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Abstract: We study an optimal control problem for the stationary Stokes equations with variable
density and viscosity in a 2D bounded domain under mixed boundary conditions. On in-flow and
out-flow parts of the boundary, nonhomogeneous Dirichlet boundary conditions are used, while on
the solid walls of the flow domain, the impermeability condition and the Navier slip condition are
provided. We control the system by the external forces (distributed control) as well as the velocity
boundary control acting on a fixed part of the boundary. We prove the existence of weak solutions
of the state equations, by firstly expressing the fluid density in terms of the stream function (Frolov
formulation). Then, we analyze the control problem and prove the existence of global optimal
solutions. Using a Lagrange multipliers theorem in Banach spaces, we derive an optimality system.
We also establish a second-order sufficient optimality condition and show that the marginal function
of this control system is lower semi-continuous.

Keywords: Stokes equations; variable density; variable viscosity; mixed boundary conditions;
Navier slip condition; control problems; optimal control; optimality conditions; variational inequali-
ties; marginal function

1. Introduction

In this work, we study an optimal control problem for the stationary Stokes equations
with variable density and viscosity in a domain Ω ⊂ R2, which is assumed to be a bounded

and connected set with boundary Γ def
= ∂Ω of class C1. Specifically, we consider the

following system of partial differential equations (PDEs):
−div [µD(u)] +∇π = ρf in Ω,

u · ∇ρ = 0 in Ω,

div u = 0 in Ω.

(1)

Here, the unknown functions are the velocity field u : Ω → R2, the hydrostatic
pressure π : Ω→ R, and the density ρ : Ω→ R+ for a nonhomogeneous fluid that flows
through the domain Ω. The vector function f : Ω → R2 represents a distributed control
that acts on the motion equation and belongs to a closed and convex set F ; the function
µ : Ω→ R+ describes the dynamic viscosity of the fluid; D(u) is the symmetric part of the

velocity gradient (the deformation rate tensor), i.e., D(u) def
= 1

2
(
∇u + (∇u)>

)
.

Symmetry 2021, 13, 2050. https://doi.org/10.3390/sym13112050 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1514-4475
https://orcid.org/0000-0003-3880-1279
https://orcid.org/0000-0002-7726-2362
https://orcid.org/0000-0001-7657-2986
https://orcid.org/0000-0002-7104-2895
https://doi.org/10.3390/sym13112050
https://doi.org/10.3390/sym13112050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112050
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112050?type=check_update&version=1


Symmetry 2021, 13, 2050 2 of 22

In order to describe boundary conditions for the velocity field and the density function
in (1), we divide the boundary in three open disjoint parts: Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γ1 and
Γ2 are in-flow/out-flow parts and Γ3 = Γ \ (Γ1 ∪ Γ2) is the lateral part (solid walls) of the
boundary. Then, we impose the following boundary conditions:

u = ug
def
=

{
u0 on Γ1,

g on Γ2,
(2)

ρ = ρ0 > 0 on Γ1. (3)

The functions ρ0 and u0 are defined on Γ1 and describe a Dirichlet boundary condition.
The function g describes a Dirichlet boundary control for u on Γ2 and belongs to a closed
convex set Gu0 .

Additionally, we assume the following:

Γ1 is an arcwise connected and closed set on Γ, with |Γ1| > 0; (4)

either u0 · n > 0 on Γ1 (out-flow) or u0 · n < 0 on Γ1 (in-flow), (5)

where |Γ1| denotes the length of the curve Γ1 and n is the outward unit normal vector to
the curve Γ. Observe that condition (5) implies that Γ1 is either a part of the boundary
where the fluid flows outward or a part where the fluid flows inward.

An example of the flow domain Ω is given in Figure 1.

Figure 1. The flow domain Ω with boundary Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γ3 = Γ(1)
3 ∪ Γ(2)

3 .

Finally, on the part Γ3 we impose the impermeability condition and the Navier
slip condition:

u · n = 0 and [µD(u)n + αu]tang = 0. (6)

The term [µD(u)n + αu]tang is the tangential component of the vector µD(u)n + αu;
that is,

[µD(u)n + αu]tang
def
= µD(u)n + αu− [(µD(u)n + αu) · n]n.

For the sake of brevity, the nonhomogeneous Stokes system (1) with mixed boundary
conditions (2), (3), (6) will be referred to as problem NS-MBC in what follows.

The Navier slip boundary condition was proposed by Navier [1]; it is based on a
balance between the fluid velocity tangent to the surface and the rate of strain at the
boundary, i.e., the tangential component of the viscous stress at the boundary should
be proportional to the tangential velocity. The components of the normal velocity to the
surface is naturally zero, as mass cannot penetrate an impermeable solid surface. This
type of boundary condition is involved when one studies boundary layer problems, such
as in channels or Couette flows and is well justified by Jäger-Mikelić [2,3]. In addition,
the real number α ≥ 0 is the friction coefficient, which measures the tendency of the fluid
to slip on the part Γ3. When α = 0, the fluid slips on Γ3 without friction and there are
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no boundary layers, while if α goes to +∞, then the friction is so intense that the fluid is
almost at rest near the boundary [4] (see also [5]). Thus, from the physical point of view,
boundary conditions (6) make more sense than the classical Dirichlet boundary conditions.

Moreover, in order to define a correct variational formulation (weak solutions concept)
of problem NS-MBC, the classical Green identities are not applicable in this case. The above
leads us to study other results of integration by parts (see Lemma 1, below). Additionally,
in order to correctly control the Hσ-norm in terms of the L2-norm of the deformation rate
tensor, i.e., the norm ‖D(u)‖2, we must employ the Korn inequality (see [6], p. 52), which
is not usual.

Some examples of flow phenomena that might require the introduction of a Navier
slip boundary condition have been presented by Fujita [7,8] , namely: a drainage or canal
in which its bottom is covered with a layer of mud and pebbles; the blood flow in the vein
of a patient suffering from arterial sclerosis; an avalanche of water and rocks; a flow of iron
coming out of a smelting. Some other applications can be consulted in [9–11].

It is well known that fluids in which the density and viscosity are variable have several
important applications, both in natural phenomena as well as in industry. These fluids
present a wider range of interesting phenomena, compared to fluids with constant density
and viscosity (also called homogeneous fluids), and there are several mathematical models
that describe different physical situations. In particular, some examples of the physical
modeling of mixtures of incompressible fluids can be found in [12] and the respective
mathematical analysis of these models were developed in [13–15]. We emphasize that all
these works only consider fluids with constant viscosity and Dirichlet boundary conditions.
Furthermore, as far as we know, there are no previous studies on the existence of weak
solutions of problem NS-MBC, and analyses of optimal control problems have not been
carried out either.

The above motivates the analysis of problem NS-MBC. The main mathematical diffi-
culty that arises in the study of this problem in relation to the Stokes system with variable
density and viscosity is due to several nonlinearities in the problem (−div [µD(u)], ρf in
Equation (1)1 and u · ∇ρ in Equation (1)2), which, due to the product with the unknown
density and viscosity, are much harder to deal with than the corresponding terms ones
appearing in the Stokes equations in which the density and viscosity are known constants.
Moreover, since the nonlinearity of the term u · ∇ρ is not related to a monotone operator,
we must work with arguments that are different than what is typical when dealing with
elliptic or parabolic problems and nonlinearities and restrictions related to monotone op-
erators. To overcome these difficulties, we will use the stream formulation presented by
Frolov [16] that is, the fluid density is represented in terms of its stream function through
another function determined by the boundary conditions. This representation allows us
to drop the continuity equation, which facilitates the introduction of the weak solution
concept of problem NS-MBC. The stream formulation was used in [17–21].

The purpose of this work is to study an optimal control problem related to weak
solutions of problem NS-MBC. We would like to point out that the literature to the mathe-
matical analysis of optimal control problems associated with systems of partial differential
equations modeling the motion of viscous incompressible fluids with variable density
and viscosity is scarce. The main difficulty lies in the mathematical handling. In fact,
the systems that model the behavior of viscous and incompressible fluids with constant
density can have two types of character: either elliptical, for the steady state, or parabolic,
for the non-stationary state. In both cases, when an approximation argument is used,
such as the Galerkin method, for instance, higher-order estimates are usually obtained
for the approximate solutions, which facilitates the passage to the limit in the nonlinear
terms and, consequently, it is more simple to achieve the required results. On the other
hand, for systems that model the motion of fluids with variable density, the equations
that compose the system present nonlinearities that are more difficult to handle since they
makes it impossible to obtain higher-order estimates and make it difficult to pass to the
limit in the nonlinear terms. The system of equations that we have considered in our work



Symmetry 2021, 13, 2050 4 of 22

(problem NS-MBC), the first equation of system (1) has an elliptic character but is coupled
with a first-order transport equation for the density ρ (see Equation (1)1), which gives a
hyperbolic character to the model. These drawbacks make it difficult to obtain estimates
with high regularity and increase the difficulties in passing to the limit.

Let us mention the available literature on the analysis of optimal control problems for
nonhomogeneous fluid flows. The beginning of the study of such problems dates back
to the paper of Illarionov [17]. He investigated optimal boundary control for a model of
2D steady-state flows of a nonhomogeneous incompressible fluid under the assumption
that the viscosity µ is constant. Using the external forces field as a control function, Mallea-
Zepeda et al. [19] proved the existence of optimal solutions to this model and obtained the
first-order necessary optimality conditions. Boundary control for a 2D stationary system
of micropolar fluid with variable density was studied in [20]. Certain classes of optimal
control problems for the 2D Boussinesq equations with variable density and constant
viscosity are analyzed in [21].

We also mention that there is a large number of mathematical works devoted to the
study of optimal control problems for PDEs describing flows of a homogeneous fluid
(see, for example, refs. [22–26] and the numerous references therein). Such problems are
currently fairly well understood, while control and optimization problems for nonhomoge-
neous fluid flows remain a serious challenge. Motivated by this fact, we performed our
study, which can be considered a starting point for future investigations of non-Newtonian
fluid models, where more general inhomogeneities can be analyzed.

The outline of the present paper is as follows: In Section 2, we fix the notation,
introduce the function spaces to be used and establish the concept of weak solutions of
problem NS-MBC, using the stream formulation. In Section 3, we prove the existence and
uniqueness of weak solutions of system NS-MBC, in order to establish that the admissible
solutions set is nonempty (see (39) below). In Section 4, we introduce the optimal control
problem to this system and prove the existence of global optimal solutions. Moreover, using
a Lagrange multipliers theorem in Banach spaces, we derive an optimality system, and,
establishing a coercivity condition for the Lagrangian function, we obtain a second-order
sufficient optimality condition. Finally, we show that the marginal function related to this
control system is lower semi-continuous with respect to the one-sided Hausdorff distance.

For the reader’s convenience, in Appendix A (see Table A1), we collect the main
symbols used in this paper and explain their meaning.

2. Preliminaries

In this section, we introduce the notation, function spaces and principal results that
we will use throughout the work.

2.1. Notation and Function Spaces

Let E be a Banach space. By 2E we denote the collection of all subsets of E (the power
set of E). By definition, put

Pb[E]
def
=
{

M ∈ 2E \ {∅} : M is bounded
}

,

Pc[E]
def
=
{

M ∈ 2E \ {∅} : M is convex
}

,

Pcl[E]
def
=
{

M ∈ 2E \ {∅} : M is closed
}

and
Pc, cl[E]

def
= Pc[E] ∩ Pcl[E], Pb, c, cl[E]

def
= Pb[E] ∩ Pc[E] ∩ Pcl[E].

Let U and W be subsets of E. By dE(U ,W) we denote the one-sided Hausdorff
distance from the set U to the setW , that is,

dE(U ,W)
def
= sup

u∈U
inf

w∈W
‖u− w‖E.
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For m ∈ N and 1 ≤ p ≤ +∞, we will use the Sobolev space Hm(Ω)
def
= Wm,2(Ω) and

the Lebesgue space Lp(Ω) with norms denoted by ‖ · ‖Hm and ‖ · ‖Lp , respectively. In partic-
ular, when p = 2, L2(Ω) is a Hilbert space; in this case, the L2-norm and L2-scalar product
are represented by ‖ · ‖ and (·, ·), respectively. In addition, the Lp(Γ)-norm is denoted
by ‖ · ‖Lp(Γ). The corresponding spaces of vector-valued functions are denoted by bold
script; for instance, H1(Ω), Lp(Ω), and so on. Recall that the restriction of a function

v ∈ H1(Ω) to the curve Γ is defined by the formula v|Γ
def
= γ0v, where γ0 : H1(Ω)→ Lp(Γ)

is the trace operator (see [27], § 2.4.2).
We also use the following divergence-free Banach spaces (solenoidal spaces):

• The space Hσ
def
= {v ∈ H1(Ω) : div v = 0 in Ω and v · n = 0 on Γ3} equipped with

the usual norm and scalar product of H1(Ω);

• The space Vσ
def
= {v ∈ Hσ : v = 0 on Γ \ Γ3}, which is a Hilbert space with the scalar

product (v, w)Vσ

def
= (D(v), D(w)) and the norm ‖v‖Vσ

def
= ‖D(v)‖.

By Cl(Ω) (resp. Cl(R)) we denote the Banach space of functions that are l times
continuously differentiable on Ω (resp. on R) and by Cl

b(Ω) (resp. Cl
b(R)) the space of

l times continuously differentiable and bounded functions on Ω (resp. on R).
Moreover, if X is a general Banach space, its dual topological is denoted by X′ and the

pairing duality by 〈·, ·〉X′ or 〈·, ·〉, when this does not lead to ambiguities. In particular, H′σ
denotes the dual of Hσ, and V′σ denotes the dual of Vσ.

Furthermore, the space of the traces of vector functions from H1(Ω) is defined by

H1/2(Γ) def
= {h ∈ L2(Γ) : there exists v ∈ H1(Ω) such that v|Γ = h}

with the norm ‖h‖H1/2(Γ)
def
= ‖LΩh‖H1(Ω), where LΩ : H1/2(Γ)→ H1(Ω) is the lifting

(trace extension) operator such that γ0 ◦ LΩ = Id (see, for example, ref. [28], Chapter III,
Theorem III.2.22).

The dual space of H1/2(Γ) is denoted by H−1/2(Γ), and the respective duality product
is denoted by 〈·, ·〉Γ.

For a subset S of Γ, we introduce the subspace H1/2
0 (S) as follows:

H1/2
0 (S) def

= {ϕ ∈ L2(S) : there exists w ∈ H1/2(Γ) such that w|S = ϕ and w|Γ\S = 0}.

Note that the injection H1/2
0 (S) ↪→ L2(S) is continuous; that is, there exists a positive

constant C which depends only on Ω such that ‖ϕ‖L2(S) ≤ C‖ϕ‖H1/2
0 (S) (see [27], § 2.4.2).

The letter C denotes a positive constant, independent of the state (u, π, ρ) and the
control (f, g), but its value may change from line to line.

2.2. Weak Solutions

Let us assume that the following conditions are fulfilled:

f ∈ L2(Ω), u0 ∈ H1/2
0 (Γ1), g ∈ H1/2

0 (Γ2), µ ∈ C0(Ω), ρ0 ∈ C0(Γ1), η ∈ C0
b(R), (7)

there exists constants µ∗ and µ∗ such that 0 < µ∗ ≤ µ(x) ≤ µ∗, for any x ∈ Ω, (8)∫
Γ1

u0 · n +
∫

Γ2

g · n = 0. (9)

To define the concept of weak solutions of problem NS-MBC, following the ideas of
Frolov [16] (see, also [17–21], for more details), we express the fluid density in terms of the
stream function. Namely, assuming conditions (4) and (5), we can express the fluid density
as follows:

ρ(x) = η(ψ(x)) = η(Nu)(x), ∀x ∈ Ω, (10)
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where η is a function from the space C0
b(R), and N : Hσ → H2(Ω) is the linear and

continuous operator (see [17], Lemma 2.1) that takes each vector function u ∈ Hσ to
a function ψ (stream function) such that

curl (ψ~e3) = ~u in Ω, ψ(x) =
∫

Γ1(x0,x)
u · n, ∀x ∈ Γ1, (11)

where~e3
def
= (0, 0, 1),~u def

= (u1, u2, 0), x0 is the initial point of the curve Γ1, and Γ1(x0, x) is
the portion of Γ1 lying between the points x0 and x. In the Cartesian coordinate system, the
first equality of (11) is equivalent to

∂ψ

∂x1
= −u2,

∂ψ

∂x2
= u1 in Ω. (12)

For any η ∈ C1
b(R), the velocity field u and the density ρ, defined as in (10), satisfy

relation (1)2. Indeed, using the chain rule and (12), we obtain

∂ρ

∂xi
= η′(ψ)

∂ψ

∂xi
=

{
−η′(ψ)u2 if i = 1,

η′(ψ)u1 if i = 2,

where η′ denotes the first derivative of η. Therefore, we obviously have

u · ∇ρ =u1
∂ρ

∂x1
+ u2

∂ρ

∂x2

=− u1η′(ψ)u2 + u2η′(ψ)u1 = 0 in Ω.

Note also that if η ∈ C0
b(R), then condition (1)2 is satisfied at least in the weak sense,

that is, ∫
Ω
(u · ∇ω)ρ = 0, ∀ω ∈ H1(Ω) with ω = 0 on Γ.

This identity is not difficult to establish by applying the procedure of regularization
for the function η and passage to the limit.

Now it remains to choose a function η so that the density function ρ satisfies boundary
condition (3). To this end, we introduce the function ψ0 : Γ1 → R by the following formula:

ψ0(x)
def
=
∫

Γ1(x0,x)
u0 · n, ∀x ∈ Γ1.

Clearly, ψ0 ∈ C0(Γ1). Moreover, from conditions (4) and (5) it follows that ψ0 is strictly
monotone on the curve Γ1, and hence, there exists the inverse function ψ−1

0 ∈ C0(I),
where I def

= {ψ0(x) : x ∈ Γ1}. Therefore, if conditions (4) and (5) hold, u0 ∈ H1/2
0 (Γ1),

ρ0 ∈ C0(Γ1), and ρ0 > 0 on Γ1, then there exists a function η ∈ C0(R) such that

η(s) > 0, ∀s ∈ R, and η(s) = ρ0(ψ
−1
0 (s)), ∀s ∈ I . (13)

In the sequel, we assume that the function η satisfying (13) is fixed.
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Let us show that boundary condition (3) is satisfied. Indeed, taking into account (10)
and (13), we obtain

ρ(x) = η(Nu)(x) =ρ

( ∫
Γ1(x0 ,x)

u · n
)

=ρ

( ∫
Γ1(x0 ,x)

u0 · n
)

=ρ
(
ψ0(x)

)
=ρ0

(
ψ−1

0 [ψ0(x)]
)

=ρ0(x),

for any u ∈ Hσ such that u = u0 on Γ1 and for all x ∈ Γ1.

Remark 1. If the curve Γ1 is of class Ck and the following inclusions hold,

ρ0 ∈ Ck(Γ1), u0 · n ∈ Ck−1(Γ1)

with k ≥ 1; then there exists a function η ∈ Ck(R) satisfying relations (13) (see [17]).

To obtain the weak formulation of problem NS-MBC, as usual, we take the L2-scalar
product of equality (1)1 with a test function v ∈ Vσ. Next, we use the relation (∇π, v) = 0
and the following result on integration by parts:

Lemma 1 (see [29]). Suppose that a vector function u ∈ H2(Ω) satisfies boundary conditions (6),
a vector function v ∈ H1(Ω) satisfies the condition v · n = 0 on Γ, and µ ∈ C1(Ω). Then, we have

−
∫

Ω
div [µD(u)] · v =

∫
Ω

µD(u) : D(v) + α
∫

Γ
u · v,

where the symbol : denotes the component-wise product of matrices.

Thus, we arrive at the following definition of weak solutions to system NS-MBC.

Definition 1 (Weak solution). We say that a pair (u, ρ) is a weak solution of problem NS-MBC
if u ∈ Hσ, ρ = η(Nu) and the following weak formulation holds:

(µD(u), D(v)) + α
∫

Γ3

u · v = 〈F(u), v〉V′σ , ∀v ∈ Vσ,

η(Nu) = ρ0 on Γ1,

u = ug on Γ \ Γ3,

(14)

where the operator F : Hσ → V′σ is defined by F(u) def
= η(Nu)f.

3. Existence and Uniqueness of Weak Solutions

In this section, using the Schauder fixed-point theorem, we prove the existence and
uniqueness of weak solutions of system NS-MBC; as far as we know, there are no previous
results on the existence of weak solutions of this problem.

In order to prove the existence of a solution of (14), we reduce this problem to a new
problem with homogeneous boundary conditions in terms of new unknown û. The follow-
ing result allows us to make the desired reduction.
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Lemma 2 (see [20], Lemma 2). Suppose u0 ∈ H1/2
0 (Γ1), g ∈ H1/2

0 (Γ2), and equality (9) holds.
Then, there exists a vector field ue ∈ Hσ such that ue = u0 on Γ1, ue = g on Γ2 and ue = 0 on
Γ3, and satisfies the following estimate:

‖ue‖Hσ ≤ C‖ug‖H1/2
0 (Γ\Γ3)

, (15)

where C is a constant that depends only on Ω.

Now, rewriting u ∈ Hσ in the form u = ue + û, where û ∈ Vσ is a new unknown
function, we obtain that problem (14) is equivalent to the following problem:

Find û ∈ Vσ such that

(µD(û), D(v)) + α
∫

Γ3

û · v = 〈F(û + ue), v〉V′σ − (µD(ue), D(v)), ∀v ∈ Vσ. (16)

We define the operator T : Vσ → Vσ by T(ũ) def
= û, where the vector function û

satisfies the following relation:

(µD(û), D(v)) + α
∫

Γ3

û · v = 〈F(ũ + ue), v〉V′σ − (µD(ue), D(v)), ∀v ∈ Vσ. (17)

We observe that a fixed-point of the operator T is a solution of problem (16). In the next
lemma, we prove that the operator T satisfies the hypotheses of the Schauder fixed-point
theorem.

Lemma 3. The operator T : Vσ → Vσ is well-defined and completely (weak-to-strong) continuous.
Moreover, the following estimate holds:

‖T(ũ)‖Vσ ≤ C
(
‖η‖L∞‖f‖+ ‖ug‖H1/2

0 (Γ\Γ3)

)
, ∀ũ ∈ Vσ, (18)

where C > 0 is a constant, which depends only on the domain Ω and the constants µ∗ and µ∗.

Proof. We introduce the bilinear symmetric form a : Vσ×Vσ → R and the linear functional
L : Vσ → R given by

a(û, v) def
= (µD(û), D(v)) + α

∫
Γ3

û · v, ∀v ∈ Vσ, (19)

Lv def
= 〈F(ũ + ue), v〉V′σ − (µD(ue), D(v)), ∀v ∈ Vσ. (20)

Using (19) and (20), we rewrite problem (17) as follows: Find û ∈ Vσ such that

a(û, v) = Lv, ∀v ∈ Vσ. (21)

Clearly, the form a(·, ·) is continuous on Vσ × Vσ. Moreover, from (8) and (19) it
follows that

a(û, û) ≥ µ∗‖D(û)‖2 = µ∗‖û‖2
Vσ

. (22)

for all û ∈ Vσ. Thus, we deduce that the form a(·, ·) is coercive.
On the other hand, using the Hölder and Poincaré inequalities, we find

|Lû| ≤ ‖η‖L∞‖f‖‖û‖+ µ∗‖D(ue)‖‖û‖Vσ

≤ ‖η‖L∞‖f‖‖û‖+ µ∗C̃‖∇ue‖‖û‖Vσ

≤ C(‖η‖L∞‖f‖+ ‖ue‖Hσ )‖û‖Vσ , (23)

where the constant C̃ satisfies the inequality ‖D(u)‖ ≤ C̃‖∇u‖, for all u ∈ Hσ. Hence,
the linear functional L is continuous.
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Therefore, by the Lax–Milgram lemma (see, for example, ref. [30], Theorem 9.14),
we deduce that there exists a unique û ∈ Vσ satisfying (21), which implies that the
operator T is well-defined.

Now, from (21)–(23), taking into account (15), we find

µ∗‖û‖Vσ ≤ C(‖η‖L∞‖f‖+ ‖ue‖Hσ )

≤ C
(
‖η‖L∞‖f‖+ ‖ug‖H1/2

0 (Γ\Γ3)

)
,

which implies estimate (18).
Finally, let us prove that the operator T is completely continuous. We consider

a sequence {ũm}m≥1 ⊂ Vσ and an element ũ belonging to Vσ such that

ũm → ũ weakly in Vσ, as m→ +∞.

Then, since the injection of H2(Ω) in C0(Ω) is compact and the operator N is con-
tinuous, we deduce that for some subsequence of {ũm}m≥1, still denoted by {ũm}m≥1,
the following convergence holds:

Nũm → Nũ strongly in C0(Ω), as m→ +∞.

Moreover, taking into account the inclusion η ∈ C0
b(R), we obtain

η(N(ũm + ue))→ η(N(ũ + ue)) strongly in C0(Ω), as m→ +∞. (24)

In view of ûm = T(ũm), we have

(µD(ûm), D(v)) + α
∫

Γ3

ûm · v = 〈F(ũm + ue), v〉V′σ − (µD(ue), D(v)), ∀v ∈ Vσ. (25)

Then, taking the difference between (17) and (25), we obtain

(µD(ûm − û), D(v)) + α
∫

Γ3

(ûm − û) · v = 〈F(ũm + ue)− F(ũ + ue), v〉V′σ , ∀v ∈ Vσ.

Setting v = ûm − û into the last equality, by the Hölder and Poincaré inequalities we
derive the estimate as follows:

µ∗‖ûm − û‖2
Vσ
≤ ‖η(N(ũm + ue))− η(N(ũ + ue))‖L∞‖f‖‖ûm − û‖
≤ C‖η(N(ũm + ue))− η(N(ũ + ue))‖L∞‖f‖‖ûm − û‖Vσ ,

which implies

‖T(ũm)− T(ũ)‖Vσ = ‖ûm − û‖Vσ ≤ C‖η(N(ũm + ue))− η(N(ũ + ue))‖L∞‖f‖. (26)

Therefore, passing to the limit in (26) as m goes to +∞, and taking into account the
strong convergence (24), we obtain

‖T(ũm)− T(ũ)‖Vσ → 0, as m→ +∞.

This means that

T(ũm)→ T(ũ) strongly in Vσ, as m→ +∞.

Thus, the proof is complete.

From Lemma 3, we have the following result on the existence of solutions to sys-
tem (14).
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Theorem 1 (Existence). Suppose conditions (4), (5) and (7)–(9) hold; then problem NS-MBC has
at least one weak solution in the sense of Definition 1. Moreover, if a pair (u, ρ) is a weak solution
of problem NS-MBC, then the function u satisfies the following inequality

‖u‖Hσ ≤ C
(
‖η‖L∞‖f‖+ ‖ug‖H1/2

0 (Γ\Γ3)

)
, (27)

where C is a positive constant, which depends only on the domain Ω and the constants µ∗ and µ∗.

Proof. From Lemma 3, it follows that the operator T, defined in (17), satisfies the conditions
of the Schauder fixed-point theorem. Thus, we deduce that there exists û ∈ Vσ such that
Tû = û, which is a solution of system (16). Therefore, we conclude the existence of u ∈ Hσ,
with u = û + ue, satisfying system (14).

Finally, using inequalities (15) and (18), we obtain

‖u‖Hσ ≤ ‖ue‖+ C
(
‖η‖L∞‖f‖+ ‖ug‖H1/2

0 (Γ\Γ3)

)
≤ C‖ug‖H1/2

0 (Γ\Γ3)
+ C

(
‖η‖L∞‖f‖+ ‖ug‖H1/2

0 (Γ\Γ3)

)
,

which implies (27).

Theorem 2 (Uniqueness). In addition to the assumptions of Theorem 1, we suppose that the func-
tion η belongs to the space C1

b(R) and the constant µ∗ is sufficiently large such that

µ∗ > Ĉ‖η′‖L∞‖f‖, (28)

where Ĉ is a fixed positive constant, which depends only on Ω. Then, the solution u ∈ Hσ of
system (14), provided by Theorem 1, is unique.

Proof. Let u1 and u2 be two possible solutions of (14). Then, subtracting equations in (14)
for u1 and u2, and denoting u = u1 − u2 ∈ Vσ, we obtain

(µD(u), D(v)) + α
∫

Γ3

u · v = 〈(η(Nu1)− η(Nu2))f, v〉V′σ , ∀v ∈ Vσ. (29)

Without loss of generality, we can assume that Nu1 < Nu2. Then, taking into account
that η ∈ C1

b(R), from the mean-value theorem, we deduce that there exists ξ ∈ (Nu1, Nu2)
such that

η(Nu1)− η(Nu2) = η′(ξ)Nu. (30)

Now, substituting (30) into (29) and choosing v = u, we have

µ∗‖u‖2
Vσ
≤ |〈η′(ξ)(Nu)f, u〉V′σ |. (31)

Using the Hölder inequality, the embedding H2(Ω) ↪→ L4(Ω), and the continuity of
the operator N : Vσ → H2(Ω), we obtain

|〈η′(ξ)(Nu)f, u〉V′σ | ≤ ‖η′‖L∞‖Nu‖L4‖f‖‖u‖L4

≤ C‖η′‖L∞‖Nu‖H2‖f‖‖u‖Hσ

≤ Ĉ‖η′‖L∞‖f‖‖u‖2
Vσ

. (32)

Combining (31) and (32), we arrive at the following inequality

µ∗‖u‖2
Vσ
≤ Ĉ‖η′‖L∞‖f‖‖u‖2

Vσ
.

Therefore, using hypothesis (28), we conclude that ‖u‖Vσ = 0, which implies u1 = u2.
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4. Optimal Control Problem

In this section, we give the statement of the control problem under study. Then, we
prove the existence of at least one global optimal solution. Using a Lagrange multipliers
result on the existence of Lagrange multipliers theorem in Banach spaces, we derive an
optimality system and a second-order sufficient optimality condition. In addition, we show
that the marginal function related to this control system (see problem (38) below) is lower
semi-continuous with respect to the one-sided Hausdorff distance.

Let us consider sets F and G such that

F ∈ Pc, cl[L
2(Ω)], G ∈ Pc, cl[H

1/2
0 (Γ2)]. (33)

Moreover, assume the following:

the set Gu0
def
=

{
w ∈ G :

∫
Γ1

u0 · n +
∫

Γ2

w · n = 0
}

is nonempty. (34)

Note that from the inclusion G ∈ Pc, cl[H
1/2
0 (Γ2)] it follows that the set Gu0 is convex

and closed in the space H1/2
0 (Γ2).

We consider a vector function f ∈ F describing a distributed control for the motion
equations in Ω and a vector function g ∈ Gu0 describing a boundary control for u on Γ2.

For simplicity, we use the product X def
= Hσ ×F × Gu0 , and we introduce a cost functional

J : X→ R by the following formula:

J(u, f, g) def
= Ĵ(u) +

α f

2
‖f‖2 +

αg

2
‖g‖2

H1/2
0 (Γ2)

, (35)

where α f and αg are nonnegative real constants, and

Ĵ : Hσ → R is a weakly lower semi-continuous functional with inf
u∈Hσ

J(u) > −∞. (36)

Examples of weakly lower semi-continuous functionals, interesting from the physical
point of view, are as follows:

J1(u)
def
=

1
2
‖u− ud‖2, J2(u)

def
=

1
2
‖curl u‖2, J3(u)

def
=

1
2
‖√µD(u)‖2,

where curl u def
= ∂x1 u2 − ∂x2 u1. The functional J1 describes the deviation of the flow veloc-

ity u from a given desired vector field ud. The functional J2 measures the vorticity of the
velocity field u. The functional J3 describes the total resistance in a fluid due to viscous
friction (see [17,31]).

The constants α f and αg, given in (35), measure the cost of the control. Assume that at
least one of the following two conditions holds:{

(i) α f ≥ 0, αg ≥ 0, F ∈ Pb[L2(Ω)], Gu0 ∈ Pb[H
1/2
0 (Γ2)];

(ii) α f > 0, αg > 0.
(37)

Thus, we define the following constrained minimization problem for system (14):
Find a triplet (u, f, g) ∈ X that minimizes the functional

J(u, f, g) def
= Ĵ(u) +

α f

2
‖f‖2 +

αg

2
‖g‖2

H1/2
0 (Γ2)

,

subject to (u, f, g) satisfies system (14).

(38)
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The set of admissible solutions of control problem (38) is defined by

Zad(F ,Gu0)
def
= {(u, f, g) ∈ X : (u, f, g) satisfies (14)}. (39)

Related to problem (38), we have the following definitions.

Definition 2 (Global optimal solution). A triplet (ũ, f̃, g̃) ∈ Zad(F ,Gu0) is called a global
optimal solution of control problem (38) if

J(ũ, f̃, g̃) = min
(u,f,g)∈Zad(F ,Gu0 )

J(u, f, g). (40)

By Zopt(F ,Gu0) we denote the set of all global optimal solutions to control prob-
lem (38).

Definition 3 (Local optimal solution). A triplet (ũ, f̃, g̃) ∈ Zad(F ,Gu0) is called a local optimal
solution of control problem (38) if there exists ε > 0 such that for all (u, f, g) ∈ Zad(F ,Gu0)
satisfying

‖u− ũ‖Hσ + ‖f− f̃‖+ ‖g− g̃‖H1/2
0 (Γ2)

< ε,

one has that
J(ũ, f̃, g̃) ≤ J(u, f, g).

4.1. Existence of Global Optimal Solutions

In this subsection, we will prove the solvability of optimization problem (38).

Theorem 3 (Existence of optimal solutions). Under the assumptions of Theorem 1, suppose that
conditions (33), (34) and (36) hold. Moreover, suppose that at least one of conditions (i) and (ii)
given in (37) is satisfied. Then, optimal control problem (38) has at least one global optimal solution
(ũ, f̃, g̃) ∈ Zad(F ,Gu0) in the sense of Definition 2.

Proof. From Theorem 1 it follows that

Zad(F ,Gu0) 6= ∅.

Since the functional J is bounded from below, we see that there exists a minimizing
sequence {(um, fm, gm)}m≥1 ⊂ Zad(F ,Gu0) such that

lim
m→+∞

J(um, fm, gm) = inf
(u,f,g)∈Zad(F ,Gu0 )

J(u, f, g).

Moreover, if at least one of the conditions given in (37) is satisfied, then there exists a
positive constant C such that

‖fm‖2 + ‖gm‖2
H1/2

0 (Γ2)
≤ C. (41)

On the other hand, by definition of the set Zad(F ,Gu0), for each m ∈ N, the sequence
{(um, fm, gm)}m≥1 satisfies system (14); thus, from estimate (27) we have that there exists a
constant C > 0, independent of m, such that

‖um‖Hσ ≤ C. (42)

Therefore, using estimates (41) and (42) and the fact that the admissible controls
set F × Gu0 ⊂ L2(Ω) × H1/2

0 (Γ2) is closed and convex (in particular, is weakly closed
in the space L2(Ω)×H1/2

0 (Γ2)), we deduce that there exist a triplet (ũ, f̃, g̃) ∈ X and
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a subsequence of {(um, fm, gm)}m≥1, still denoted by {(um, fm, gm)}m≥1, such that the
following convergences hold as m→ +∞:

um → ũ weakly in Hσ and strongly in Lp(Ω), 1 ≤ p < +∞,

fm → f̃ weakly in L2(Ω) (with f̃ ∈ F ),

gm → g̃ weakly in H1/2
0 (Γ2) and strongly in L2(Γ2) (with g̃ ∈ Gu0).

(43)

Since um = u0 on Γ1 and um = gm on Γ2, from (43) it follows that ũ = u0 on Γ1,
ũ = g̃ on Γ2 and η(Nũ) = ρ0 on Γ1. Thus, we deduce that the triplet (ũ, f̃, g̃) satisfies the
boundary conditions given in (14).

Next, we observe that for all v ∈ Vσ the following estimate holds:

|〈Fm(um)− F̃(ũ), v〉V′σ | ≤ |〈(η(Num)− η(Nũ)fm), v〉V′σ |+ |〈η(Nũ)(fm − f̃), v〉V′σ |
≤ ‖η(Num)− η(Nũ)‖L∞ |〈fm, v〉V′σ |

+‖η(Nũ)‖L∞ |〈fm − f̃, v〉V′σ |, (44)

where
Fm(um)

def
= η(Num)fm, F̃(ũ) def

= η(Nũ)f̃.

Since the operator N : Vσ → H2(Ω) is continuous and the injection of H2(Ω) in C0(Ω)
is compact, we have

η(Num)→ η(Nũ) strongly in C0(Ω), as m→ +∞. (45)

Using (43)2 and (45), we derive from (44) the following:

Fm(um)→ F̃(ũ) weakly in Vσ, as m→ +∞. (46)

Then, the convergences (43) and (46) allow us pass to the limit in system (14) writ-
ten by (um, fm, gm), as m goes to +∞; thus we obtain that (ũ, f̃, g̃) is a solution of (14).
Consequently, the triplet (ũ, f̃, g̃) belongs to the set Zad(F ,Gu0) and

lim
m→+∞

J(um, fm, gm) = inf
(u,f,g)∈Zad(F ,Gu0 )

J(u, f, g) ≤ J(ũ, f̃, g̃). (47)

On the other hand, since the functional J is weakly lower semi-continuous, we have

J(ũ, f̃, g̃) ≤ lim inf
m→+∞

J(um, fm, gm),

which, together with (47), imply (40). Thus, control problem (38) has at least one global
optimal solution.

4.2. Optimality System and Second-Order Sufficient Optimality Condition

In this subsection, we derive an optimality system for optimal control problem (38)
and establish a second-order sufficient optimality condition.

In order to obtain first-order necessary optimality conditions and derive an optimality
system for local optimal solutions of control problem (38), we reformulate this problem in
the abstract context given by Zowe and Kurcyusz [32]. The method for obtaining first-order
necessary optimality conditions, provided by [32], was also previously used in [33,34],
among others.
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In this way, we consider the Banach space W def
= V′σ ×H1/2

0 (Γ \ Γ3) and the operator

S def
= (S1, S2) : X → W, where S1 : X → V′σ and S2 : X → H1/2

0 (Γ \ Γ3) at each point

r def
= (u, f, g) ∈ X are defined by

〈S1(r), v〉V′σ
def
= (µD(u), D(v)) + α

∫
Γ3

u · v− 〈F(u), v〉V′σ , ∀v ∈ Vσ,

S2(r)
def
= u|Γ\Γ3

− ug.

(48)

Thus, optimal control problem (38) can be reformulated as follows:

min
r∈X

J(r) subject to S(r) = 0; (49)

that is, 〈S1(r), v〉V′σ = 0 and S2(r) = 0.
Notice that the set of admissible solutions of problem (49) is

Zad(F ,Gu0) = {r = (u, f, g) ∈ X : S(r) = 0}.

Remark 2. For simplicity, in what follows we carry out our study taking the following:

Ĵ(u) = J1(u) + J3(u) =
1
2
‖u− ud‖2 +

1
2
‖√µD(u)‖2,

Then, for problem (38), the cost functional is

J(u, f, g) =
1
2
‖u− ud‖2 +

1
2
‖√µD(u)‖2 +

α f

2
‖f‖2 +

αg

2
‖g‖2

H1/2
0 (Γ2)

. (50)

Thus, we can easily deduce the following results concerning to the differentiability of
the functional J and the operator S.

Lemma 4. The functional J : X→ R is Fréchet differentiable and the Fréchet derivative of J at the
point r̃ = (ũ, f̃, g̃) ∈ X in the direction s = (w, y, z) ∈ X is given by

J′(r̃)[s] = (ũ− ud, w) + (µD(ũ), D(w)) + α f (f̃, y) + αg〈g̃, z〉Γ2 .

Lemma 5. Let η ∈ C1
b(R). The operator S : X → W is continuously Fréchet-differentiable and

the Fréchet derivative of S at the point r̃ = (ũ, f̃, g̃) ∈ X in the direction s = (w, y, z) ∈ X is the
linear operator S′(r̃)[s] = (S′1(r̃)[s], S′2(r̃)[s]), where

〈S′1(r̃)[s], v〉V′σ = (µD(w), D(v)) + α
∫

Γ3

w · v

−〈η′(Nũ)(Nw)f̃ + η(Nũ)y, v〉V′σ , ∀v ∈ Vσ,

S′2(r̃)[s] = w|Γ\Γ3
−Qz,

and the linear operator Q : H1/2
0 (Γ2)→ H1/2

0 (Γ \ Γ3) is defined by

Qz def
=

{
0 on Γ1,
z on Γ2.

Following [32], we say that r̃ = (ũ, f̃, g̃) is a regular point for problem (49) if for each
pair (a, b) ∈W there exists an element s = (w, y, z) ∈ Hσ × C(f̃)× C(g̃) such that

S′(r̃)[s] = (a, b),
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where

C(f̃)× C(g̃) def
=
{
(θ1(f− f̃), θ2(g− g̃)) : θ1 ≥ 0, θ2 ≥ 0, (f, g) ∈ F × Gu0

}
is the conical hull of (f̃, g̃) in F × Gu0 .

Lemma 6. Suppose that r̃ = (ũ, f̃, g̃) ∈ Zad(F ,Gu0); then r̃ is a regular point.

Proof. Since the pair (0, 0) belongs to C(f̃)× C(g̃), we deduce that it is sufficient to prove
the existence of w ∈ Hσ satisfying the following system

(µD(w), D(v)) + α
∫

Γ3

w · v− 〈η′(Nũ)(Nw)f, v〉V′σ = 〈a, v〉V′σ , ∀v ∈ Vσ,

w|Γ\Γ3
= b.

(51)

The existence of w satisfying (51) can be obtained by arguing similarly as in the proof
of Theorem 1.

Now, we prove the existence of Lagrange multipliers for problem (49); thereafter, we
derive an optimality system.

Theorem 4. Let r̃ = (ũ, f̃, g̃) ∈ Zad(F ,Gu0) be a local optimal solution of problem (49) and
assume that η ∈ C1

b(R). Then, there exist Lagrange multipliers (λ,ϕ) ∈ Vσ ×H−1/2
0 (Γ \ Γ3)

such that the following variational inequality holds:

(ũ− ud, w) + (µD(ũ), D(w)) + α f (f̃, y) + αg〈g̃, z〉Γ2 − (µD(w), D(λ))

−α
∫

Γ3

w · λ + 〈η′(Nũ)(Nw)f̃ + η(Nũ)y, λ〉V′σ − 〈ϕ, w−Qz〉Γ\Γ3
≥ 0. (52)

for all s = (w, y, z) ∈ Hσ × C(f̃)× C(g̃).

Proof. Since r̃ = (ũ, f̃, g̃) ∈ Zad(F ,Gu0), we deduce from Lemma 6 that r̃ is a regular point
for problem (49). Therefore, from [32] (see Theorem 3.1), it follows that there exist Lagrange
multipliers (λ,ϕ) ∈ Vσ ×H−1/2

0 (Γ \ Γ3) such that

J′(r̃)[s]− 〈S′1(r̃)[s], λ〉V′σ − 〈ϕ, S′2(r̃)[s]〉Γ\Γ3
≥ 0,

for all s = (w, y, z) ∈ Hσ × C(f̃)× C(g̃).
Thus, the proof follows from Lemmas 4 and 5.

Corollary 1 (Optimality system). Let r̃ = (ũ, f̃, g̃) ∈ Zad(F ,Gu0) be a local optimal solution
of control problem (49). Then the Lagrange multipliers (λ,ϕ) ∈ Vσ ×H−1/2

0 (Γ \ Γ3), obtained in
Theorem 4, satisfy the following weak formulation

(µD(w), D(λ)) + α
∫

Γ3

w · λ− 〈η′(Nũ)(Nw)f̃, λ〉V′σ + 〈ϕ, w〉Γ\Γ3

= (ũ− ud, w) + (µD(ũ), D(w)), ∀w ∈ Hσ, (53)

and the optimality conditions:∫
Ω
(α f f̃ + η(Nũ)λ) · (f− f̃) ≥ 0, ∀f ∈ C(f̃), (54)

〈αgg̃ +ϕ, g− g̃〉Γ2 ≥ 0, ∀g ∈ C(g̃). (55)

Proof. From (52), setting (y, z) = (0, 0), and taking into account that Hσ is a vector space,
we obtain (53).



Symmetry 2021, 13, 2050 16 of 22

Now, setting (w, z) = (0, 0) in (52), we have∫
Ω

α f f̃ · y + 〈η(Nũ)y, λ〉V′σ ≥ 0, ∀y ∈ C(f̃).

Then, choosing y = f− f̃ (which belongs to C(f̃), for all f ∈ F ) in the last inequality,
we obtain (54).

Finally, taking (w, y) = (0, 0) in (52), we obtain

αg〈g̃, z〉Γ2 + 〈ϕ, z〉Γ2 ≥ 0, ∀z ∈ C(g̃). (56)

Therefore, choosing z = g− g̃ ∈ C(g̃) in (56), we arrive at (55).

Remark 3. Suppose α f and αg are strictly positive. Then, taking into account that F × Gu0 is
a closed convex set, from optimality conditions (54) and (55) and a well-known theorem on the
projection onto a closed convex set (see, for example, ref. [35], Chap. 5, Theorem 5.2), we derive the
following:

f̃ = Proj
F

(
− λ

α f η(Nũ)

)
and g̃ = Proj

Gu0

(
− ϕ

αg

)
.

Finally, we establish a second-order sufficient optimality condition for control prob-
lem (49) via the derivation of an X-coercivity condition on the second derivative of the
Lagrangian function, which assures that an admissible solution r̃ = (ũ, f̃, g̃) is a local
optimal solution.

We observe that the Lagrangian L related to optimal control problem (49) is given by

L(r, λ,ϕ) = J(r)− 〈S1(r), λ〉V′σ − 〈ϕ, S2(r)〉Γ\Γ3
,

where the operators S1 and S2 are defined in (48) and the functional J is given in (50).

Lemma 7. Let r̃ = (ũ, f̃, g̃) ∈ Zad(F ,Gu0) be a local optimal solution of problem (49) and assume
that η ∈ C1

b(R). If the constant µ∗ is sufficiently large such that

γ
def
= µ∗ − 2C‖η′‖L∞‖f̃‖ > 0, (57)

where C is a positive constant depends only on Ω. Then, the Lagrange multiplier λ, provided by
Theorem 4, satisfies the following inequality

‖λ‖2
Vσ
≤ K

γ
(‖ũ− ud‖2 + ‖D(ũ)‖2) (58)

with K def
= max{C, (µ∗)2}/µ∗.

Proof. Taking w = λ ∈ Vσ in (53), we have

µ∗‖λ‖2
Vσ
≤ |〈η′(Nũ)(Nλ)f̃, λ〉V′σ |+ |(ũ− ud, λ)|+ |(µD(ũ), D(λ))|. (59)

Applying the Hölder and Young inequalities and Sobolev embeddings and taking
into account that the operator N is continuous, we obtain

|〈η′(Nũ)(Nλ)f̃, λ〉V′σ | ≤ ‖η′‖L∞‖Nλ‖L4‖f̃‖‖λ‖L4

≤ C‖η′‖L∞‖Nλ‖H2‖f̃‖‖λ‖Vσ

≤ C‖η′‖L∞‖f̃‖‖λ‖2
Vσ

, (60)

|(ũ− ud, λ)| ≤ ‖ũ− ud‖‖λ‖ ≤
µ∗
4
‖λ‖2

Vσ
+

C
µ∗
‖ũ− ud‖2, (61)
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|(µD(ũ), D(λ))| ≤ µ∗‖D(ũ)‖‖D(λ)‖ ≤ µ∗
4
‖λ‖2

Vσ
+

(µ∗)2

µ∗
‖D(ũ)‖2. (62)

Then, using (60)–(62), we derive from (59) the following estimate:

(µ∗
2
− C‖η′‖L∞‖f̃‖

)
‖λ‖2

Vσ
≤ C

µ∗
‖ũ− ud‖2 +

(µ∗)2

µ∗
‖D(ũ)‖2. (63)

From hypothesis (57), it follows that µ∗ > 2C‖η′‖L∞‖f̃‖. Thus, the result follows
from (63).

In the following result, we establish a second-order sufficient condition for optimal
control problem (49).

Theorem 5 (Second-order sufficient optimality condition). Let r̃ = (ũ, f̃, g̃) ∈ Zad(F ,Gu0)
be an admissible solution of problem (49). Suppose that

ΛC‖η′′‖‖f̃‖
Υ

< 1,

where

Λ def
=

√
K
γ

(
‖ũ− ud‖2 + ‖D(ũ)‖2

)1/2
,

the constants γ and K are defined in Lemma 7, and Υ def
= min{CK, µ∗CK} with the Korn con-

stant CK (cf. [6], p. 52). Then, there exists a positive constant K̂ such that

L′′(r̃, λ,ϕ)[(s, s)] ≥ K̂‖s‖2
X, ∀s = (w, y, z) ∈ ker(S′(r̃)).

Consequently, r̃ is a local optimal solution of control problem (49).

Proof. Let s = (w, y, z) ∈ X. Notice that the Lagrangian L related to control problem (49)
is twice Fréchet-differentiable, and the second derivative of L at the admissible solution
r̃ = (ũ, f̃, g̃) in the directions (s, s) ∈ X×X is given by

L′′(r̃, λ,ϕ)[(s, s)] =‖w‖2 + ‖√µD(w)‖2 + α f ‖y‖2 + αg‖z‖2
H1/2

0 (Γ2)

− 〈η′′(Nũ)(Nw)2 f̃, λ〉V′σ . (64)

Using the Hölder inequality, Sobolev embeddings and the continuity of the operator N,
we derive

|〈η′′(Nũ)(Nw)2 f̃, λ〉V′σ | ≤ ‖η′′‖L∞‖Nw‖2
L8‖f̃‖‖λ‖L4

≤ C‖η′′‖L∞‖Nw‖2
H2‖f̃‖‖λ‖Vσ

≤ C‖η′′‖L∞‖w‖2
Hσ
‖f̃‖‖λ‖Vσ . (65)

Furthermore, from the Korn inequality (see [6], p. 52) it follows that there exists a
constant CK = CK(Ω) > 0 such that

CK‖w‖2
Hσ
≤ ‖w‖2 + ‖D(w)‖2. (66)
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Taking into account (65) and (66), we deduce from (64) the following estimate:

L′′(r̃, λ,ϕ)[(s, s)] ≥ ‖w‖2 + µ∗‖D(w)‖2 + α f ‖y‖2 + αg‖z‖2
H1/2

0 (Γ2)

−C‖η′′‖L∞‖w‖2
Hσ
‖f̃‖‖λ‖Vσ

≥ min{CK, µ∗CK}‖w‖2
Hσ

+ α f ‖y‖2 + αg‖z‖2
H1/2

0 (Γ2)

−C‖η′′‖L∞‖w‖2
Hσ
‖f̃‖‖λ‖Vσ . (67)

Next, from (58) we derive

‖λ‖Vσ ≤

√
K
γ

(
‖ũ− ud‖2 + ‖D(ũ)‖2

)1/2
= Λ,

which, together with (67), imply

L′′(r̃, λ,ϕ)[(s, s)] ≥
(

min{CK, µ∗CK} −ΛC‖η′′‖L∞‖f̃‖
)
‖w‖2

Hσ

+α f ‖y‖2 + αg‖z‖2
H1/2

0 (Γ2)
.

Then, using the inequality

min{CK, µ∗CK} > ΛC‖η′′‖L∞‖f̃‖,

we obtain
Θ def

= min{CK, µ∗CK} −ΛC‖η′′‖L∞‖f̃‖ > 0,

and hence,
L′′(r̃, λ,ϕ)[(s, s)] ≥ min{Θ, α f , αg}‖(w, y, z)‖2

X.

In particular, if s = (w, y, z) ∈ ker(S′(r̃)) with (y, z) ∈ C(f̃)× C(g̃), then from [36]
we conclude that the triplet r̃ is a local optimal solution of control problem (49).

4.3. Marginal Function

In the studying of optimal solutions, it is important to investigate the case when
the collection of all admissible controls (in our problem, the set F × Gu0) can be ex-
panded/reduced. Following the ideas developed in [37–39], we introduce the concept
of the marginal function, which shows how the minimal value of the cost functional J
changes under a variation of the set F × Gu0 .

Definition 4 (Marginal function). By the marginal function of control system (38), we mean the
function Φ : Pb, c, cl[L2(Ω)]×Pb, c, cl[H

1/2
0 (Γ2)]→ R defined as follows:

Φ(F ,G) def
= inf

{
J(u, f, g) : (u, f, g) ∈ Zad(F ,Gu0)

}
.

Theorem 6 (Lower semi-continuity of the marginal function). The marginal function Φ is
lower semi-continuous in the following sense: if

F k ∈ Pb, c, cl[L
2(Ω)], Gk ∈ Pb, c, cl[H

1/2
0 (Γ2)],

for any k ∈ N∪ {0}, and

lim
k→+∞

dL2(Ω)(F k,F 0) = 0, lim
k→+∞

dH1/2
0 (Γ2)

(Gk
u0

,G0
u0
) = 0, (68)

then
Φ(F 0,G0) ≤ lim inf

k→+∞
Φ(F k,Gk). (69)
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Proof. The proof is by contradiction. Saying that (69) is not true amounts to saying that
there exists a convergent subsequence {Φ(F k` ,Gk`)}`≥1 such that

Φ(F 0,G0) > lim
`→+∞

Φ(F k` ,Gk`). (70)

By Theorem 3, it follows that

Zopt(F k` ,Gk`
u0) 6= ∅, ∀` ∈ N.

Let us consider a sequence {(uk` , fk` , gk`)}`≥1 such that

(uk` , fk` , gk`) ∈ Zopt(F k` ,Gk`
u0), ∀` ∈ N. (71)

We obviously have
Φ(F k` ,Gk`) = J(uk` , fk` , gk`), ∀` ∈ N.

Let us show that the sequence {fk`}`≥1 is bounded in the space L2(Ω). Assuming that
f̂ is an arbitrary element of the set F 0, we obtain

‖fk`‖ ≤‖fk` − f̂‖+ ‖f̂‖
≤‖fk` − f̂‖+ sup

f∈F0
‖f‖,

whence

‖fk`‖ ≤ inf
f∈F0
‖fk` − f‖+ sup

f∈F0
‖f‖

≤dL2(Ω)(F k` ,F 0) + sup
f∈F0
‖f‖,

for any ` ∈ N. Therefore, we have

sup
`∈N
‖fk`‖ ≤ sup

`∈N
dL2(Ω)(F k` ,F 0) + sup

f∈F0
‖f‖ < +∞.

Arguing in a similar manner, it can be shown that the sequence {gk`}`≥1 is bounded
in the space H1/2

0 (Γ2). Moreover, taking into account estimate (27), we deduce that the
sequence {uk`}`≥1 is bounded in the space Hσ. Therefore, without loss of generality, it can
be assumed that

uk` → u0 weakly in Hσ and strongly in Lp(Ω), 1 ≤ p < +∞, as `→ +∞,

fk` → f0 weakly in L2(Ω), as `→ +∞,

gk` → g0 weakly in H1/2
0 (Γ2) and strongly in L2(Γ2), as `→ +∞,

(72)

for some triplet (u0, f0, g0) ∈ Hσ × L2(Ω)×H1/2
0 (Γ2).

In view of (68), there exist sequences {fk`}`≥1 ⊂ F 0 and {gk`}`≥1 ⊂ G0
u0

such that

lim
`→+∞

‖fk` − f
k`‖ = 0, lim

`→+∞
‖gk` − gk`‖H1/2

0 (Γ2)
= 0. (73)

From (72)2,3 and (73) it follows that f
k` → f0 weakly in L2(Ω), as `→ +∞,

gk` → g0 weakly in H1/2
0 (Γ2), as `→ +∞.

(74)
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Since F 0 ∈ Pb, c, cl[L2(Ω)] and G0
u0
∈ Pb, c, cl[H

1/2
0 (Γ2)], the sets F 0 and G0

u0
are weakly

closed, respectively, in L2(Ω) and H1/2
0 (Γ2). Therefore, from (74) we deduce that the

inclusions f0 ∈ F 0 and g0 ∈ G0
u0

hold. Moreover, applying the limit passage procedure as
in Section 4.1, it can be shown that the triplet (u0, f0, g0) belongs to the set Zad(F 0,G0

u0
).

This implies the following:

Φ(F 0,G0) = inf
{
J(u, f, g) : (u, f, g) ∈ Zad(F 0,G0

u0
)
}
≤ J(u0, f0, g0). (75)

Taking into account (71), (72), and (75), we obtain

Φ(F 0,G0) ≤J(u0, f0, g0)

≤ lim inf
`→+∞

J(uk` , fk` , gk`)

= lim
`→+∞

Φ(F k` ,Gk`).

This contradicts (70). Thus, Theorem 6 is proved.

5. Conclusions

In this article, we have studied an optimal control problem for the 2D stationary Stokes
equations with variable density and viscosity, using nonhomogeneous Dirichlet boundary
conditions on one part of the boundary of the flow domain and the Navier slip boundary
conditions on the other part. Expressing the fluid density in terms of the stream function,
we proved the existence and uniqueness of weak solutions of the dynamical equations
with the same regularity (H1-regularity) as weak solutions of the classical Stokes system
with constant density and viscosity under Dirichlet boundary conditions acting on the
whole boundary. For the optimal control problem, we controlled the system, applying
a control on a part of the boundary and another control acting as an external force on the
domain, i.e., a distributed type control. We proved the existence of at least one global
optimal solution and derived an optimality system. Establishing a coercivity property for
the Lagrangian function, we obtained a second-order sufficient optimality condition for
a local optimal solution. Furthermore, we introduced the concept of the marginal function,
which shows how the minimal value of the cost functional changes under a variation
of the set of admissible controls. Then, we proved that the marginal function is lower
semi-continuous. Therefore, one can deduce that the control system is stable in the sense
that it is not possible to achieve a significant improvement in the optimal value of the cost
functional without an essential extension of the admissible controls set. Finally, considering
that the physical phenomena of fluid flow are intrinsically transient, for future research,
we will consider the analysis of an unsteady-state situation with time-dependent control.
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Appendix A

Table A1. The main symbols used in the paper.

Symbol Meaning

Ω flow domain
Γ boundary of Ω
Γ1, Γ2 in-flow/out-flow parts of Γ
Γ3 solid walls of Ω
n outward unit normal vector to Γ
u velocity field
u0 velocity field on Γ1
D(u) deformation rate tensor
ψ stream function
π hydrostatic pressure
ρ density of the fluid
ρ0 density of the fluid on Γ1
µ dynamic viscosity of the fluid
α friction coefficient
f distributed control in Ω
g boundary control on Γ2
F , Gu0 sets of admissible controls
J cost functional
Zad set of admissible solutions
Zopt set of global optimal solutions
L Lagrangian function
λ, ϕ Lagrange multipliers
Φ marginal function
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