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Abstract: Recent developments in nanotechnology have allowed the fabrication of a new generation
of advanced materials with various fractal-like geometries. Fractional Brownian surfaces (fBs) are
often used as models to simulate and characterize these complex geometries, such as the surface
of particles in dilute particulate systems (e.g., colloids) or the interfaces in non-particulate two-
phase systems (e.g., semicrystalline polymers with crystalline and amorphous phases). However,
for such systems, a realistic simulation involves parameters averaged over a macroscopic volume.
Here, a method based on small-angle scattering technique is proposed to extract the main structural
parameters of surfaces/interfaces from experimental data. It involves the analysis of scattering
intensities and the corresponding pair distance distribution functions. This allows the extraction of
information with respect to the overall size, fractal dimension, Hurst and spectral exponents. The
method is applied to several classes of fBs, and it is shown that the obtained numerical values of the
structural parameters are in very good agreement with theoretical ones.

Keywords: small-angle scattering; fractional Brownian surfaces; fractal dimension; Hurst exponent;
spectral exponent

1. Introduction

In recent years, various advanced techniques, such as printing [1,2], gas-phase (aerosol)
synthesis [3] or powder compact foaming [4], have been developed for large-scale prepa-
ration of fractal materials at nano and micro scales. An important feature for many
applications is the possibility to control the surface properties of such materials and of its
components as well as their symmetry and dimensionality, since it allows incorporating
advanced functionalities at a design stage.

For artificially created structures, interface roughness affects coherent dynamical
processes in quantum dots [5] while for solar cells, it increases their power conversion
efficiency [6]. For natural rough surfaces arising in materials science, chemistry, biology or
geology, the roughness is often useful for tuning superhydrophobicity [7], biocompatibil-
ity [8,9] or flexibility [7,10]. In addition to roughness, the third dimension has been proved
to be important for the interpretation of experimental data on singlet-triplet transitions
in the ground states of the two-electron quantum dots under a perpendicular magnetic
field [11,12].

Theoretically, for both artificial and natural surfaces and interfaces, a frequently
employed realistic model that aims to relate the observed physical/chemical/biological
properties with the roughness is based on the concept of fractional Brownian surface
(fBs) [13]. This has been successfully used in describing various rough structures, including
the contact zone between two distinct materials in layered composites [14], substrates
subjected to plasma-chemical etching [15] or soil structures [16,17].

A fBs is defined in terms of the Hurst exponent, and it is related to the fractal dimen-
sion [18] of the surface. This is one of the most fundamental parameters characterizing a
surface since it does not depend on the sampling length or on the instrument resolution.
Therefore, various methods for practical estimations of fractal dimension are commonly
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used, such as the wavelet based multifractal analysis [19], the root mean square method [20],
the variogram method [21], the structure function method [22] or the variation method [23].

However, for macroscopic volumes consisting of a large number of randomly dis-
tributed surfaces/interfaces, such real-space methods are not appropriate since the under-
lying microscopy techniques may introduce artefacts in sample preparation and can be
used to provide only information for small surface areas. To overcome this issue, one can
describe the average of the correlations among atoms positions by using an appropriate
statistical or ensemble average of the electron density distribution within the particle [24].

In this paper, small-angle scattering (SAS) technique is used to estimate the overall
shape, size and fractal dimension of 2D disordered fBs. This involves an analysis of scat-
tering intensity I(q) and its Fourier transform and the pair distance distribution function
(pddf; p(r)). Depending on the parameters sought, either I(q) or p(r) may be more conve-
nient for detailed analysis [25]. While symmetry and self-similarity characteristics provide
more pronounced effects in the reciprocal space, the determination of the shape and size
is more intuitive by using p(r). As such, in this work, the advantages provided by both
analyses are exploited.

In order to illustrate the general applicability of employing SAS technique in reveal-
ing structural properties of naturally occuring (i.e., statistically self-similar/affine) fractal
surfaces/interfaces, in this work, several classes of fBs observed on a regular grid are inves-
tigated. It is shown that the obtained fractal dimensions provide values for the Hurst and
spectral exponents in very good agreement with theoretical ones. The main steps on how
I(q) (and p(r)) can be employed to differentiate between various fBs are described in detail,
and similarities with SAS from exact self-similar surface fractals [26–28] are highlighted.

2. Theoretical Background

SASs of X-rays (SAXS) or neutrons (SANS) are experimental techniques used for
the investigation of structures with dimensions from 1 nm up to several hundreds of
nanometers [29]. In the case of SAXS, the incoming wave induce dipole oscillations
in the atoms, and the electrons are excited due to the high energy of X-rays. In turn,
the accelerated charges generate secondary waves, which then add up at large distances
and provide the scattering amplitude. This is related to the electron density distribution of
the scattering object by a Fourier transform. However, in a scattering experiment, due to
the high frequency, only the square of the amplitudes (scattering intensities) are recorded
as a function of the scattering angle [30].

In SANS, neutrons interact with the nuclei of the atoms and with unpaired electrons,
and they are sensitive to the isotopic composition of the sample. Neutrons can be used as a
magnetic probe (since they posses a magnetic moment), and this allows us to investigate
bulk properties of matter (due to their weak interaction with matter) [30]. In contrast
to SAXS, where scattering amplitudes increase regularly with atomic number, in SANS,
neutron-coherent amplitudes vary irregularly and are related by a Fourier transform to the
scattering length density distribution [31].

Therefore, SAXS and SANS have their own advantages depending on the sample
investigated. In particular, SANS is often used in combination with contrast-variation
to probe the structure of multicomponent macromolecular complexes. In the following,
the theoretical background is focused on SAXS but it applies to SANS as well when electron
density is replaced by a scattering length density distribution.

2.1. Small-Angle Scattering Technique

In SAS, the differential elastic cross-section per unit angle, i.e., the scattering inten-
sity, is obtained as the product between the scattering amplitude A(q) of the irradiated
volume and its complex conjugate A(q)∗. Here, q is the scattering vector with length
q = 4πλ−1 sin θ, λ is the radiation wavelength and 2θ is the scattering angle. Furthermore,
one considers a scattering process that involves a two-phase system consisting of a large
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number of disordered particles with rough surfaces described by fBs (see below) embedded
in a homogeneous matrix/solution.

Let us denote ρ(r) as the electron density for a particle of volume V in a fixed ori-
entation, i.e., the number of electrons per unit volume at position r. Then, the scattered
amplitude can be written as follows: A(q) =

∫ ∫ ∫
ρ(r) exp(−iq · r)dV, where dV is a

small volume element situated at position r and which contains ρ(r)dV electrons. Therefore,
the scattering intensity becomes the following [30]:

I(q) ≡ A(q)A(q)∗ =
∫ ∫ ∫

ρ̃2(r) exp(−iq · r)dV, (1)

where ρ̃2(r) =
∫ ∫ ∫

ρ(r1)ρ(r1 − r)dV is the convolution square [30,32].
In order to take into account the contribution of the matrix/solvent, the electron

density in Equation (1) shall be replaced by the difference between electron densities of
the particle and that of the matrix/solvent (ρ0), i.e., by ∆ρ = ρ− ρ0. This is also known in
the literature as the contrast. The random orientations of the particles over orientations are
taken into account such that 〈exp(−iqr)〉 = sin qr/qr. This results in the following [30]:

I(q) = 4π
∫ ∞

0
p(r)

sin qr
qr

dr, (2)

where p(r) = r2∆ρ̃2(r) is the pair distance distribution function (pddf) and provides
the number of different electron pairs found in the range (r, r + dr) within the particle.
Geometrically, p(r) is the distance histogram of the particle and has the property that
p(r) = 0 at r = 0 and at r > Dmax, where Dmax is the maximum dimension of the particle.
For a finite number N of point-like scatterers, Equation (2) can be approximated by the
following [33]:

I(q) = N + 2
Nbin

∑
i

p(ri)
sin qri

qri
, (3)

where Nbin is the number of bins, and p(ri) is the population at pair distance ri. This ap-
proach brings an important computational advantage since it can handle systems consisting
of a large number of scatterers in reasonable timescales [33].

2.2. Small-Angle Scattering from Fractal Surfaces

Within the class of fractal surfaces, one distinguishes three main subclasses of fractals.
Figure 1 provides a schematic illustration for 2D case for each subclass. The first subclass
(Figure 1 left) consists of a dense object with a fractal surface. The corresponding fractal
dimension of the mass is Dm = 2, the fractal dimension of the surface is 1 < Ds < 2 and the
fractal dimension of the pores (i.e., the surrounding) is Dp = 2 as for the mass. When
Ds → 1, the surface is perfectly smooth, while for Ds → 2, the surface is so folded that it
almost completely fills the plane. They are known in the literature as surface fractals. Such
surfaces are specific to erosion surfaces (materials or mountains), chemically dissolved
surfaces, thin films, corrosion surfaces, fractures, etc. [34].

The second subclass (Figure 1 middle) is a fractal resembling a branched cluster
or network and for which its surface is also a fractal. For this configuration, we have
Dm = Ds < 2 and Dp = 2. The higher the value of Dm, the more close the structure is,
while for Dm → 1, the object becomes a line. They are known as mass fractals, and they are
specific to polymer chains or various types of aggregates (carbon, soils, etc.).

The third class (Figure 1 right) is also a dense object but within which there exists a
distribution of pores or holes with a fractal structure. This is called a pore fractal, and it has
the properties that Dm = 2 and Ds = Dp < 2. The higher the value of Dp, the more porous
the structure becomes. As the name implies, they are specific to various porous structures,
such as carbon nanopores, bituminous coals, etc.
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Figure 1. Schematic representation of the three main classes of fractals that can be described in a SAS experiment.
(Left) Surface fractal (Dm = Dp = d and Ds < d). (Middle) Mass fractal (Ds = Dm < d and Dp = d). (Right) Pore/volume
fractal (Ds = Dp < d and Dm = d). Here, d = 2, and it represents the Euclidean dimension of the embedding space. See
main text for details.

The fractal dimension of the fractal surface is related to the power-law behaviour of
the scattering intensity (Equations (1)–(3)) by [35,36].

I(q) ∝ q−α, (4)

Here, α is the scattering exponent and carries out information about the fractal dimen-
sion: α = Dm for mass fractals [37], α = 4− Ds [38] for surface fractals and α = Dp for
pore fractals [39]. These relations allow inferring the type of fractal from SAS data: if the
measured scattering exponent of I(q) vs. q is smaller than two, then we deal with a mass
fractal, while if it is higher than two (but smaller than three), we have scattering from a
surface fractal [35,36].

2.3. Fractional Brownian Surfaces

Let us consider a two dimensional Euclidean space. A fBs VH on R2 is a function for
which its increments have a Gaussian distribution with the variance of the following [40]:〈

|VH(x)−VH(y)|2
〉

∝ |x− y|2H , (5)

where 〈· · · 〉 denotes an ensemble average over many samples of VH , 0 < H < 1 is a
parameter known as a Hurst exponent and x, y ∈ R2. The parameter H controls the
roughness of the surface: the larger its value, the smoother the surface. It is related,
together with the spectral exponent β (1 < β < 3), to the fractal dimension of the surface
by the following [40].

D = 3− H = 2 +
3− β

2
. (6)

Here, β is useful for the determination of the spectral density or the two point autocor-
relation function of VH , which provides information about the correlations in the surface in
turn.

3. Methodology for Generating the Fractional Brownian Surfaces and for Calculating
the Pair Distance Distribution Function

In the present paper, fractional Brownian surfaces (fBss) are generated at different
values of H (and implicitly of β) based on Equation (5) and by using the Fourier filtering
method suggested in Reference [41] (Figure 2). The obtained surfaces are discretized on a
rectangular grid and are recorded as elevation data relative to a plane at z = 0 (Figure 3).
The smallest distance between grid points is denoted by lmin. The length of the surface in
either x or y direction is denoted by a (Figure 3). In this approach, the resulting structure
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is a point-like distribution similar to the one shown in the middle of Figure 1 but with
“branches” not limited to a single plane. Instead, they are confined into a limited range
zmin < z < zmax, where zmin is the lowest elevation point, and zmax is the highest one (see
Figure 3, middle). Therefore, the model considers the space between the elevation planes
(through the heights of each point relative to the z = 0 plane), and fBs divides this space
into two non-fractal regions. This is similar to the division of the plane into two non-fractal
regions by the boundary of the disk in Figure 1 (Left). This separation gives rise to surface
fractals, and the parameter D in Equation (6) is related the surface fractal dimension Ds
described in Section 2.2. Note that although the resulting structure is embedded in the 3D
Euclidean space, the self-similarity properties are manifested only along two directions (x
and y).

Figure 2. Fractional Brownian surfaces on a square grid with dimensions x = y at various values of Hurst exponent H.
(a–c) 3D representation. (d–f) Density plot. (a,d,g) H = 0.9. (b,e,h) H = 0.6. (c,f,i) H = 0.3. The peaks and bottoms are
represented by light and dark regions along Oz-axis, respectively. (g–i) are the same as (d–f) but are represented in a single
color for better visualization of the variation of density plot roughness. (a) x ∨ y = 2.31z. (b) x ∨ y = 1.78z. (c) x ∨ y = 1.19z.
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The geometry of the fBss, investigated here, correspond to Hurst exponents H = 0.9,
H = 0.6 and, respectively, at H = 0.3, as shown in Figure 2. In this figure, the lighter the
region, the higher the surface and vice versa. For each H, the same random seed generator
was used in order to compare fBss of the same global features. As expected, the roughness
of fBss increases with decreasing H (Figure 2a–c), while large scale features are preserved,
i.e., the positions of maxima and minima are unchanged with H. This can be observed
more clearly in the density plots in Figure 2d–f. In addition, they provide another type of
method visualizing the variation of fBss roughness: the higher the value of H, the better the
local variations become in terms of visibility. An equivalent representation for illustrating
the differences in the local structural differences in fBss is shown in Figure 2g–i where a
single color is used for all H.

lmin

a

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x

y
Figure 3. Schematic representation of fBS and the associated grid (6 × 6 points) at H = 0.9. (Left) fBs. Red—the highest
points (at 1.5); Blue—the lowest ones (at −1.5). (Middle) The corresponding grid used. The gray plane is at z = 0 and
stands as the reference level for the heights of the grid points. Red points are above the plane, and blue ones are below it.
(Right) Projection of the grid on the 2D xy plane. lmin is the minimum distance between the points in the grid, and a is the
length of the grid in either x or y direction.

Depending on their extension along x, y and z dimensions, fBss are simulated for
three main cases:

• Class I fBss (CI): distances between points are kept unchanged; thus, x, y and z are
of the same orders of magnitude. This corresponds to the classical structure of fBss,
as shown in Figure 1, with a globular-like shape.

• Class II fBss (CII): distances between points are stretched by the same amount along
x and y directions by a factor of b; thus, x = y � z. This gives rise to fBss with
rectangular, planar-like shapes.

• Class III fBss (CIII): distances between points are stretched along a single direction by
a factor of b; thus, x or y� z. This gives rise to fBss with rod-like shapes.

Therefore, in terms of the fractal dimension D in Equation (6) and on the classes
considered above, one should expect a behaviour of scattering intensities characterized
by different successions of power-law decays reflecting both the spatial and self-similarity
symmetries of fBss. In particular, for the power-law decays arising from the self-similarity
symmetry, one should expect a behaviour of the type I(q) ∝ q−D, where D < 2. Note that
a random surface fractal can be built based on fBss by assigning a volume/area to each
point such that their sizes follow a continuous power-law distribution similar to the case
of deterministic surface fractals and where the scattering units within the fractal have a
discrete power-law distribution of sizes [26,42].

The pddf p(r) is calculated by using the distance histogram approach suggested in
Reference [33]. This involves discretization of fBs (Figure 3, Middle), recording the position
of each point and calculating all the distances between them. To this aim, the dimensions
of the grid are equal to the maximum dimensions of fBs along its length, width and height.
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Finally, the pair distances are discretized in a histogram of a bin size commensurate with
the resolution of the data, and the scattering intensity is calculated by Equation (3) [33].

4. Results and Discussion
4.1. Pair-Distance Distribution Functions

The pair distance distribution functions (pddfs) at H = 0.9, H = 0.6 and H = 0.3 are
calculated as described in Section 2.1 and are presented in Figure 4. The image size used for
each class is 200 × 200 pixels, which corresponds to 4× 104 point scatterers. For classes CII
and CIII, the stretching factor is b = 10. Although the pddfs are different within each class,
they, however, have a common feature that allows distinguishing fBss belonging to different
classes. For class CI and CII (Figure 4a,b), the pddfs have a symmetric bell-like shape
specific to globular or flat-like structures [30]. However, for class CIII (Figure 4c), the right
side of the bell becomes completely linear, which is specific to elongated structures [30].

Within class CI, the pddfs of fBss show that the maximum diameter Dmax occurs at
r/a ' 2.33 for H = 0.3, r/a ' 1.48 for H = 0.6 and at r/a ' 1.12 at H = 0.9 (Figure 4a).
This decrease in maximum dimension with increasing H arises from the contribution of
elevation along the z-axis, since in all cases the dimensions along x and y axes are kept fixed
(a = 200lmin). Such behaviour is in line with elevation data of fBss models as observed in
the legends of Figure 2d–i. Here, the smallest difference in height occurs at H = 0.9, while
the largest one occurs at H = 0.3. A second important feature of pddfs is that the position of
maximum shifts to the left and increases in height with increasing H. It shows that the value
of most common distances within fBss decreases as a consequence of decreasing elevation
of points along z-axis. However, the height increases of pddf reflects an increase in the
number of most common distances with H. Thus, the decrease in surface roughness gives
rise to a larger number of point-distances with similar values. Note that the globular type
of class CI fBss can be inferred also from the end region of pddf, which shows pronounced
decay followed by a flat region.

0.0 0.5 1.0 1.5 2.0
r/a

0.0

0.5
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,[
a.

u.
]

a

H = 0.3
H = 0.6
H = 0.9

0 5 10 15 20
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Figure 4. Pddfs from fBss at various geometries. (a) Class CI: symmetric bell-like curves reveal the globular-like shape.
(b) Class CII with stretching factor b = 10: symmetric bell-like curves reveal planar-like structures, since one dimension is
kept fixed while the other two are stretched, by a factor of b = 10. (c) Class CIII with stretching factor b = 10: curves with
long linear domains reveal elongated structures.

The pddfs of fBss of class CII are shown in Figure 4b, and their behaviour is quite
similar to fBss of class CI. However, the position and height of maxima are now related to
the cross-sectional area, since they now provide the most common distances within the
surface. In addition, due to the increased length sizes along x and y directions, the values
of r/a at which the maximum diameter is attained also increased by a factor of b. Similarly,
the number of distances decreases by a factor of b relative to fBss of class CI as a consequence
of stretching the surface along the x and y directions. Note that the overall shape of the
pddfs resemble quite closely those of the structures strictly confined to a plane, such as 2D
DLA or surface fractals [25].
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The pddfs of class CIII fBss are shown in Figure 4c and are characterized by a linear
region with different slopes. One can relate it with the surface roughness of fBss: The
smoother the surface, the steeper is the slope. The variation of maxima position and of its
height is quite similar to class CI fBss. However, the maxima correspond to the cross section
here since one can find the most common distances within them. Moreover, the curves
are characterized by inflection points at r/a ' 1.25 for H = 0.9, r/a ' 1.30 for H = 0.6
and r/a ' 1.35 for H = 0.3, and this reveals an increase in cross-sectional area. This
is also in agreement with models shown in Figure 1: The lower the H, the rougher the
surface and, thus, the higher the surface area. Another particular feature for this class
is that the maximum size of the surfaces significantly varies with H, i.e., Dmax ' 16 at
H = 0.3, Dmax ' 10.7 at H = 0.6 and Dmax ' 7.8 at H = 0.9. One reason for this is the
variation of heights along the z direction on length scales comparable with only one other
direction (x or y). In particular, the length of z-range at H = 0.9 is about half of that for
H = 0.3 (see Figure 2d,f), which is reflected in the value of their maximum sizes.

4.2. Scattering Intensities

The scattering intensities from fBss demonstrated in Figure 1 are calculated according
to Equation (3) for the same classes and parameters H used for pddfs in Figure 4. The results
are presented in Figure 5 on a double logarithmic scale, and they show that, within the
calculated q-range, the scattering curves are characterized by the presence of a Guinier
region (i.e., a region where I(q) ∝ q0) at q . 2π/a, followed by one or more power-law
decays of the type described by Equation (4) at higher values. The scattering exponent
depends on the values of H; thus, it reveals the surface roughness, while a particular
succession of power-law decays or the presence of a single power-law decay is specific to
the class the fBss belong to.
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Figure 5. SAS from fBs at various grid geometries. (a) Three-dimensional. Fractal regions follow immediately the Guinier
region (i.e., the region where I(q) ∝ q0) and, thus, are completely visible. (b) Two-dimensional. Fractal regions are expected
to follow the region where I(q) ∝ q−2. (c) One-Dimensional. Fractal regions follow the region where I(q) ∝ q−1 and are
partially visible.

The SAS intensity curves for class CI fBss are shown in Figure 5a. The results show
that the length of the Guinier region increases with H and reflects the increase in the size
of fBss, which is in line with the corresponding pddfs shown in Figure 4a. Then, at each
H, the Guinier region is followed by a power-law decay. Here, the number of points is
chosen in such a manner that the length of the power-law regimes spans at least one order
of magnitude, as indicated in Reference [37]. The main feature of these power-law decays
is the dependence of the scattering exponent α on H in the form α = 3− H(≡ D), and it
reflects the decrease in surface roughness by decreasing the fractal dimension (see discus-
sion in Section 2.2). This behaviour shows that the slope of scattering intensity following a
power-law decay can be used to differentiate between fBss of different roughness.

For the class CII fBss, within the calculated q-range, the proposed approach show a
Guinier region followed by a power-law decay I(q) ∝ q−2 for all H in the range 2π . qa .



Symmetry 2021, 13, 2042 9 of 11

2πa/d, where d =
√

2|zmax + zmin|/b is a measure of the size of the cross-sectional area.
Here, zmax and zmin are given in the legends of Figure 1. However, since the dominant
contribution comes from equal dimensions x and y in this configuration, the overall size
changes insignificantly. Therefore, the corresponding scattering intensities in Guinier and
I(q) ∝ q−2 power-law decay are very similar. Since 2π/d ' 35.9 here is well beyond
the investigated q-range, one expects that to observe more pronounced differences for
qa & 35.9 (see Figure 5c), which would allow revealing the fractal dimension of each fBs.
This would require more extensive hardware resources than only a desktop computer.

For class CIII fBss, the Guinier region is followed first by a power-law decay I(q) ∝ q−1

in the range 2π . qa . 2πa/d, where d =
√

2|zmax + zmin| is a measure of the cross-section
size. This is subsequently followed by a second power-law decay, which is similar to those
from class I fBss. The succession of these types of power-law decays is a signature of an
elongated structure with rough surfaces. Similar to the classes CI fBss, here the roughness
also increases with decreasing H and is reflected in the value of the scattering exponent.

Note that for fractal surfaces with exact self-similarity, the power-law decay corre-
sponding to the fractal region has an exponent equal to the fractal dimension of the surface.
However, the simple power-law decay observed here is replaced by a succession of maxima
and minima superimposed on a simple power-law decay. For such systems, the periodicity
and number of these minima can be used to extract additional structural information such
as the fractal iteration number or the value of the scaling factor [26–28].

5. Conclusions

The main structural properties of fBss at nano-scales and micro-scales are studied in
both real and reciprocal space by exploiting the behaviour of pddfs and, respectively, of the
associated small-angle scattering intensities.

The proposed approach allows us to reveal the dependence of fractal dimension
and the overall size and shape of fBss on the Hurst (and implicitly, spectral) exponent.
The obtained values of these structural parameters (obtained from analysis of data in
Figures 4 and 5) are in a good agreement with the simulated ones (obtained from analysis
of Figure 1). In particular, the simulated fractal dimensions resulting from the slope of SAS
intensity at high q regions (see Figure 5) are in very good agreement with theoretical ones
(given by Equation (6)).

It is shown how the SAS technique can distinguish between fBss embedded in Eu-
clidean dimensions of different dimensionalities. The distinction is based on the presence
(for flat-like and rod-like fBss) or absence (for globular-like fBss) of a succession of two
power law-decays with different scattering exponents. The scattering exponent α of the first
power-law is an integer reflecting the Euclidean dimensionality (α = 1 for 1D and α = 2 for
2D), while the scattering exponent for the second power-law is α = 3− H, reflecting the
fractal dimension. For both power-law regions, their lower bounds allow us to determine
the overall size and, respectively the cross-section size of fBs, as described in Section 4.2
Scattering intensities. Therefore, such a succession allows a structural characterization of
fBss at various scales.

The results shown here could be a starting point for a multi-scale analysis of more
complex structures involving fBss, such as mass fractals (see Figure 1 Middle) in which the
branches themselves are rod-like fBss. In this case, one should expect that the first power-
law decay will be replaced by a decay of the type I(q) ∝ q−Dm , where Dm is the fractal
dimension of the mass fractal. Other complex geometries can be modeled by considering
that the fBss form a closed surface over a domain with a given shape (i.e., ball, ellipsoid,
torus, etc.).
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