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Abstract: Let (X, G, ω1, ω2, {ηt}) be a manifold with a bi-Poisson structure {ηt} generated by a pair
of G-invariant symplectic structures ω1 and ω2, where a Lie group G acts properly on X. We prove
that there exists two canonically defined manifolds (RLi , Gi, ωi

1, ωi
2, {ηt

i }), i = 1, 2 such that (1) RLi is
a submanifold of an open dense subset X(H) ⊂ X; (2) symplectic structures ωi

1 and ωi
2, generating

a bi-Poisson structure {ηt
i }, are Gi- invariant and coincide with restrictions ω1|RLi and ω2|RLi ; (3)

the canonically defined group Gi acts properly and locally freely on RLi ; (4) orbit spaces X(H)/G and
RLi /Gi are canonically diffeomorphic smooth manifolds; (5) spaces of G-invariant functions on X(H)

and Gi-invariant functions on RLi are isomorphic as Poisson algebras with the bi-Poisson structures
{ηt} and {ηt

i } respectively. The second Poisson algebra of functions can be treated as the reduction
of the first one with respect to a locally free action of a symmetry group.

Keywords: bi-Poisson structure; reduction; proper action

MSC: 53D17; 37J15

1. Introduction

Two Poisson structures, η1 and η2, are said to be compatible if the sum η1 + η2, or,
equivalently, any linear combination ηt = t1η1 + t2η2, t = (t1, t2) ∈ R2 is a Poisson
structure. The family {ηt} is called a bi-Poisson structure.

The formalism of bi-Poisson (or bi-Hamiltonian in other terminology) structures plays
an important role in the theory of integrable systems since it is simultaneously a tool for
constructing integrals in involution and studing their completeness, singularities, etc. [1–5].
It turns out that there are two classes of bi-Hamiltonian structures of principally different
natures (on the level of local geometry as well as in applications to integrable systems).
The bi-Poisson structures of the first class, called bisymplectic, are generated by pairs η1, η2
such that in the pencil {ηt} almost all members are nondegenerate Poisson structures, i.e.,
inverse to symplectic forms. Contrastingly, in the pencils corresponding to the second class
of Kronecker bi-Poisson structures all the members are degenerate of the same rank [6]. The
latter proved to be most effective for constructing the families of commuting functions
(which are simply the Casimir functions of generic Poisson structures from the pencil
{ηt}) and for showing their completeness (which is guaranteed by the above mentioned
constancy rank condition [4]).

In [7] A. Panasyuk developed a method of constructing integrable systems based
on Poisson reduction of a bi-symplectic G-invariant bi-Poisson structure by means of a
Hamiltonian (with respect to both the symplectic forms) action of a Lie group G to a
Kronecker bi-Poisson structure. A crucial role in [7] for the checking of the constancy rank
condition is played by the fact that the Hamiltonian action of G is locally free. In this case
the corank of the generic Poisson structure in the reduced pencil is independent of the
parameter and coincides with the index of the Lie algebra g (this fact is guaranteed by
the so-called inertia lemma from the theory of Hamiltonian actions relating the image of
the moment map to the generic stabilizer ([8], Lemma 2.1). In [9] the method of [7] was
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extended to the case when the action of G is not locally free by means of another type
of reduction which essentially consists in passing to the so-called Dirac brackets ([10],
Section 8.5) of special type.

In this paper we study this reduction procedure in full generality. Namely, we con-
sider the problem of reduction of a bi-Poisson structure {ηt}, which is generated by two
symplectic structures, G-invariant with respect to a proper action of a Lie group G on a
connected manifold X to a bi-Poisson structure {η̃t} which is G̃-invariant with respect to a
proper locally free action of a Lie group G̃ on a submanifold X̃ ⊂ X (Theorem 1). Moreover,
the submanifold (X̃, G̃) is very special, allowing to canonically identify the spaces AG

of G-invariant functions on X and AG̃ of G̃-invariant functions on X̃ and therefore the
bi-Poisson structure {(ηt)′} induced on AG ' AG̃ can be treated as the reduction with
respect to a locally free action of a Lie group. As a result, in the case when the action of
the Lie group is Hamiltonian with respect to both the symplectic forms (which is most
interesting for applications) one can use the machinery of the moment map and the inertia
lemma for checking whether {(ηt)′} is Kronecker or not.

Note that, given a symplectic form ω on a manifold X and a symplectic submanifold
X̃ ⊂ X, the Poisson bracket related to the Poisson structure η̃ = (ω|X̃)

−1 is an example
of a Dirac bracket. In general, if two Poisson structures ω−1

1 and ω−1
2 are compatible, the

Dirac brackets (ω1|X̃)
−1, (ω2|X̃)

−1 need not be so (here X̃ is a symplectic submanifold
with respect to both ω1|X̃, ω2|X̃). In this paper we deal with a very special situation,
when (ω1|X̃)

−1, (ω2|X̃)
−1 are compatible, which is a consequence of the G-invariance and

the special choice of the submanifold X̃. This situation can be described in more detail
as follows.

Given a proper action of a connected Lie group G on a connected manifold X and an
isotropy subgroup H ⊂ G representing the principal orbit type, consider the subset X(H) of
X consisting of the points in X with the stabilizer conjugated to H in G. Since the manifold
X is connected, the subset X(H) is connected, open and dense in X [11]. We consider two
subsets RL of X(H) consisting of the points in X(H) with the stabilizer group containing the
subgroup L ⊂ H ⊂ G, where either L = H or L is the identity component H0 of H. The
set RL is a smooth embedded submanifold of X. The subgroup N(L) ⊂ G, the normalizer
group of L in G, acts on RL and the action of the quotient group N(L)/L on RL is locally
free and proper.

Let ω1 and ω2 be two G-invariant symplectic structures on X determining a bi-Poisson
structure {ηt} on X. We show that RL is a symplectic submanifold for an arbitrary G-
invariant symplectic structure on X, in particular, the forms ω1|RL and ω2|RL are nondegen-
erate (if L = H this fact is well known [12]). Then we prove that the symplectic structures
ω1|RL and ω2|RL are Poisson compatible, i.e., generate an N(L)/L-invariant bi-Poisson
structure {η̃t} on RL (Theorem 1). Due to the isomorphism X(H)/G = RL/(N(L)/L),
the second quotient space is a smooth manifold. As a result the sets AG of G-invariant
functions on X(H) and AG̃ of G̃-invariant functions on RL, where G̃ = N(L)/L, can be
canonically identified. The bi-Poisson structures {ηt} and {η̃t} restricted to the space
AG ' AG̃ determine the same bi-Poisson structure (Theorem 1).

Since the proper action of the group N(L)/L on the manifold RL is locally free, for
investigation of the algebraic properties of the bi-Poisson algebra AG ' AG̃ we can use
methods developed in [7] for locally free actions.

We illustrate the theory by a class of examples of reductions of bi-Poisson structures
on cotangent bundles to coadjoint orbits (homogeneous spaces) G/K, where a compact
Lie group G acts on G/K and then on the cotangent bundle T∗(G/K) by the lifted action
(see Section 3). Here ω1 is the canonical symplectic form Ω on the cotangent bundle and
ω2 is equal to the sum of Ω and the pull-back of the Kirillov–Kostant–Souriau form. In
particular, we describe the submanifolds X(H) and RL and the reduced bi-Poisson structure
{η̃t} on RL (see Proposition 1 and its proof).
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These examples of bi-Poisson structures first appeared in our paper [9] (note that
the proofs of the results of Section 3 are new and independent of those from [9]), where
they served as a tool in the proof of the complete integrability for geodesic flows of some
metrics. The present paper arose from our attempt to understand the general principle
standing behind the examples mentioned. The results of this paper are also intended as
a tool which can be effectively applied to the study of complete integrability of similar
systems, however, such a study lies beyond the scope of this paper since we hope that the
results of the present paper are of interest on their own. Note also that the results of this
paper are generalizations of results of our preprint [13].

The paper is organized as follows. It is divided into three sections and Appendix A
among which Section 2 is the principal one. The main result of the paper, Theorem 1,
is contained in Section 2.3, while Sections 2.1–2.2 are introductory ones. They contain
definitions and general results needed for the formulation and proof of our main result (its
crucial ingredients are Lemmas 2 and 3). Section 3 contains the above mentioned examples.
In Appendix A we formulate and prove one statement (Lemma A1) from the general theory
of Lie groups which is used in the introductory considerations of Section 2.2.

2. Proper Actions of Lie Groups and Reductions of Invariant bi-Poisson Structures

Let G be a connected Lie group acting properly on a smooth connected manifold X.
For any point x ∈ X denote by Gx its isotropy group. We remark that the group Gx is
compact because the action of G on X is proper.

For any Lie group A ⊂ G we will denote by A0 its connected component of the
identity element (the identity component for short) and by N(A), the normalizer group of
A in G.

Fix some isotropy subgroup H ⊂ G determining the principal orbit type. In this case
the subset

X(H) = {x ∈ X : Gx = gHg−1 for some g ∈ G} (1)

of X, consisting of all orbits G · x in X isomorphic to G/H, is an open and dense subset of
X (see ([11], Section 2.8 and Th. 2.8.5)). The open submanifold X(H) ⊂ X is G-invariant by
definition. It is well known that the orbit space X(H)/G is a smooth manifold. Mainly to
fix the notation we shall prove this fact below.

Consider the subset
XH = {x ∈ X : Gx = H} (2)

of X consisting of the points in X with stabilizer precisely equal to H. It is clear that
XH ⊂ X(H). The set XH is a smooth embedded submanifold of X ([12], Prop. 2.4.7). It is
easy to see that the normalizer group N(H) of H in G acts on XH and that every G-orbit
in X(H) intersects XH on an N(H) orbit. Furthermore, the quotient group N(H)/H acts
freely on XH and generates the same orbit space. This action of N(H)/H is proper because
the subgroup N(H) ⊂ G is closed. Therefore XH/(N(H)/H) is a smooth manifold ([14],
Ch. 3, Section 1.5, Prop. 10) and, consequently, due to orbit isomorphism

X(H)/G ' XH/(N(H)/H) (3)

X(H)/G is also a smooth manifold.

2.1. The Submanifold RL of the Single Orbit Type Submanifold X(H)

Let L ∈ {H, H0}, where we recall that H0 is the identity component of H. Let g be the
Lie algebra of the Lie group G. Denote by h and n(L) the Lie algebras of the Lie group H
and of the normalizer group N(L) of L in G respectively. By definition

N(H) ⊂ N(L) ⊂ N(H0) and n(H) ⊂ n(L) ⊂ n(H0). (4)

Since the Lie subgroup Ad(H) of Ad(G) is compact, there is an Ad(H)-invariant
scalar product 〈·, ·〉H on the Lie algebra g. Denote by p = pL the orthogonal complement to
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n(L) in g with respect to 〈·, ·〉H . By the Ad(L)-invariance of the form and by the inclusion
L ⊂ N(L) we have that

g = p⊕ n(L), Ad(L)(n(L)) = n(L), Ad(L)(p) = p. (5)

Let
RL = {x ∈ X(H) : L ⊂ Gx}, (6)

where we recall that Gx stands for the isotropy group Gx of x.
It is clear that RH = XH , RH ⊂ RH0 and the set RH0 is a set of all x ∈ X(H) such that

the Lie algebras of Gx and H coincide, i.e., G0
x = H0. We will prove below that RL is an

embedded submanifold of X(H) and dim RH0 − dim RH = dim n(H0)− dim n(H).

Lemma 1. The set RL is an embedded submanifold of the manifold X(H) and for any x ∈ RL the
tangent space TxRL is given by

TxRL = {v ∈ TxX(H) : h∗(x)(v) = v, ∀h ∈ L}. (7)

The quotient group N(L)/L acts locally freely on the set RL if L = H0 and freely if L = H
and the orbit space

RL/(N(L)/L) ' X(H)/G (8)

is a smooth manifold.

Proof. We will prove the lemma only in the case when L = H0 because in the case L = H
the lemma follows immediately from ([12], Prop. 2.4.7).

To prove the lemma we will use the method from ([12], Ch.2, Sections 2.3 and 2.4).
Due to the fact that X(H) is a single orbit type manifold, the local description of the
G-action on this connected manifold is very simple. For the point x ∈ X(H) there is
a G-invariant open neighborhood O(x) in X(H) and a G-equivariant diffeomorphism
φ : G/Gx ×W → O(x), where G acts naturally on G/Gx and trivially on W ([12], Th.2.3.28).
Here the cross-section W is an open ball around 0 in some real linear space Rk (of dimension
k = dim X− dim(G/Gx)) and φ(o, 0) = x, where o = Gx ∈ G/Gx.

Since x ∈ RH0 ⊂ X(H), we have G0
x = H0. Under the above mentioned φ-identification

of the open neighborhood O(x), x ∈ RH0 , with G/Gx×W the subset OH0(x) = O(x)∩ RH0

is φ-isomorphic to N(H0)/Gx ×W ⊂ G/Gx ×W, where N(H0)/Gx is considered as a
closed embedded submanifold of G/Gx ([12], Prop. 2.4.6). From this local description it
follows that RH0 is a (locally closed) embedded submanifold of X(H) and the submanifold
OH0(x) is N(H0)-invariant.

Let us prove relation (7). The group H0 acts on W trivially and the tangent action
of H0 on the tangent space g/h = To(G/Gx) is induced by the Ad(H0)-action on g. Let
ξ ∈ g. By Formula (A1) from Appendix, Ad(h)(ξ + h) = ξ + h for all h ∈ H0 if and only if
ξ ∈ n(H0). Taking into account that n(H0)/h = To(N(H0)/Gx), we obtain that

T(o,0)(N(H0)/Gx ×W) = {v ∈ T(o,0)(G/Gx ×W) : h∗(o, 0)(v) = v, ∀h ∈ H0}.

Hence, since the diffeomorphism φ is G–equivariant, we get (7).
Since for each x ∈ RH0 ⊂ X(H) its isotropy group Gx is conjugated to H in G, it is easy

to check that

(1) The subgroup N(H0) acts on RH0 and H0 ⊂ N(H0) acts trivially on RH0 ;
(2) Every G-orbit in X(H) intersects RH0 on an N(H0)-orbit;
(3) N(H0) · XH = RH0 (if G0

x = H0 and gGxg−1 = H, then g ∈ N(H0)).

The quotient group N(H0)/H0 acts locally freely on RH0 (with finite isotropy group
Gx/H0 ' H/H0 at x ∈ RH0 ) and generates the same orbit space as G on X(H). This action
of N(H0)/H0 is proper because the subgroup N(H0) ⊂ G is closed. Since by relation (3)
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X(H)/G is a smooth manifold, the quotient space RH0 /(N(H0)/H0) ' X(H)/G is also a
smooth manifold.

2.2. The Local Structure of the Single Orbit Type Submanifold X(H) Near RL

The action of G determines a linear map ξ 7→ ξX , where ξX denotes the vector field on
X generated by one-parameter subgroup exp tξ ⊂ G. For any subspace a ⊂ g and a point

x ∈ X put a(x)def
={ξX(x) : ξ ∈ a}.

In this subsection we describe a canonical complementary subbundle P = PL to
TRL in TX(H)|RL for which the splitting TX(H)|RL = P ⊕ TRL is orthogonal with respect
to an arbitrary G-invariant nondegenerate form on X. The existence of such a canonical
subbundle P determines a local structure of X(H) near RL.

Choose some point x ∈ RL ⊂ X(H). Due to the compactness of the Lie subgroup
Ad(Gx) of Ad(G) there exists an Ad(Gx)-invariant scalar product 〈·, ·〉Gx on the Lie algebra
g. Denote by px = px

L the orthogonal complement to n(L) in g with respect to 〈·, ·〉Gx . Since
L ⊂ N(L) and the form is always Ad(L)-invariant (either Gx = H = L or G0

x = H0 = L),
we have

g = px ⊕ n(L), Ad(L)(n(L)) = n(L), Ad(L)(px) = px. (9)

Identifying the tangent space to the homogeneous space G/Gx at o = Gx ∈ G/Gx
with the orthogonal complement h⊥x ⊂ g to h in g with respect to 〈·, ·〉Gx , we obtain that
px ⊂ h⊥x is a complementary subspace to the tangent space To(N(L)/Gx) in To(G/Gx).
Using our G-equivariant identification φ : G/Gx ×W → O(x), φ(o, 0) = x, we conclude

that the space px(x)def
={ξX(x), ξ ∈ px} is a complementary subspace to TxRL in TxX(H).

The Ad(Gx)-invariant scalar product 〈·, ·〉Gx on To(G/Gx) = h⊥x and any scalar
product on T0W determine an Gx-invariant scalar product on the tangent space To(G/Gx)⊕
T0W. Now using the G-equivariant diffeomorphism φ we obtain the Gx-invariant scalar
product 〈·, ·〉x on the space TxX(H) at x = φ(o, 0) such that 〈px(x), TxRL〉x = 0. In general,
px 6= p (the subspace p was defined in Section 2.1) but

px ⊕ h = p⊕ h. (10)

The proof of this identity is given in Appendix A (see Lemma A1). Now, taking into
account that h is the isotropy algebra of the point x ∈ RL (either G0

x = H0 or Gx = H), i.e.,
h(x) = 0, we obtain that px(x) = p(x). Thus the space

P(x)def
=p(x) = {ξX(x), ξ ∈ p}, x ∈ RL, (11)

is the orthogonal complement to the tangent space TxRL in TxX(H):

TxX(H) = P(x)⊕ TxRL, 〈P(x), TxRL〉x = 0, x ∈ RL. (12)

We will show below that the space P(x) is the orthogonal complement to the space
TxRL in TxX(H) with respect to any Gx-invariant nondegenerate bi-linear form on TxX(H).

Let x ∈ RL. Since h∗(ξX) = (Ad(h)(ξ))X for any ξ ∈ g, h ∈ G, Ad(L)(p) = p

and L · x = x by definition of RL (always L ⊂ Gx), the space P(x) is L-invariant, i.e.,
h∗(x)(P(x)) = P(x) for any h ∈ L ⊂ H. It is evident that the union P =

⋃
x∈RL

P(x) is a
trivial vector bundle over RL and TX(H)|RL = P ⊕ TRL. The vector fields ξX |RL , ξ ∈ p, are
global sections of P .

Lemma 2. Let α(x) be a Gx-invariant nondegenerate bi-linear form on the space TxX(H), x ∈ RL.
Then α(x)(P(x), TxRL) = 0, i.e., P(x) is the orthogonal complement to the space TxRL in TxX(H)

with respect to the form α(x) and the restrictions α(x)|P(x), α(x)|Tx RL are nondegenerate.

Proof. To prove that α(x)(P(x), TxRL) = 0 we will use the method of the proof of Lemma
27.1 in [15]. We have shown that there exists a Gx-invariant scalar product 〈·, ·〉x on
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the space TxX(H) = P(x) ⊕ TxRL such that Formula (12) holds. The form α(x) is Gx-
invariant with respect to the tangent action h∗(x) : TxX(H) → TxX(H) of the group Gx.
Thus there exists a unique nondegenerate linear map J : TxX(H) → TxX(H) such that
α(x)(u, v) = 〈u, Jv〉x for all u, v ∈ TxX(H) and J · h∗(x) = h∗(x) · J for all h ∈ Gx ⊃ L.
By (7) the subspace TxRL ⊂ TxX(H) is the set of all L-fixed vectors in TxX(H). Now we get
the inclusion J(TxRL) ⊂ TxRL due to the fact that J commutes with the L-action on TxX(H).
Thus α(x)(P(x), TxRL) = 〈P(x), J(TxRL)〉x = 0 by (12). Since TxX(H) = P(x)⊕ TxRL and
the form α(x) is nondegenerate, we obtain the last assertion of the lemma.

The following lemma asserts the existence of local coordinate systems in the manifold
X(H) (of dimension m) near the submanifold RL (of codimension p = pL in X(H)) consistent
with any G-invariant nondegenerate bi-linear form on X.

Lemma 3. For each point x ∈ RL there exists an open subset U(x) ⊂ X(H) and a coordinate
system (U(x), y1, . . . , yp, yp+1, . . . , ym), in X(H) around the point x such that

(1) All coordinates of the point x vanish: y1(x) = . . . = ym(x) = 0;
(2) The subset UL(x) = U(x) ∩ RL of U(x) is the set {z ∈ U(x) : y1(z) = . . . = yp(z) = 0};
(3) The vectors ∂/∂yi, i = 1, . . . , p, and the vectors ∂/∂yj, j = p + 1, . . . , m, at a point

z ∈ UL(x) span the spaces P(z) and TzRL respectively;
(4) Any G-invariant nondegenerate bi-linear form α on X at a point z ∈ U(x) in the correspond-

ing basis {∂/∂y1, . . . , ∂/∂ym}, has the matrix(
A(y(z)) B(y(z))
C(y(z)) D(y(z))

)
such that B(y(z)) = C(y(z)) = 0 and the matrices A(y(z)),

D(y(z)) are nondegenerate for z ∈ UL(x).

Proof. Recall that the group N(L) is a closed subgroup of G because L by definition is
also closed in G (either L = H or L = H0). Additionally, we have the Ad(L)-invariant
splitting g = p⊕ n(L) of g (see Formula (5)). Therefore for some open Ad(L)-invariant ball
Y around 0 in p the map

Y× N(L)→ G, (y, n) 7→ exp y · n,

is a L-equivariant diffeomorphism onto the open neighborhood of the identity element in
G. This map intertwines the action h · (y, n) = (Ad(h)(y), hn) of L on Y × N(L) and the
left action of L on G. Thus the map

Y× N(L)/Gx → G/Gx, (y, nGx) 7→ (exp y · n)Gx

is a L-equivariant diffeomorphism onto the open neighborhood of the point o = Gx in
G/Gx and, consequently, the map

Y× N(L)/Gx ×W → φ(G/Gx ×W) = O(x), (y, nGx, w) 7→ φ(exp y · nGx, w)

is an L-equivariant diffeomorphism onto the open L-invariant neighborhood O1(x) ⊂ O(x)
in X(H) containing the neighborhood OL(x) = φ(N(L)/Gx×W) of x in RL. Here the action
of L on Y× N(L)/Gx ×W is induced by the action of L on Y× N(L), i.e., h · (y, nGx, w) =
(Ad(h)(y), hnGx, w) for h ∈ L. By the G-equivariance of φ, the map

ψ : Y×OL(x)→ O1(x), (y, z) 7→ (exp y) · z

is also a diffeomorphism such that ψ(0, z) = z for all z ∈ OL(x). Moreover, ψ∗(0,z)(T0Y, 0) =
P(z) for z ∈ OL(x) because by (11) P(z) = {ξX(z), ξ ∈ p} and Y ⊂ p. This diffeomor-
phism ψ is L-equivariant with respect to the action h · (y, z) = (Ad(h)(y), h · z) of L on
Y×OL(x) and the L-action on O1(x) ⊂ X(H).
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The existence of the diffeomorphism ψ means in particular that there exists a co-
ordinate system (U(x), y1, . . . , yp, yp+1, . . . , ym) in X(H) around the point x ∈ RL with
properties (1)–(3).

Let us prove property (4) for this coordinate system. Since h · x = x for all h ∈ Gx, the
nondegenerate form α(x) is Gx-invariant with respect to the tangent action h∗(x) : TxX →
TxX of the group Gx. Then α(x)(P(x), TxRL) = 0 and the restrictions α(x)|P(x) α(x)|Tx RL
are nondegenerate in view of Lemma 2. Therefore by property (3) of the coordinate system
under consideration around the point x the matrices B(y(z)), C(y(z)) vanish and the
matrices A(y(z)), D(y(z)) are nondegenerate for any z ∈ UL(x).

2.3. The Principal Orbit Type Submanifold X(H) and Reduced bi-Poisson Structures on RL

Here as before X(H) is a principal orbit type submanifold of X. We will use the
notation introduced in the previous Sections 2.1 and 2.2. Denote by E(M) the space of
smooth functions on a manifold M.

Let η be a G-invariant Poisson structure on the manifold X. Put AG ⊂ E(X(H)) for the
set of all G-invariant functions on the open submanifold X(H) ⊂ X. By the G-invariance
of η, the space AG is a Poisson subalgebra of (E(X(H)), η). The structure η determines a
Poisson structure on the smooth manifold (see (8))

X = X(H)/G ' RL/(N(L)/L)

and AG ' E(X). Put G̃ = N(L)/L. Denoting by π(H) : X(H) → X and πL : RL → X the
natural submersions, we obtain two isomorphic Poisson algebras, AG = π∗(H)(E(X)) of

G-invariant functions on X(H) and AG̃ = π∗h(E(X)) of G̃-invariant functions on RL, where

the second structure is induced by the natural identification AG ' AG̃. On the first algebra
AG its bracket is induced by the Poisson structure η defined on the whole space X(H). A
question arises: is there some Poisson structure on the manifold RL which induces the
above mentioned bracket on AG̃. We will prove that such a Poisson structure exists if the
Poisson structure η on X is nondegenerate, i.e., η = ω−1, where ω is some G-invariant
symplectic structure on X.

As it follows from Lemma 2 in this case the pair (RL, ω̃), where, ω̃ = i∗ω and
i : RL → X is the natural embedding, is a symplectic manifold (the restriction ω(x)|Tx RL is
nondegenerate for all x ∈ RL). For any function f ∈ AG its Hamiltonian vector fieldH f is
tangent to the submanifold RL at each point x ∈ RL. This easily follows from the fact that
d f (ξX) = 0 for all ξ ∈ g and, in particular, for all ξ ∈ p, i.e.,

ω(x)(H f (x),P(x))def
= − d f (x)(P(x)) = 0.

As TxRL is a skew-orthogonal complement to P(x) by Lemma 2 we conclude that
H f (x) ∈ TxRL. Therefore, for any x ∈ RL and any vector field Y tangent to RL we have

−d(i∗ f )(x)(Y(x))=− d f (x)(Y(x)) = ω(x)(H f (x), Y(x)) = ω̃(x)(H f (x), Y(x)),

i.e., the vector fieldH f |RL is the Hamiltonian vector field of the function i∗ f with respect
to the form ω̃. Moreover, for any functions f1, f2 ∈ AG at x ∈ RL we get the equality

η(x)(d f1(x), d f2(x))def
=ω(x)(H f2(x),H f1(x))

= ω̃(x)(Hi∗ f2(x),Hi∗ f1(x)) = η̃(x)(d(i∗ f1)(x), d(i∗ f2)(x)),
(13)

where η̃ is the Poisson structure ω̃−1 on RL.
A pair (η1, η2) of linearly independent bi-vector fields (bi-vectors for short) on a

manifold X is called Poisson if ηtdef
= t1η1 + t2η2 is a Poisson bi-vector for any t = (t1, t2) ∈

R2, i.e., each bi-vector ηt determines on X a Poisson structure with the Poisson bracket
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{, }t : ( f1, f2) 7→ ηt(d f1, d f2); the whole family of Poisson bi-vectors {ηt}t∈R2 is called
a bi-Poisson structure. Remark here that a pair (η1, η2) of linearly independent Poisson
structures is Poisson if and only if t1η1 + t2η2 is a Poisson bi-vector for some (t1, t2) ∈ R2

nonproportional to (1, 0), (0, 1). Indeed, the bi-vector ηt is Poisson if and only if [ηt, ηt]S = 0,
where [, ]S is the so-called Schouten bracket ([10], Section 10.6). The last equation is
quadratic with respect to t1 : t2.

A bi-Poisson structure {ηt} (we will often skip the parameter space) can be viewed as
a two-dimensional vector space of Poisson bi-vectors, the Poisson pair (η1, η2) as a basis
in this space. Obviously, if the Poisson structures η1 and η2 are G-invariant, then these
structures induce a bi-Poisson structure on the manifold X = X(H)/G ' RL/(N(L)/L)

and, consequently, linear families of brackets on the spaces E(X), AG, and AG̃. The theorem
below asserts that in a particular case the linear family of brackets on the space AG̃ is
induced by some canonically defined bi-Poisson structure on the manifold RL. Note that
the action of the group G̃ = N(L)/L on RL is locally free (free if L = H).

Theorem 1. Let η1 = ω−1
1 and η2 = ω−1

2 , where ω1, ω2 are some G-invariant symplectic forms
on X. Assume that the Poisson structures η1 and η2 determine a bi-Poisson structure on X. If
the forms ω̃1 = i∗ω1 and ω̃2 = i∗ω2 are linearly independent on RL (here i : RL → X is the
natural embedding), then the Poisson structures η̃1 = ω̃−1

1 and η̃2 = ω̃−1
2 determine a G̃-invariant

bi-Poisson structure on RL. This bi-Poisson structure induces on the space AG̃ = AG the same
linear family of brackets as the bi-Poisson structure induced by the pair (η1, η2) on the space AG.
The action of the group G̃ = N(L)/L on RL is locally free.

Proof. It is sufficient to perform local reasoning. Fix some point x ∈ RL and consider in
X the coordinate system (U(x), y1, . . . , yp, yp+1, . . . , ym) around the point x as in Lemma 3.
Then in these coordinates the symplectic forms ωa, a = 1, 2, are described by the skew-
symmetric matrices

Wa(y(z)) =
(

Aa(y(z)) Ba(y(z))
Ca(y(z)) Da(y(z))

)
, for z ∈ U(x),

such that

Wa(y(z)) =
(

Aa(y(z)) 0
0 Da(y(z))

)
, for z ∈ UL(x) ⊂ U(x). (14)

Recall that UL(x) = U(x) ∩ RL and y1(z) = . . . = yp(z) = 0 if z ∈ UL(x). By
the definition, the Poisson structure ηt = t1η1 + t2η2 is determined by the m×m-matrix
t1W−1

1 (y) + t2W−1
2 (y):

ηt(y) = ∑
16i<j6m

(
t1W−1

1 + t2W−1
2
)

ij(y)
∂

∂yi
∧ ∂

∂yj
.

Since the Poisson structures η1, η2 are nondegenerate, for some t = (t1, t2) ∈ R2 \
((R× {0}) ∪ ({0} ×R)) the Poisson structure ηt is nondegenerate at each point of some
open neighborhood of the point x, which we assume, without loss of generality, to be
the original open neighborhood U(x). Then the skew-symmetric matrix

(
t1W−1

1 (y) +

t2W−1
2 (y)

)−1 is a matrix of some symplectic form ωt on U(x), i.e., the form

∑
16i<j6m

((
t1W−1

1 + t2W−1
2
)−1
)

ij
(y)dyi ∧ dyj
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is closed. Thus the form i∗ωt, where i|UL(x) : UL(x) → U(x) is the embedding
(yp+1, . . . , ym) 7→ (0, . . . , 0, yp+1, . . . , ym) is also closed. By (14) for points z ∈ UL(x) with
coordinates y = (0, . . . , 0, yp+1, . . . , ym) we have

(
t1W−1

1 + t2W−1
2
)−1

(y) =
( (

t1 A−1
1 + t2 A−1

2
)−1

(y) 0
0

(
t1D−1

1 + t2D−1
2
)−1

(y)

)
.

Taking into account that y1(z) = . . . = yp(z) = 0 on the set UL(x) we obtain that the
form

(i∗ωt)(y) = ∑
p+16i<j6m

((
t1D−1

1 + t2D−1
2
)−1
)

ij
(y)dyi ∧ dyj,

where y = (0, . . . , 0, yp+1, . . . , ym), is closed. This means that the tensor η̃t = t1η̃1 + t2η̃2,
where η̃1 = ω̃−1

1 and η̃2 = ω̃−1
2 , determines a nondegenerate Poisson structure in the open

subset UL(x) ⊂ RL. Since (t1, t2) 6∈ (R× {0}) ∪ ({0} ×R), the Poisson structures η̃1 and
η̃2 determine a G̃-invariant bi-Poisson structure on RL.

By (13) the bracket on the space AG at the point x induced by the Poisson structure
ηa(x), a = 1, 2, i.e., by the symplectic structure ωa(x), coincides with the bracket induced
by the Poisson structure η̃a(x). By linearity the brackets on the space AG at the point x
induced by Poisson structures ηt(x) and η̃t(x) coincide for each t ∈ R2.

3. Reduction of a bi-Poisson Structure on the Cotangent Bundle of the Adjoint Orbit
of a Compact Lie Group

In this section we apply our main result (Theorem 1) to some (Kronecker) bi-Poisson
structure constructed in our paper [9]. We calculate the reduced bi-Poisson structure on the
manifold RH0 with the locally free induced action of the group N(H0)/H0 on RH0 in the
case when X is the cotangent bundle of the adjoint orbit of a compact Lie group G.

Let G be a compact connected Lie group with the Lie algebra g. Denote by 〈·, ·〉 an
Ad(G)-invariant scalar product on g. Let O ⊂ g be the Ad(G)-orbit through some element
a ∈ g of the Lie algebra g. Then O = G/K, where

K = {g ∈ G : Ad(g)(a) = a},

is the isotropy group of a (a connected closed subgroup of G ([16], Lemma 5)). Denote by
Ω the canonical symplectic form on the cotangent bundle T∗O. The scalar product 〈·, ·〉
determines a G-invariant metric on G/K. This metric identifies the cotangent bundle T∗O
and the tangent bundle TO. Thus we can also talk about the canonical 2-form Ω on TO.
The symplectic form Ω is G-invariant with respect to the natural action of G on TO (the
extension of the action of G on O).

Let π : TO → O be the canonical projection. The orbitO ⊂ g is a symplectic manifold
with the Kirillov–Kostant–Souriau form ω (here we identified the reductive Lie algebra g

with its dual space g∗ using the invariant scalar product 〈·, ·〉 on g). Thus we can consider
the closed G-invariant 2-form Ω + π∗ω on TO. This is a symplectic form on the manifold
X = TO ([9], Prop. 1.6). Put ω1 = Ω and ω2 = Ω + π∗ω. Write η1 = ω−1

1 , η2 = ω−1
2

for the inverse Poisson bi-vectors. The pair of Poisson structures (η1, η2) determines a
G-invariant bi-Poisson structure {ηt = t1η1 + t1η1}, (t1, t2) ∈ R2, on X and the Poisson
structure ηt is degenerate if and only if t1 + t2 = 0 ([9], Prop. 1.6).

Let Ĝ be any connected closed Lie subgroup of G with the Lie algebra ĝ ⊂ g containing
the element a. Let Ô be the adjoint orbit through the element a ∈ ĝ in the Lie algebra ĝ. This
orbit is a suborbit of O, i.e., Ô = Ad(Ĝ)(a) ⊂ O. Therefore Ô = Ĝ/K̂, where K̂ = K ∩ Ĝ.
Denote by j : TÔ → TO the natural embedding.

Lemma 4. Let Ĝ be any connected closed Lie subgroup of G with the Lie algebra ĝ ⊂ g containing
the element a. The restrictions ω̃1 = ω1|TÔ = j∗ω1 and ω̃2 = ω2|TÔ = j∗ω2 are symplectic
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forms on the tangent bundle TÔ ⊂ TO. The Poisson structures η̃1 = ω̃−1
1 and η̃2 = ω̃−1

2
determine a Ĝ-invariant bi-Poisson structure {η̃t = t1η̃1 + t1η̃1}, (t1, t2) ∈ R2, on TÔ.

Proof. The restriction of the scalar product 〈·, ·〉 to the subalgebra ĝ determines a Ĝ-
invariant metric on Ĝ/K̂. This metric identifies the cotangent bundle T∗Ô and the tangent
bundle TÔ. Denote by Ω̂ the canonical 2-form on TÔ. By ([17], Prop. 4) the canonical form
Ω̂ coincides with the restriction Ω|TÔ of the canonical form Ω, i.e., Ω̂ = ω̃1.

Identifying the compact Lie algebra ĝ with its dual space ĝ∗ by means of the restriction
of the invariant scalar product 〈·, ·〉 to ĝ we can say about the Kirillov–Kostant–Souriau
form ω̂ on the orbit Ô ⊂ ĝ. Let us show that ω̂ = ω|Ô .

Indeed, by definition the form ω is G-invariant and at the point a ∈ O we have

ω(a)([a, ξ1], [a, ξ2]) = −〈a, [ξ1, ξ2]〉, ∀ξ1, ξ2 ∈ g,

where we consider the vectors [a, ξ1], [a, ξ2] ∈ Tag = g as tangent vectors to the orbit
O ⊂ g at the point a ∈ O. Since the form ω̂ is described by the similar relation on the Lie
algebra ĝ containing the element a, we obtain that ω(a)|TaÔ = ω̂(a). Thus ω̂ = ω|Ô by the
Ĝ-invariance of the forms ω̂ and ω.

Let π̂ : TÔ → Ô be the canonical projection. Consider the closed Ĝ-invariant 2-form
Ω̂ + π̂∗ω̂ on TÔ. As above, the pair of the Ĝ-invariant symplectic forms ω̂1 = Ω̂ and
ω̂2 = Ω̂ + π̂∗ω̂ on TÔ determines an Ĝ-invariant bi-Poisson structure by ([9], Prop. 1.6).
Taking into account that π̂∗ω̂ = π̂∗(ω|Ô) = (π∗ω)|TÔ and, consequently, ω̂i = ω̃i, i = 1, 2,
we complete the proof.

By the lemma above the G-invariant bi-Poisson structure {ηt = t1η1 + t1η1}, (t1, t2) ∈
R2, on TO determines the Ĝ-invariant bi-Poisson structure {η̃t = t1η̃1 + t1η̃1}, (t1, t2) ∈ R2,
on TÔ. In general the natural embedding j : TÔ → TO is not a Poisson map with respect
to the Poisson structures η̃t and ηt, i.e., j∗ : (E(TO), {, }ηt)→ (E(TÔ), {, }η̃t) is not a Lie
algebra homomorphism. Moreover, the restriction j∗|AG : (AG, {, }ηt) → (E(TÔ), {, }η̃t)

to the space AG of the G-invariant functions on TO is not a Lie algebra homomorphism
too. However, using Theorem 1 we are able to describe some subgroup Ĝ ⊂ G and the
corresponding orbit Ô = Ĝ/K̂ for which the map j∗|AG is a Lie algebra homomorphism
(for any t), its image lies in the space AĜ of Ĝ-invariant functions on TÔ and the action of
the group Ĝ/C(Ĝ) on TÔ is locally free (see Proposition 1 below). Here C(Ĝ) stands for
the center of the Lie group Ĝ (which is the kernel of the adjoint representation of Ĝ).

Let us describe the corresponding subgroups starting from the subgroup H ⊂ G
determining the principal orbit type submanifold X(H) of the G-manifold X = T(G/K).
As we remarked above in this case the manifold X(H) is a connected open dense subset
of X. Denote by k the Lie algebra of K and by m the orthogonal complement to k in g with
respect to the form 〈·, ·〉. Taking into account that G acts on the base O ⊂ g transitively and
identifying the tangent space ToO at o = K with the space m, we obtain that

H = {k ∈ K : Ad(k)(x0) = x0} = Kx0 , (15)

for some x0 ∈ m such that the centralizer kx0
def
={y ∈ k : [x0, y] = 0} has the minimal

possible dimension. It is clear that the Lie algebra h of H coincides with the Lie algebra kx0 .
Consider the compact Lie subalgebra

ĝ = {y ∈ g : [y, z] = 0, ∀z ∈ h = kx0}, (16)

of g. Denote by Ĝ the connected Lie subgroup of G with the Lie algebra ĝ. The Lie group Ĝ
is closed in G because Ĝ is the identity component of the centralizer of H0 in G. Moreover,
a is an element of ĝ because by definition [a, k] = 0 and h ⊂ k. Thus, as above, we can
consider Ad(Ĝ)-suborbit Ô ⊂ ĝ of the orbit O through the element a and the natural
embedding j : TÔ → TO.
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Proposition 1. Let Ĝ be the connected Lie subgroup of G with the Lie algebra ĝ defined by (16).
Then

(1) The restrictions ω̃1 = ω1|TÔ = j∗ω1 and ω̃2 = ω2|TÔ = j∗ω2 are symplectic forms on the
tangent bundle TÔ ⊂ TO;

(2) The Poisson structures η̃1 = ω̃−1
1 and η̃2 = ω̃−1

2 determine a Ĝ-invariant bi-Poisson
structure {η̃t = t1η̃1 + t2η̃2}, (t1, t2) ∈ R2, on TÔ;

(3) For any t ∈ R2 the map j∗ is a Poisson map of the ηt-Poisson algebra AG of the G-invariant
functions on TO into the η̃t-Poisson algebra AĜ of the Ĝ-invariant function on TÔ;

(4) The action of the Lie group Ĝ/C(Ĝ) on TÔ is locally free (C(Ĝ) is the center of Ĝ);
(5) The map j∗ : AG → AĜ is an injection and the image j∗(AG) functionally generates the

space AĜ.

Proof. Items (1) and (2) follow immediately from Lemma 4. To prove items (3)–(5) we will
describe the submanifolds RH = XH and RH0 of X(H) defined by relations (2), (6) and will
show that some connected component of RH0 is open and dense in TÔ. To this end we will
use some calculation from the paper ([9], ((Sections 2.1 and 3.3)).

It is clear that Ô = Ĝ/K̂, where K̂ = Ĝ ∩ K. Since the form 〈·, ·〉 is Ad(G)-invariant,
we have [k,m] ⊂ m and ad(x0)(k) ⊂ m, where x0 is that mentioned in Formula (15). Let

m(x0) = {y ∈ m : 〈y, ad(x0)(k)〉 = 0}.

By the Ad(G)-invariance of 〈·, ·〉, we have that x0 ∈ m(x0). The Lie group K is
compact, hence by Remark 1 below,

Ad(K)(m(x0)) = m and, consequently, G · (m(x0)) = T(G/K), (17)

i.e., each G-orbit in T(G/K) intersects the linear subspace m(x0) ⊂ m = To(G/K).

Remark 1. Relations (17) hold if x0 is replaced by an arbitrary element x ∈ m. This follows easily
from the fact that for any (fixed) y ∈ m the function k 7→ 〈y, Ad(k)(x)〉 on the compact group
K attains its maximum value at some point ky ∈ K. Differentiating 〈y, Ad(ky exp tξ)(x)〉 with
ξ ∈ k, we obtain that Ad(k−1

y )(y)⊥ ad(x)(k).

Consider the Ad(K)-action of the compact Lie group K on m. The space m(x0) is
the orthogonal complement to the tangent space Tx0(Ad(K)(x0)) = ad(x0)(k) of the orbit
Ad(K)(x0) ⊂ m at x0 in m ([12], Th.2.3.28). Hence some open neighborhood of x0 in
the linear space m(x0) 3 x0 is a slice for Ad(K)-action at x0. Since the group H = Kx0

represents the principal orbit type, the action of H on this open neighborhood of x0 and,
consequently, on the whole linear space m(x0) is trivial, i.e.,

Ad(h)(x) = x for all h ∈ H and x ∈ m(x0), (18)

and, consequently,
[m(x0), h] = 0, (19)

(see ([18], Prop. 9) for another proof of identity (19)). It is clear that m(x0) ∩ XH is an open
dense subset of m(x0). Let RH0 be the submanifold of the connected manifold X(H) defined
by relation (6) for L = H0. From (18) and the definitions of the manifolds X(H), XH and
RH0 it follows easily that

m(x0) ∩ XH = m(x0) ∩ X(H) = m(x0) ∩ RH0 . (20)

Let us show that

XH = N(H) · (m(x0) ∩ XH) and RH0 = N(H0) · (m(x0) ∩ RH0), (21)
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where N(H) is the normalizer of H in G and N(H0) is the normalizer of the identity
component H0 of H in G. Indeed, by (17) each point of the manifold XH has the form
g · x for some g ∈ G, x ∈ m(x0) and for this point Gg·x = H. However, Gg·x = gGxg−1

and by (18) H ⊂ Gx. Therefore gHg−1 ⊂ H. Since gHg−1 is an open subgroup of H
and the compact group H has a finite number of connected component, gHg−1 = H, i.e.,
g ∈ N(H). Similarly, each point of the manifold RH0 has the form g · x for some g ∈ G,
x ∈ m(x0) and for this point (Gg·x)0 = H0. Also Gg·x = gGxg−1 and by (18) H ⊂ Gx. Then
H0 = gG0

xg−1 ⊂ G0
x, and, consequently, H0 = gG0

xg−1 = G0
x. Thus gH0g−1 = H0, i.e.,

g ∈ N(H0).
Note that the subgroup N(H0) of G is closed (compact) and therefore contains only a

finite number of connected components, i.e., |N(H0)/(N(H0))0| < ∞. Since by Lemma 1
RH0 is an embedded submanifold of X(H) and of X = T(G/K), its connected component
Rx0

H0 containing x0 has the form

Rx0
H0 = (N(H0))0 · (m(x0) ∩ RH0), (22)

and (see (8))

X = X(H)/G ' RH0 /(N(H0)/H0) ' Rx0
H0 /((N(H0))x0 /H0), (23)

where ((N(H0))x0 is the normalizer of the component Rx0
H0 in the group N(H0) (containing

the connected component ((N(H0))0 of N(H0)). Since by definition H ⊂ N(H0), we see
that h · (N(H0))0 · h−1 = (N(H0))0 for any h ∈ H. Taking into account that Ad(H)(x) = x
for each x ∈ m(x0), we obtain that

H ⊂ (N(H0))x0 .

Now it is clear that the manifold Rx0
H0 is a single orbit type (N(H0))x0 /H0-manifold

with a discrete isotropy group isomorphic to H/H0 (the group H0 acts trivially on Rx0
H0 ).

We will show that the connected component Rx0
H0 of the manifold RH0 containing the

element x0 is an open dense subset of TÔ. To this end consider the subalgebra k̂ = k∩ ĝ of
k. Since k is the centralizer of a ∈ g in g, the element a ∈ k belongs to k̂ ([a, kx0 ] = [a, k] = 0).
Denote by m̂ the orthogonal complement to k̂ in ĝ with respect to the form 〈·, ·〉|ĝ. By (19)
m(x0) ⊂ m̂. Moreover, m(x0) is the orthogonal complement of the space ad(x0)(k̂) in
m̂ ([9], Prop. 2.3), i.e., m̂(x0) = m(x0). Now applying Remark 1 to the pair (Ĝ, K̂) we get
Ĝ ·m(x0) = TÔ.

Since Ĝ is a connected component of the centralizer of H0 in G, we have that gh = hg
for all elements g ∈ Ĝ and h ∈ H0. Since the compact Lie algebra h is reductive, we have
that n(h) = ĝ+ h for the normalizer n(h) of h in g. However, n(h) = n(H0) and thus
Ĝ · H0 ⊂ G is the identity component of the normalizer N(H0). However, H0 ·m(x0) =
m(x0) by (18), and therefore

TÔ = Ĝ ·m(x0) = (Ĝ · H0) ·m(x0)

= (N(H0))0 ·m(x0) = (N(H0))x0 ·m(x0).
(24)

Since by (22) (N(H0))0 · (m(x0) ∩ RH0) is the connected component Rx0
H0 of the man-

ifold RH0 , Rx0
H0 is an open dense subset of X̂ = TÔ. This subset is Ĝ-invariant because

Ĝ ⊂ (N(H0))0. However, X(H) ⊂ TO and Rx0
H0 ⊂ TÔ. Thus by (23) and Theorem 1 for any

t ∈ R2 the map i∗ = (j|Rx0
H0
)∗ is a Poisson map of the ηt-Poisson algebra of the G-invariant

functions on X(H) into the η̃t-Poisson algebra of the (N(H0))x0 /H0-invariant functions on
Rx0

H0 . Now to prove item (3) it is sufficient to remark that X(H) and Rx0
H0 are open and dense

in TO and TÔ, respectively.
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By Lemma 1 the action of (N(H0))/H0 on RH0 is locally free. Thus the actions of the
groups (N(H0))x0 /H0 and (N(H0))0/H0 on Rx0

H0 are also locally free. As we remarked
above Rx0

H0 is a single orbit type (N(H0))x0 /H0-manifold with a discrete isotropy group
isomorphic to H/H0. Therefore by (24) Rx0

H0 is also a single orbit type Ĝ-manifold with the
isotropy group isomorphic to Ĥ = Ĝ ∩ H and Ĥ is a Lie group determining the principal
orbit type for the Ĝ-action on TÔ. Taking into account that [ĝ, h] = 0 by definition,
we obtain that the Lie algebra ĝ ∩ h is a subalgebra of the center of ĝ and, consequently,
Ĝ∩H0 ⊂ C(Ĝ), where C(Ĝ) is the kernel of the adjoint representation of Ĝ. Thus Ĝ∩H0 ⊂
C(Ĝ)∩H. Therefore the action of the group Ĝ/C(Ĝ) on Rx0

H0 ⊂ TÔ with a discrete isotropy
group isomorphic to some quotient group of (Ĝ ∩ H)/(Ĝ ∩ H0) is locally free, item (4)
is proved.

Since (N(H0))0 = Ĝ · H0 and H0 acts trivially on Rx0
H0 , each connected compo-

nent of the (N(H0))x0-orbit in Rx0
H0 is some Ĝ-orbit and, consequently, the natural pro-

jection Rx0
H0 /Ĝ → Rx0

H0 /(N(H0))x0 is a covering. Taking into account that X(H)/G '
Rx0

H0 /(N(H0))x0 (see (23)) we complete the proof of (5).
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Appendix A

The goal of this section is to provide the reader with a proof of a statement that is well
known to experts but does not seem to be readily available in the literature.

Let G be a connected Lie group and L be its closed subgroup. Denote by g and l the
Lie algebras of G and L, respectively. Let N(L) be the normalizer group of L in G and let
n(L) be its Lie algebra. It is clear that l ⊂ n(L) because L ⊂ N(L).

Lemma A1. Let α, β be two Ad(L)-invariant scalar products on the algebra Lie g. Let pα and pβ

be the orthogonal complements to n(L) in g with respect to the forms α and β respectively. Then

pα ⊕ l = pβ ⊕ l.

Proof. The action of the subgroup Ad(L) ⊂ Ad(G) on g determines naturally the action
Ãd of the group L on g/l because Ad(L)(l) = l. Additionally, the forms α, β determine
the Ãd(L)-invariant scalar products on the quotient space g/l which we denote by α′ and
β′ respectively. Let π : g→ g/l be the natural projection. By definition, the spaces π(pα)
and π(pβ) are the orthogonal complements to the space π(n(L)) in g/l with respect to the
forms α′ and β′, respectively. Since the scalar product α′ on g/l is Ãd(L)-invariant, there
exists a unique nondegenerate linear map J : g/l→ g/l such that β′(u, v) = α′(u, Jv) for
all u, v ∈ g/l and J · Ãd(h) = Ãd(h) · J for all h ∈ L. But by ([12], Lemma 2.1.13) the Lie
algebra n(L) of the normalizer group N(L) of closed subgroup L in G is determined by the
following equation

n(L) = {ξ ∈ g : Ad(h)(ξ)− ξ ∈ l, ∀h ∈ L}, (A1)

and therefore

π(n(L)) = n(L)/l = {v ∈ g/l : Ãd(h)(v) = v, ∀h ∈ L}. (A2)



Symmetry 2021, 13, 2043 14 of 14

Now we get the inclusion J(π(n(L))) ⊂ π(n(L)) due to the fact that J commutes with
the Ãd(L)-action on g/l and π(n(L)) ⊂ g/l is the set of all Ãd(L)-fixed vectors in g/l.
Therefore

β′(π(pα), π(n(L))) = α′(π(pα), J(π(n(L))) = α′(π(pα), π(n(L))) = 0,

and, consequently, π(pα) = π(pβ), i.e. pα ⊕ l = pβ ⊕ l.
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