table 7. The estimation results of unknown parameters in the model (14).

p G o o2
Estimators 0.3820 *** 0.9869 *** 0.1375 ** 0.0163 **
SD 0.0243 0.0397 5.0344 0.3687

Notes: ** and *** are significant at the significance levels of 5% and 1%, respectively.

6. Conclusions

In this paper, we proposed POMLE of PLVCSARPM with random effects. Our model
has the following advantages: (1) It can overcome the “curse of dimensionality” in the
nonparametric spatial regression model effectively. (2) It can simultaneously study the
linear and non-linear effects of coveriates. (3) It can investigate the spatial correlation
effect of response variables. Under some regular conditions, consistency and asymptotic
normality of the estimators for parameters and varying coefficient functions were derived.
Monte Carlo simulations showed the proposed estimators are well behaved with finite
samples. Furthermore, the performance of the proposed method was also assessed on a set
of asymmetric real data.

This paper only focused on the POMLE of PLVCSARPM with random effects. In future
research, we may try to extend our method to more general models, such as a partially
linear varying coefficient spatial autoregressive model with autoregressive disturbances.
In addition, we also need study the issues of Bayesian analysis, variable selection and
quantile regression in these models.
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Appendix A

To proceed with the proofs of main lemmas and theorems, we first provide two
frequently used evident facts (see [14]).

Fact 1. If the row and column sums of the #n X n matrices Bi, and By, are uniformly
bounded in absolute value, then the row and column sums of B, B2y are also uniformly
bounded in absolute value.

Fact 2. If the row (resp. column) sums of By, are uniformly bounded in absolute
value and By, is a conformable matrix whose elements are uniformly O(o,,), then so are
the elements of B1nBap (resp. BonBin).

Proof of Lemma 2. Recall 5, = %D; W, D,. By straightforward calculation, it is

not difficult to get
S — ( SMO Sul >
! Sut Suz ’
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where S, = g7 Liq Ly xieXi (U5 ) ky, (ui — u),1 = 0,1,2. Denote Djyy = xjpx,ky (i —
Ujp—un]| _ 1 N
u)(=4=)", Cy = § LiLq Diy, then we have

Ly Ly
Sul = Diy==)_Cu.
NT = = T=

By Assumptions 1-3, we know

1

1
ECy = ZEthl ==
N i=1 Nz

= E{E iy (115 — 1) (“2 ) ]}
=E{kh<uit—u)(%yfs(xﬁxmuﬁ)}

=E{k (i — 1) (%) (1)}

= [ (g = ) /) ) () Qo (i

= / k(v) fi(u + o) o' Q1 (u + ho)dv

Ujp — Uy
=)

™M=

E[xztx;tkh(uit —u)(
1

= [ KO + A0+ @O+ o)y
1+O( ))ft( YO (u),

where y; = [v'k(v)dvand v = “4=*, Dy(i = 1,2,--- ,N) are i.i.d for any fixed t and .

According to Khinchine law of large numbers, we have Cy ANy Cy;. Therefore, it is not

hard to get that
T
Z Cy = T ;[(1 +0p(1))ECy]
=T ZLft W)y (u) + O(H)](1 + 0p(1))

Let F(u) = Tlim 1yl fi(u), then Sy SN i F(u)q1(u). Hence,
— 00

S S 14 Qll(u) 0
S, = u0 ul ) or ( )
! ( S Sw (M) 0 VZQH(”)

a
Proof of Lemma 3. Recall T, = NLD’ W, Y. By straightforward calculation, we

obtain
T, = < NT Z 1 Zt 1 xztyztkh(uzt u) >£< Ty )
NT Zz 1 Zt 1 xltylt( )1kh(”1t - ”) Tu,l
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where T,;; = NL YNy, Xt g (H —Vky(uje — u) for I = 0,1. Then, it is not hard to obtain

T
Z Z xltylt )lkh(”it - 7/1)
1 1t=1
1 N T T
=57 L 2 xiexhBoluie) () oy (i — )
i=1t=1
1 N T Wi — U
+ﬁzzxit(bi+€it)(T)kh(uit—u). (A1)
i=1t=1

For the first term of above equality in (A1), by similar proof procedures of Lemma 2, it is
easily to get that

U u- —u
D wirxiyBo i) (<) (i — 1) = F (1) () Bo (u)-
1t=1

L
NT :

™M=

i

For the second term of above equality in (A1), we obtain

1 N T u‘t u 1
NS xit (b + €it) 7)’%(”1—”)]
NTl;t:Z; 1 1 h 1
N T
u- u
= 2 let b +£lt tT)lkh(uit—u)‘uitH
z:lt:l
1 NI Uy — U
~T E[xi¢ (b; 4 &3¢) i) (= )k (e — u)]
NT;; 1 1 1 h 1
:0/
and
LYYl V(s — )
Var(—= xit(bi + €j n(ui —u
NTl:lt:l l Z h l
1 N Ujpp —u 21
2 Z Z{E kh Uit _u)( n ) xll‘xzt] [(b +€1t) ]}
i=1t=1
:0(1).
Therefore,
T, = ( ?0 ) i>F(u)( Han(g)ﬁo(u) )
ul

Furthermore, by using (8) and Lemma 2, we easily know By (1) LN Bo(u). O

Proof of Lemma 5. Its proof is analogous to Lemma 4.2 in [34] and Theorem 3.2
in [12]. The major difference is that our model is panel model with random effects instead
of sectional model.

In order to prove Xy, is positive definite, we need only prove that x = 0 according
to g,k = 0, where x = (Kl,Kz,K3,KfL)’ , K1, %2, k3 are constants, and x4 is a 4 dimension
column vector.

It follows from g x = 0 that:

o — 2(0% + Togy)tr(GYH) [T (03 + Tod)) ot + T(0z + Tog,) — o) "
NT(og + Tojy)* + Nog, ,

tr(GyH) (03 + Top)) [2NT (0% + Top,) + 2Noky) — T?0 (0% + Togy) + T2(0F + Togy) — Tok)

K
NT2(02, + ToZ,) + NTo?, !
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and
_ 2 -1
kg = Toho7790,2%1-

By straightforward calculations, it can be simplified to prove

(TohPuz$75P0,2 + P00kt + cax1 + [(0% + Tag)*tr(GoGo) — (0 + Top )ogtr(Go)liy =0,

where c3 = Ty (o) + 0f) + T(0% + 0fy) — 0% > 0.

By Lemma 4in [43], itis easy to obtain that (¢, + To7,)*tr(G(Go) — (03 + Topy)o2tr(GE) >
0. Furthermore, according to Assumption 6, TU§0¢QO Z(])E%(])’QO 7+ ¢0,0, = 0. Thus, we have
%1 = 0 and so ¥ = 0. This completes the proof. [

Proof of Theorem 1.  Let {#', 0} = argmax,, , InL(«',p) and {ap, po} = argmax, ,
InL(a’,p). We adopt the idea of Theorem 3.2 in [12] to prove the consistency of p and &. By
the Consistency of Extrema Estimators in [52], it suffices to show that

%[lni(&’,p) —InL(&,p)] = op(1),

where
InL(a,p) = —@ln&fm - gln(fm +Top, ) +1n|A(p)],
and
InL(a,p) = —wlnﬁf - gln(ﬁf + T&2) + In|A(p)|.

By straightforward calculation, we have

1o, , o T—
m[lnL(a,p) InL(a',p)] = 7T

1 1
(Ing? — IndZy) + ﬁ[ln(rrf + To2) — In(6% N + ToZy))-

Therefore, it only needs to prove that

02N — 7 = op(1) (A2)
and
opn — 05 = op(1). (A3)

We first prove (A2) holds.
it is obvious that

i = sy ¥~ XB (W) (1= BDIY = Xpi(w)
==y ¥~ XB() (1~ )LV = XB(u)]
+ =y~ XBOOY (1= H)(XB(w) = X (u)
+ =y (XU = X)) (1 = H)(XB(a) = X (1)

+ N(Tl_l)(xﬁ(u) — Xpin () (I — H)(XB(u) — XBin (u)).
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Thus, it is necessary to prove the last two terms of above equality converge to 0 in probabil-
ity. By Lemma 3 and Assumption 1(iv), we have XB(u) — XBn(u) = op(1). Moreover,

[Y — XB(w)]'(I— H) = (Ub+e)'(I- H)

T T T
= (en—-T 'Y eren—T 'Y e ent—T 'Y ene)
=1 =1 t=1

By weak law of large numbers,

1 N T L XL,
ﬁlgt;\fit—T t;sit\< zzltZ|£lt|<2 ﬁgt;glt)z 5 20,
Thus 5 )
m[Y—Xﬁ( w)]'(I— H)[XB(u) — Xpin(u)] = op(1) (A4)

It follows from XB(u) — XBn(u) = op(1) that

N(Tl_l)[xﬁ(u) — XBin ()] (I — H)[XB(u) — XPin (u)]

< =17 B — X)) [XB() ~ X (u)] (A5
=op(1)
By (A4) and (A5), we have

07N — 02 = op(1).

Similar to the proof of (A2), it is not difficult to verify that 62, — 77 = op(1). Accord-
ing to the continuity of In(-), we have

SrlinL (&, p) ~ InL(@,p)] = op(1).

Consequently, the consistency of p and & are proved. O
Proof of Theorem 2. It follows by straightforward calculation that

T, = —D’ W, ¥ ( : N%\T] Zf\%l Y xitL]Zitf(LIZ(luit —u) >£< Tu,0 >,
NT NT Lim1 L Xitlie (F5= ) ke (i — 1) Tun
where T, = w7 YLty Diog xiefir (U5 ey (i — u),1 = 0,1 .
Moreover, B(u) = ey[D,W,D,| "' D}, W,Y = ¢S 1T, where T, = D! Wuf/ = < ?"0 >
u,1
—)ky,(uy — u),1 = 0,1. By Theorem 1, it is easy to ob-

and Tul = NT Zz 1 Zt 1 xzt]/zt(

tain that
Vit = yir — P(WoYy); — zi
=yir — (o +p—p)(WoYs); — zjy(a + & — )
=7(1+op(1)).
Thus,
. 1 N T X U — U
Ty = = XY (— ) ki (i — )
" NTgt; i h i
1 N T
= (1+Op(1))ﬁ;t:1 zt]/zt( 2 ) kh(ult—u)
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Therefore, (1) = eOSu T, = (1+op(1 )) T, = (1+0p(1))Bn(u). Furthermore, we

have B(u) — Bo(u) = B(u) — Bin(u) + ,BIN( ) Bo(u) = op(1) by using Lemma 3. [
Proof of Theorem 3. By Theorem 1, we have

07 =62, =op(1),  — o7, =op(1).

To prove our conclusions, we only need to verify that

72— (7520 =op(1), & — (750 =op(1) (A6)
and
6—82 AEZIN = Op( )’ 6—5 - a—lglN = Op(l) (A7)

Firstly, we prove (A6) holds. It is easy to know

7 = Sy @)Y — XB(u) — Zal (1~ H)[A(p)Y — XB(w) — Zo
— 1 bt (i—H) b 3 Ly e
—m( +¢)'(I-H)(Ub+e) = l;f; TTE “Z‘%'t”

1 1 N T )
_1 ZZzt _1)[WZ(;€H)]

tlz i=1 t=1

According to Khinchine law of large numbers, we have

1 N- o P 2 2
N(T -1 & 6 — Elei) = o

i=1t=1
and
1N T 1 NI 5 N T )
m;(t;&ﬁ :mlggsit+ml;];(£z]€k_>E €)= 0.

Thus, T = [+ LN (2 €it)?] = op(1). Therefore, &2 — 02, = op(1). By similar way, it is
not hard to get oy — o3 = op(1).

Secondly, we prove (A7). By (13), Theorem 1 and Theorem 2, a simple calcula-
tion yields

O, =

= (1+0p(1))07,.

_52
Thus, 62 Oy =

the proof. O

Proof of Theorem 4. By Taylor expansion of

op(1). By a similar way, we can obtain 07 — ?Tgm = op(1). This completes

E)lnL(G

lo_g = 0 at fp, we have

alnL(6)

| 9%InL(0) .
00 9= " 50507

lo—g(0 —00) =0,

~ o~/

where § = (g, & (Tb, #?)" and 0 lies between 0 and 6. By Theorem 1 and Theorem 3, we
easily know that @ converges to 6 in probability.
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Denote
8lni(90)Lalni(9)| azlnl(QO)Lazlni(9)| azlni(é)Lazlni(G)l ~
20 00 =% Qg0 — ogoer '°=% “agogr oagogr =0
Thus,
— B 1 0%nL(8), 4 1 9InL(6y)
NT (O =00) = =7 30007 JNT 00

Next, we prove
1 0%nL(6) 1 0%InL(6y)

NT o000~ NT osaw P (A8)
and OInL (60)
1 nL 90 D
To prove (A8), we need to show that each element of % 825359(,9) — % azgégg)o) con-
verges to 0 in probability. It is not difficult to get
1 9%InL(6y) 1 1 , ,
—_——t = — [ — = (WY)' (I-S)'H(I — S)WY
NT 9pdp’ NT[U£20+TU§O( J( JH )
1
+ U—%(WY)’(I —8) (I —H)(I—-S)WY +tr(G3)],
&
1 02InL(6y) 1 , H I-H
— = ——YW(I-S I—-S5)[A Y — Zayg],

L PO g gy Mgy a(e0)Y — Zao),

NT opasZ  NT 7%+ Togy

1 0*InL(6y) 1 i ,, H I-H

— " =——F=YW({I-5 I1-S5)Z,

NT e T g g )
1 azlnL(Qo) 1 , , H I—H
— P = — —[A(po)Y — Za] (I - S I—8)[A(po)Y — Z
NT 0902dc? NT[ (o) a'( )[(UgoJrTago)g, ot I( )[A(po) o]

T—-1 1
+

+ ,
Tod — 2T(0% + Tody)?

1 9%InL(6p) 1 1 / /
NT = - A(po)Y — Zag)' (I — S)'H(I — S)[A(p0)Y — Zao],
NT 902007 2(c% + ToZ, )2 zN(a§O+Ta§O)3[ (00)Y — Zao]'(I = S)'H(I — S)[A(po) Y — Zao)]
1 9*nL(6o) 1, : H I-H
NT 300, = N2 =S I—S)[A(po)Y — Zay),
NT o020 N2 H(ngo TR A J(I=S)[A(p0)Y — Zao]
1 9%nL(6y) T T

- - A Y — Zag)' (I - S)'H(I - S)[A Y — Zag],
NT 92002 2(0% + Toz))? N(‘Ts20+TU§O)3[ (po) wo] (I = S)"H(I = S)[A(po) ao]

1 9*InL(6y) 1 , ,
= = Z'(I—S)'H(I - S)[A(po)Y — Zay),
NT doZon’ N(0Z) + Tozy)? ( VH( JA(po) #o)

1 92InL(6) 1 , ,
~T = - Z'(I-S)(I-S5)Z.
NT owoa’ NT(cZ) + Top,) ( A )
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By mean value theorem, Assumption 2 (iv) and Lemma 5, we have

1 9*nL(6) 9*InL(6 1 1 1 / /
1,1 1 , ,
NT(72 ~ %)(WY) (I-S)(I-H)(I-S)WY
+ = ltr(G(9)) — r(G2(po))]

= 2 r(G (")~ o) +0p(1) = op(1),

where §* lies between g and pg. Similarly, we have

1 0%nL(6) 1 02%InL(6y)

NT 9000 NT aeew P

To prove (A9), we adopt the idea of [12]. It is easy to obtain that the components
of ﬁ al”géeo) are linear or quadratic functions of Ub + ¢ and their means are all op(1).

\/% % is asymptotically normal distributed with

0 means by using the CLT for linear-quadratic forms of Theorem 1 in [53]. In the following,

we calculate its variance. According to the structure of the Fisher information matrix, we
know that

Under Assumption 1, we have that

1 alnL(6y) 1 olnL(fy) 1 olnL(6y) 1 9%InL(6y)
) = E( ’ / ) = —E(= 7 )+E(Q9NT)/
VNT 96 VNT 06 VNT 00 NT 0600

where

Var(

1 *InL(6y)
NT 960¢’

¢ 9FE[Q)PQo] 02 [tr(GyGo) +tr(GYyHGy)] | tr(G)Go)—tr(GE)
{ ) > T 5 + NT } * * %
N(oy+Tojp)og Nog,
~ tr(GhH) (0% +Tofy)[tr(Gy) —tr(GyH)] _1 * *
NT NTf, 2%

__r(GH) _ 1 ____T «
NTZ(U§O+T(r§O) 2(02+To2,)? 2(02+Toz))?
02E[Q)PZ] 0 0 _E[Z’PZ]
N (UEZO + Tago )(7520 NT (‘ngo + Talfo )

+op(1),

Qoyr11 Qo2 Qoyr1z Qoyr14

Qg = * Qoyr2 Qoyrz Qgyr2a
NT * * g3 Qoyraa
* * * QGNT44

Let ppo3 and pg03 be the third moments of b and ¢, respectively; pipoq and piz4 be the forth mo-
ments of b and ¢, respectively; and A;; be the ii-th element of A. By using the Lemma 5 and
the facts that E(U, AyUy) = o3tr(An), E(U,AnU,U,ByUy) = (g — 308) Yy ay iiby i +
o5[tr(AuBy) + tr(AnBy) + tr(AuBy,)], it follows by straightforward calculation that
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a (mpoa — 30y) NL (UHU);[U'U — U'HU ;i + (peos — 307) TN Hyi (1 — H)j;
GNTll - NT
ybg,QOHudmg(U’Gou U'HGoU) + pe03QyHdiag(Go — HGo)
NTZ(T
(Hbo4 —304) LN (UHU)? + (Vso4 —304) LN (I - H)y
NT?
yb03QOHUdzag(U’HGOU) + p03QyHdiag(HGy)
NT?(0% + To)
a _ (mp0a — 307) LN [(U'GoU — U'GoHU) ;[U'U — U'HU ;]
Onrl2 2NT0¥,
+(peoa — 30%) LN [(Go — GoH) (I — H)j
2NToS,
L (oo — 30p0) L [(U'GoHU) i (U'U — U'HU )] + (peos — 30) LR [(GoH) (1 — H)ji)
2NTa4 (0% + Tog)
L (oos = 30p) LI [(U'GoHU) i (U'U — U'HU) ) + (peos — 30y) LR [(GoH)ii (1 — H)yi)
2NTo2 (07 + Togy)?
N (mpos — 307ky) N (U GoHU) i + (peos — 307%) TN [(GoH) i Hyj]
2NT(0% + Togy)?
meOHumg[u’u U'HU] + pe3QpHdiag(I — H)
2NTo (02 + To?,)
n #po3 Qo (I — H)Udiag(U'HU) + pe03Qp (I — H)diag(H)
2NTo? (0% + ToZ,)?
Vb03QoH wag(U’H U) + pe03QyHdiag(H)
ZNT( ot Tcrbo)

O _ _ mpo3QoHUdiag(U'HU) + peo3QyHdiag(H)
fnrl3 2N(0% + ToZ,)?
N 03 Qp (I — H)Udiag(U'HU) + peo3 Qp (I — H)diag(H)
2No?) (03 + Tog)?
L (moos = 30) L [(U'GoHU) i (U'U — U'HU) 1] + (eos — 307%) YR [(GYH)ii(1 — H) )
2No? (05 + Tog))?
n (mpoa — 30) TN [(U'GoHU )i (U'HU ) 1] + (peoa — 307%y) TN [(GHH ) i1 His]
ZN((T + T(Tho)

7

+

7

7

Ogy14 =0,
Qoo =  (upos — 30y) TN [(U'HU) i (U'U — U'HU) 1] + (peos — 30%) TN [Hii (1 — H) i)
M (0% + T‘szo)z
n (mpos — 30y) ENL (U'U — U'HU)? + (peos — 30%) TN (1 — H)?
8
050

(#b04 —30i) ENL (UHU)Z + (peos — 307%y) TN HE
NT(0Z + To?,)*

7
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 (upos — 30py) TN [(UHU) i (U'U — U'HU) 1] + (peoa — 30%) L0 [Hii (1 — H) i)

QO
N2 = ANGE (03 + To?))?
(Vb04 —3050) LY (U'HU) + (#eoa — 30) TV H2
4N(0?) + Top,)? ’
],tb03Z’H’U’diag(u’HU) + ueosZ' Hdiag(H)
Qgyroa =

2NT(03 + To2)?
N wpzZ' (I — H)'U dzag(U’HU) + ue3Z' (I — H)'diag(H)
2NTo2 (0 + Tog,)?
N wpzZ' (I — H)'U'diag(U'U — U'HU) + peosZ' (I — H)'diag(I — H)

2NT205,
yb03Z '"H'U'diag(U'U — U'HU) + pe03Z H'diag(I — H)
2NTol (03 + Tog,) ’
T|(ppos — 300) LN <U'HU> + (ueos — 30y) L4 H2
QQNT33 -
4N(o2 o+ Tabo)
a ]/lb03Z (I — H)'U'diag(U'HU) + pe3Z' (I — H)'diag(H)
OnT34

2NTo% (0% + Tog)
yb03Z’H’U’dzag(U’HU) + ue03Z' H'diag(H)
2N (02 + ToZ,)?

7

QGNT‘M =0.

Particularly, it is not difficult to know that Qy = O(4) = o(1) when b; and ¢;; are
normally distributed, respectively. This completes the proof. O
Proof of Theorem 5. According to Lemma 2, we know

Sy =A(u)+op(1),

where A(u) = F,diag(Qq1(u), 42011 (u)). By using the fact that (A + B)™! = A~1 —
A1 (I1+BA-1)"1BA~!, we have

s ﬁ_IN(M) _ o1 P.,_1
0= ( hﬁm(”) ) =S, T, — A (u)Ty.

Denote R, = xD},W, (Ub + ¢). By using Lemma 1 and Taylor expansion of Bo(u;;) at u, it
is not difficult to get

e Bo(u) 1, TZletlkh(ult )xiejy (“5) 2 Bo (1) 2
T Re=Su( 0 )+ 2 ( R o i ) ) o0

According to the proof procedure of Lemma 2, we know

5V o (u)] = pa f () Q1 (u) o (1)

u
E [k, (i — 1) 0}, ( lth

Thus
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=

Al 1o, NT Ty Ty ke (i — 1) x40, (“574)2 Bo (u) 2
B (1) o) = ™0 Ru-+ P (B B T ) o0

1 &y o1, .
= N7 L L b = )i+ ) F)()] ™ + Zhpafo(u) + o).
i=1t=
Define ¢;; = \/szzil ZtT:1 kp(uip — u)x;; (b; + €;1), then
E(git) =0
and

E(szt) = hE[ki(”it - ”)xitxgt(bi + €z‘t)2]
= vo (02 + 070) F (1)1 (1) + op(1).

According to CLT, we have

{ N T b
NT Z Y k(i — u)xie (b + &i¢) — N(0,v0(029 + 050) F (1) Q1 (1))

i=1t=1

NTh

and

VNTh(Bin (i) — Bol(u) — g(u)) 2+ N(0,9%(w)),

where ¢(u) = 1h2uBo(u) and 7% (u) = vo(aéo + aglo)[F(u)Qn(u)}’l. Furthermore, if
NTh> — 0, then
VNTh(Bin(u) = Bo(u)) = N(0,7%(w)).

By Lemma 3 and Theorem 2, we obtain that
P D
VNTh(B(u) = Bo(u) — @(u)) — N(0,7%(u)).

In particular, when NTh® — 0, VNTh(B(u) — Bo(u)) 2, N(0,9%(u)) holds. O
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