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Abstract: DC circuit breaker (DCCB) systems with a DC reactor in series are normally equipped in
the voltage-sourced-converter-based multi-terminal DC (VSC–MTDC) systems for DC fault clearance.
However, it is revealed that the use of DC reactors could undermine the system damping and
deteriorate the system stability. In this paper, a controller based on hybrid sensitivity is proposed to
improve the stability of power system and realize the power symmetry of multi-terminal systems.
Firstly, based on a generalized MTDC small-signal model, an eigenvalue analysis is performed to
provide deep insight into the stability issue imposed by DC reactors. Furthermore, a local controller
based on hybrid sensitivity was proposed, and on this basis, a global controller was designed to
solve asymmetrical power flow. Finally, a four-terminal VSC–MTDC model was built in Simulink
to evaluate the performance of DC-PSS. Simulation results verify the effectiveness of the proposed
controller in stabilizing MTDC systems and symmetrizing of power flow.

Keywords: HVDC; stability analysis; robust control; power sharing

1. Introduction

In recent years, there has been an increasing penetration of renewable energy sources
(RESs) such as wind energy and solar energy. However, since the conventional AC trans-
mission suffers greatly from the intermittent and stochastic characteristics of RESs, voltage-
sourced-converter-based high-voltage direct current (VSC–HVDC) power transmission
has lately drawn great attention in large-scale RES integration applications. For point-to-
point VSC–HVDC links, a DC fault could lead to a system failure, thereby resulting in
the loss of massive transmission power. By enhancing energy reliability and flexibility,
VSC–MTDC, which consists of multiple point-to-point HVDC links, is considered as a
promising technology from the network operators’ perspectives [1,2].

The stable and safe operation of VSC–MTDC remains an ongoing challenge, because
commonly used VSC topologies, such as the two-level VSC and half-bridge modular
multilevel converter (MMC), cannot isolate DC faults [3–5]. Therefore, it is required to
paralyze all the converters until the DC fault is totally cleared. Presently, MMCs with fault-
blocking capability and DC circuit breakers (DCCBs) are regarded as the main methods to
handle DC faults [5–10]. Considering the cost and technology maturity, the DCCB-based
fault ride-through strategy is more suitable for VSC–MTDC applications.

For a VSC–MTDC, instabilities can take place in a DC network if connected converters
interact undesirably with other parts in the system [11–14]. Moreover, in a MTDC system
equipped a proactive hybrid DCCB or solid-state DCCB, a DC reactor is used to limit the
changing rate of a fault current. However, the DC reactor could deteriorate the system
transient process and even cause instabilities. Therefore, if we want to use a DC circuit
breaker to solve the DC fault in an MTDC system, it is very important to deeply analyze
the instability mechanism and explore its solutions.
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A lot of research attention has focused on VSC–HVDC stability issues [11–18]. Never-
theless, conventional frequency domain methods are not suitable for a multi-input multi-
output (MIMO) system like the VSC–MTDC system. To deal with this issue, modal analysis
is performed to expose impacts of dynamic interactions in a multivariable VSC–MTDC
system [14–20]. Based on a derived general small-signal model of VSC–MTDC, modal
analysis is used to investigate the interactions between multi-machine AC systems and a
DC grid in Reference [17]. The main focus of Reference [19] was modeling a MTDC system
which connects weak and passive grid. In these works, although interactions between AC
grid and MTDC system were studied in detail, the dynamics among converters were not
investigated. Particularly, key effects of DCCBs have not been sufficiently considered in
above papers.

The concept of the DC power system stabilizer (DC-PSS) was proposed to eliminate
negative effects caused by the DC reactor, and the best location for the installation was
discussed in Reference [21]. Similar to a conventional power system stabilizer (PSS),
the DC-PSS provides additional damping by modulating power references of converters.
However, the design method of this DC-PSS was not discussed thoroughly. Impedance-
based methods were applied in the DC oscillation damping [22], and the proposed DC-PSS
acted as a virtual resistance to enhance the damping ratio. However, the relevant modeling
and parameter tuning is very complex.

The conventional method of designing a damping controller has focused on a single
nominal operating point without considering the robustness performance. This practice
can lead to a lack of damping performance in a volatile operation condition. A passive
robust controller was proposed in Reference [23], but the selection of controller parameters
was complex. An active damping control method applied in Reference [24] to suppress
DC side oscillations. Reference [25] proposes a coordinated flexible damping mechanism,
which allows the MTDC system to autonomously provide emulated inertial response with
flexible damping effect to AC systems without communication.

Droop control has been widely used in MTDC systems for communication-free and
high reliability, but due to different out impedances of each converter, the power flow
will become asymmetric. In Reference [26] a method based on virtual impedances are
used to distribute the power flow. However, to the best of the authors’ knowledge, there
are few researches on the simultaneous realization of system oscillation suppression and
power sharing. H∞ optimization method [27] provides a theoretical mechanism for dealing
with uncertainties and bounded disturbances, and has been widely used in the field of
power system control [28–33]. The PSS designed by H∞ optimization was reported to
damp sub-synchronous oscillations in Reference [29]. The mixed-sensitivity technique [31]
was employed to handle power system oscillations using flexible alternating current
transmission (FACTs) devices. As for the frequency control problem of power systems,
a robust controller was designed to implement the secondary control of frequencies in
multiple areas [32]. Though robust control has gotten widely attentions in these areas, there
have been no attempts to damp DC oscillations and symmetrize of power flow utilizing
optimization method to date.

For the above reasons, a H∞ robust controller to damp DC oscillations and symmetrize
power flows in a MTDC system with DCCBs is proposed. Firstly, a local robust damping
controller is synthesized to depress the disturbances, and on this basic process, a global
controller is designed accordingly to implement accurate symmetric power sharing among
converters. An eigenvalue analysis and a time-domain simulation on a four-terminal
MTDC system are used to validate the effectiveness of the proposed approach.

This paper is organized as follows: The small-signal model of the VSC–MTDC system
is derived in Section 2. The system stability is examined by using the eigenvalue analysis in
Section 3. Section 4 presents the design of the robust DC-PSS in detail. Section 5 conducts
thorough case studies based on a four-terminal MTDC system. Finally, the paper concludes
in Section 6.
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2. VSC–MTDC System Modeling
2.1. Average-Value Model

A converter station can be represented by an average-value model (AVM) by ignoring
the switching transients. The AVM has two main parts: the AC side and the DC side. At
the AC side, there is a reactor, Lc, between grid terminals and converter terminals.

At the DC side, the high-voltage DC grid can be modeled as a controlled current
source in parallel with a DC link capacitor, Cdc.

Assuming the power at the point of common coupling (PCC) Ps equals the power
that the converter draw from the DC grid Pdc, the DC voltage Vdc can be derived as (1) by
ignoring the conversion power loss:

Cdc
dVdc

dt
= Idc −

Ps

Vdc
(1)

It is noteworthy that (1) reflects the power coupling between the DC and AC side, as
the DC voltage is determined by both the total injected DC current (Idc) and the power
transferred by the converter. The expression of DC voltage is nonlinear and needed to be
linearized for further study; one can write the following:

Cdc
d∆Vdc

dt
= ∆Idc −

1
V0

dc
∆Ps +

P0
s

(V0
dc)

2 ∆Vdc (2)

For the dynamics of a symmetric three-wire, three-phase AC system, the space phasor
method is commonly used to transform the variables in abc-frame to a quiescent dq-frame,
which brings a more efficient way to describe and analyze AC systems. By this method,
the differential equations of AC sider current in dq-frame are mathematically formulated
as follows:  Lc

d∆icd
dt = −Rc∆icd + ωLc∆icq + ∆ucd − ∆usd

Lc
d∆icq

dt = −Rc∆icq −ωLc∆icd + ∆ucq − ∆usq

(3)

where icd and icq are the currents of the RL filter, ucd and ucq are the voltages of the
converter terminal, and usd and usq are the voltages of the grid terminal, respectively.
According to the definition of active power in dq-frame, one can write the following:

Ps = 1.5usdicd + 1.5usqicq

Qs = −1.5usdicq + 1.5usqicd
(4)

Generally, the voltage of PCC is aligned with d-axis by a phase-locked loop, which
means that ucd = 0. Assuming that the PCC voltage remains constant (∆usd = 0), the
linearized form of (4) is written as follows:

∆Ps = 1.5(∆usdi0cd + ∆isdu0
sd) ≈ 1.5∆icdu0

sd (5)

2.2. Controller Modeling

The commonly adopted VSC control method is the so-called vector control method,
which is displayed in Figure 1. A two-level hierarchy is used to regulate the power or
voltages of the converter being controlled. In vector control theory, a pair of PI controllers,
called inner loop controllers, has the duty of regulating the current injected into PCC and
produces the reference value of converter terminal voltages, which could be expressed in
the follows: {

∆u∗cd = Kp1∆e1 + ∆z1 + ωLc∆icq + ∆usd

∆u∗cq = Kp1∆e2 + ∆z2 −ωLc∆icd + ∆usq
(6)
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where {
∆e1 = ∆i∗cd − ∆icd, ∆e2 = ∆i∗cq − ∆icq

∆z1 = Ki1
∫

∆e1dt, ∆z2 = Ki1
∫

∆e2dt
(7)

In (6) and (7), Kp1 and Ki1 are the control gains; z1 and z2 are the supplementary
integral variables; and e1 and e2 are the error variables, respectively.

Figure 1. Voltage-sourced converter model using vector control.

Considering the principle depicted in (5), the active power and reactive power can
be independently controlled by regulating icd, icq. A pair of PI controllers is introduced to
regulate active power and reactive power, and its expressions are as follows:{

∆i∗cd = Kp2∆e3 + ∆z3

∆i∗cq = Kp2∆e4 + ∆z4
(8)

where {
∆e3 = ∆P∗s − ∆Ps, ∆e4 = ∆Q∗s − ∆Qs

∆z3 = Ki2
∫

∆e3dt, ∆z4 = Ki2
∫

∆e4dt
(9)

In general, droop control can be regarded as one of the most suitable choices for
controlling the voltages of DC grids in a distributed control structure. Hence, droop control
is used as the default DC voltage control strategy in this work. A typical droop structure is
expressed as follows:

P∗s = (Vdc −Vm
dc)Kdrp + Pm

s (10)

where Vm
dc and Pm

s are the voltage and power references of droop controller, respectively.
Kdrp is the droop gain which measure the impact of voltage deviations on the reference
power. In addition, Kdrp also identifies the converter operation mode. When Kdrp is equal
to zero, the converter operates in the power-control mode. When Kdrp is not equal to zero,
the converter operates in the droop-control mode.

By aggregating the expressions of different subsystems, a general state-space model
of the ith converter (VSCi) in the droop-controlled mode or power-controlled mode can be
formulated as follows:

∆
.
xg,i = Ag,i∆xg,i + Bg,i∆ug,i

∆xg,i = [∆Vdc,i, ∆icd,i, ∆icq,i, ∆z1,i, ∆z2,i, ∆z3,i, ∆z4,i]
T

∆ug,i = [∆Pm
s,i , ∆Idc,i]

T

(11)

where Ag,i and Bg,i are the system matrix and input matrix with appropriate dimensions,
and ∆xg,i and ∆ug,i are the state vector and the input vector, respectively.
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2.3. DC Cable Network Modeling

Since a DC network could impose a significant impact on the dynamic properties and
stability of a MTDC system, the accuracy of modeling of the DC cable must be considered.
According to the frequency range of interest, a detailed cascaded π-section model is used,
which could decrease the model complexity and computation burden. Moreover, the
DCCBs are equipped on the both ends of the cable, and the DC reactors are modeled by
RL branches.

The studied DC cable with n π-sections are shown in Figure 2, and the differential
equations can be formulated as follows:

diT1
dt = 1

Lr
(v(0)l −VT1 − RriT,1)

diT2
dt = 1

Lr
(v(n)l −VT2 − RriT,2)

di(k)l
dt = 1

L1
(v(k+1)

l − v(k)l − Rli
(k)
l ), k = 1, 2, . . . , n

dv(0)l
dt = 2

C1
(i(1)l − iT1)

dv(n)l
dt = 2

Cl
(−i(n)l − iT1)

dv(k)l
dt = 1

Cl
(i(k+1)

l − i(k)l ), k = 1, 2, . . . , n− 1

(12)

where Lr and Rr represent the lumped inductance and resistance of the DC reactors,
respectively; iT,x (x = 1, 2) is the current of DC reactor; il is the current of inductance; and vl
is the voltage of capacitance. The state space form of (12) consists n + 1 voltage states and
n + 2 current states.

Nonetheless, the relationships between cables and converters are still implicit. For the
purpose of overall aggregating, some variable manipulations are necessary to build the
interconnections, which are as follows:

[∆Vdc,1, . . . , ∆Vdc,Nl
]T =

TV[∆VT1,1, . . . , ∆VT1,n, ∆VT2,1, . . . , ∆VT2,n]
T

[∆Idc,1, . . . , ∆Idc,Nl
]T =

TI[∆iT1,1, . . . , ∆iT1,n, ∆iT2,1, . . . , ∆iT2,n]
T

(13)

Figure 2. Voltage-sourced converter model using vector control.
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According to (12) and (13), a universal DC network model with Nl lines can be written
in a compact form, as follows:{

∆
.
xDC = ADC∆xDC + BDC∆uDC

∆yDC = CDC∆xDC

∆xDC = [∆xl,1, . . . , ∆xl,Nl
]T

∆uDC = [∆Vdc,i, . . . , ∆Vdc,Nl
]T

∆yDC = [∆Idc,i, . . . , ∆Idc,Nl
]T

(14)

2.4. Formulation of the Overall Linearized System

The objective of this section is to build a general model of an MTDC system. Assuming
that the system consists of N converters and Nl DC cables, the VSC subsystems and the DC
network derived in (11) and (14) can be established by the methods described above. By
eliminating the “interface variables”, such as ∆Idc,i, . . . , ∆Idc,Nl

and ∆Vdc,1,. . . , ∆Vdc,Nl
, the

subsystems can be aggregated, and a generalized state-space model for arbitrary topology
is derived as follows: {

∆
.
xM = AM∆xM + BM∆uM

∆yM = CM∆xM
(15)

where ∆xM = [∆xg,1, . . . , ∆xg,Nc , ∆xDC]
T is the state vector that contains all dynamic states

of the MTDC grid components like converter currents, DC voltages, DC line states and so
on. ∆uM represents the system inputs. For a supplementary damping control application,
it is reasonable to choose the power reference of converters as the control variables, which
means that ∆uM = [∆Pm

s,1, . . . , ∆Pm
s,Nc

]T. In this work, the DC voltages are the main concerns,

so that the outputs are selected as ∆yM = [∆Vdc,1, ∆Vdc,2, . . . , ∆Vdc,Nc ]
T. The system studied

in this paper is shown in Figure 3.

Figure 3. Studied four-terminal VSC–MTDC system with DCCBs.

3. Modal Analysis

In this section, a modal analysis is performed to analyze the stability of a VSC–MTDC
system. The test system is composed of two VSCs that use droop control (VSC1 and
VSC2), and the other two VSCs use power control (VSC3 and VSC4). The DC cables are
represented by the analytic model introduced in Section 2. All DC cables are equipped
with DCCBs, and the inductances of the DC reactors are set as 100 mH.

3.1. Participation Factor Analysis

The power-flow pattern Equilibrium I in Table 1 is selected as the default operating
point. The test system is linearized around the equilibrium and the small-signal model is
derived. The associations between the state variables and the eigenvalues are identified by
participation factor analysis.
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Table 1. Studied equilibriums of the test system.

VSC1 VSC2 VSC3 VSC4

Equilibrium I Vdc/p.u. 0.9604 0.9465 0.9269 0.9121
Ps/p.u. −0.3961 −0.5353 0.4000 0.5000

Equilibrium II Vdc/p.u. 1.0377 1.0500 1.0668 1.0793
Ps/p.u. 0.3771 0.4997 −0.5000 −0.4000

The participation factors of main modes in the DC voltages are illustrated in Figure 4.
Particularly, the modes which have high relationships with DC voltages are denoted by M1
to M4 and are listed in Table 2.

Figure 4. Participation factors of main eigenvalues in DC voltages under Equilibrium I.

Table 2. Critical eigenvalues of studied system under equilibrium. i stands for imaginary units.

Mode Eigenvalue
(p.u.)

Damping Ratio ζ
(%)

Frequency
(rad/s)

M1 −4.06 ± 56.00i 0.072 56.15
M2 −11.94 ± 141.94i 0.084 142.45
M3 −7.14 ± 247.84i 0.029 247.95
M4 −11.89 ± 334.36i 0.035 335

The damping ratios of critical eigenvalues play an important role in the modal analysis,
since they measure the damping speed of oscillations. More specifically, the lack of damping
for critical modes could cause underdamped oscillations when the system is disturbed,
resulting in adverse effects on the system stability.

3.2. Participation Sensitivity Analysis

In this section, the influences of parameter variation are evaluated by a series of
parametric sensitivity analysis. By observing the trajectories of critical modes, relevant
conclusions about system stability can be drawn in the following analysis.

3.2.1. Impact of DC Reactor

Figure 5a demonstrates the eigenvalues configuration as the inductance of the DC
reactor varies from 0 to 250 mH. Moreover, in Figure 5 and the subsequent analysis, only
the critical eigenvalues are shown for the purpose of clarity. The color deepness and sizes
of the marks indicate the movement of poles with a variation of parameters.

It can be observed that the critical poles which possess higher participation from DC
voltage dynamics move toward the right-hand plane (RHP) as the inductance increases.
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Figure 5. Trajectories of eigenvalues corresponding to the variations of circuit parameters. (a) Inductance of DC reactors
varies from 0 to 250 mH under Equilibrium I. (b) Inductance of DC reactors varies from 0 to 250 mH under Equilibrium II.

3.2.2. Impact of Power Flow

In this subsection, the impacts of power-flow scenarios are focused on, and the stable
limitations are certificated. It is a common practice that the voltage-controlled converter
or droop-controlled converter operates as an inverter and the power-controlled converter
operates as a rectifier [15]. The mentioned power-flow condition is denoted by positive
p.f. case and negative p.f. case, respectively. Indeed, it is required that the VSCs could
operate in both directions without changing the controls in many applications. Therefore,
the impacts of both power-flow directions are studied here.

Figure 6a shows the result when the power of VSC3 and VSC4 increase from 0 p.u. to
1 p.u. simultaneously. As the inverting power increases, the critical modes, M1 and M2,
move towards RHP, and the system becomes instable when the inverting power of a single
power-controlled converter arrives at 0.64 p.u.

Figure 6. Trajectories of eigenvalues corresponding to the variations power flow. (a) The rectifying
power of the power-controlled converter vary from 0 to 1 p.u. (b) The inverting power of the
power-controlled converter varies from 0 to 1 p.u.

In Figure 6b, the adverse power direction is evaluated. When the rectifying power
increased from 0 to 1 p.u., the move directions of critical modes are similar, which implies
that enlarging of the transmitted power can reduce the system stability in both power
directions. Compared with the positive p.f. case, this issue is more severe.

4. Additional Damping Control Strategy for MTDC
4.1. Parametric Sensitivity Analysis

The relationship of the MIMO system in Figure 7 can be expressed in transfer function
matrix form, as given by the following:[

z
y

]
=

[
P11(s) P12(s)
P21(s) P22(s)

]
︸ ︷︷ ︸

P(s)

[
w
u

]
, u = K(s)y (16)
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After augmentation, the state-space form of the plant and the controller can be rewrit-
ten as follows:
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Having completed formulating the generalized plant, the key task is to find a control
law, u = K(s)y, to stabilize P for meeting the condition:

‖Twz(s)‖∞ < γ

Twz(s) = Dcl + Ccl(sI − Acl)
−1Bcl

(18)

where γ is a positive constant, and we have the following:

Acl =

[
A + B2DkC2 B2Ck

BkC2 Ak

]
Bcl =

[
B1 + B2DkD21 BkD21

]T
Ccl =

[
C1 + D12DkC2 D12Ck

]
Dcl = D11 + D12DkD21

(19)

From the LMI prospective, the condition in (16) is equivalent to the existence of a
solution X = XT > 0 to the following matrix inequality: XAcl + AT

clX Bcl XCT
cl

BT
cl γI DT

cl
CclX Dcl −γI

 < 0 (20)

The solve method of (17) is given in Reference [34].

Figure 7. H∞ standard structure.

4.2. DC Power System Stabilizer Design Utilizing H∞ Mix-Sensitivity Optimization

In an MTDC system, DC oscillations occur due to the sudden variations in wind
generation fluctuations, converter outages, etc. These contingencies are regarded as dis-
turbances from the view of the damping controller design. Figure 8 depicts the output
disturbance rejection problem in the standard mixed-sensitivity configuration. The basic
idea of mixed-sensitivity optimization is to minimize the weighted mixture of the transfer
function S = I/(I + GK) and KS = K/(I + GK). The mixed-sensitivity (S/KS) design
objective can be represented as follows:

min
∥∥∥∥[ W1S

W2KS

]∥∥∥∥
∞

(21)
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which can be converted to a standard H∞ framework and then solved [35]. First, this paper
proposes a local controller which improves the stability of MTDC. Assuming the DC-PSS is
located at a droop-controlled converter and utilizes local measurements to damping DC
oscillations, the active power reference, ∆Pm

s,j , is selected as the control input, and the DC
voltage, ∆Vdc,j, is selected as the measured output. The weight functions W1(s) and W2(s)
are selected as follows:

W1(s) = 0.051×
( s + 70

s + 50
)2 ×

(
s2 + 48.4s + 2343
s2 + 0.968s + 2343

)
W2(s) = 4× 10−4 ×

(
s + 100
s + 200

)2
×
(

s + 10
s + 0.01

) (22)

The reasoning behind these selections is summarized below.

Figure 8. Standard structure of mixed-sensitivity optimization.

4.2.1. Selection of W1(s)

According to the analysis in Section 3, the main frequency components of disturbance
signal lie in the range of 50 to 400 rad/s. In this range, the weight function W1(s) is
dominated by a second-order band-pass filter. Actually, the cascaded connection of multiple
second-order filters is also practical to extract other oscillation frequency components. In
the high-frequency range, a low-pass filter or its cascaded connection is selected to avoid
the high-frequency noises.

4.2.2. Selection of W2(s)

In order to ensure robustness against high-frequency uncertainties in the plant, the
weight function W2(s) should be designed as a high-pass filter. Since this form can hardly
suppress the steady control effort which could lead the deviations of equilibriums, the
performance of both high-frequency and low-frequency should be concerned. Accordingly,
a low-pass filter is included into W2(s).

Furthermore, based on the local controller, the global controller was designed. The
active power reference, ∆Pm

s,j , of each droop-controlled converter was selected as the control
input, and the DC voltage (∆Vdc,j) and ∆Pm

s,j are selected as the measured output. The
weight functions W1(s) and W2(s) are selected as follows:

W1(s) =


0.1(s+70)2(s2+52.8s+2788)
(s+50)2(s2+10.56s+2788)

0 0

0 0.1(s+70)2(s2+52.8s+2788)
(s+50)2(s2+10.56s+2788)

0

0 0 800
(s+80)


W2(s) =

 0.01(s+10)
(s+0.1) 0

0 0.01(s+10)
(s+0.1)


(23)

The principle of selection of W1(s) and W2(s) is the same as the local controller.
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5. Case Study

The analytical model of the four-terminal system depicted in Section 3 was built in
Simulink for the verification of proposed controllers. The steady operating point was
selected as Equilibrium I; VSC1 and VSC2 were equipped by the proposed DC-PSS.

To facilitate control design and reduce the controller complexity, the nominal plant
model can be effectively simplified by using model-reduction techniques. The Bode
diagram of global controllers, offering a comparison between the full 25th-order controller
and the reduced 12th-order controller, is illustrated in Figure 9. It can be concluded that
the model reductions effectively simplify the controller design. The local controller, K1, is
shown under Table 3, and the global controller, K2, can be figured out the same way.

K1(s) = KG(NG(s)/DG(s)), KG = −4452.5

NG(s) = (s + 88.31)(s2 − 8.924s + 21.65)(s2 + 24.88s + 19740)(s2 + 22.42s + 59540)(s2 + 43.59s + 109000)

DG(s) = (s + 408)(s + 3.878)(s2 + 117.4s + 12930)(s2 + 8.208s + 17890)(s2 + 28.53s + 56630)(s2 + 42.85s + 100800)

Figure 9. Bode plot of full-order controller and reduced-order controller.

Table 3. A comparison of the eigenvalues under different conditions. i stands for imaginary units.

Mode
Poles Damping Ratio ξ ωn (rad/s)

Open Loop Closed Loop Open Loop Closed Loop Open Loop Closed Loop

M1 −4.06 ± 56.00i −13.69 ± 56.39i 0.072 0.236 56.15 58
M2 −11.94 ± 141.94i −12.97 ± 143.9i 0.084 0.09 142.4 144
M3 −7.14 ± 247.84i −10.80± 139.8i 0.029 0.07 247.9 140

Mode
Poles Damping Ratio ξ ωn (rad/s)

Open Loop Closed Loop Open Loop Closed Loop Open Loop Closed Loop

M1 −4.06 ± 56.00i −19.45 ± 54.48i 0.072 0.430 56.15 53.9
M2 −11.94 ± 141.94i −20.23 ± 141.9i 0.084 0.14 142.4 143
M3 −7.14 ± 247.84i −27.6 ± 246.5i 0.029 0.11 247.9 248

5.1. Eigenvalue Analysis

The differences between the original case and the case with DC-PSS equipped are
shown in Table 3. It can be observed that the damping of critical modes, which is highly
related to DC voltage, increases significantly. The damping controller effectively enhances
system stability.

5.2. Eigenvalue Analysis

Time-domain simulations were performed with different cases to validate the perfor-
mance of the robust controller. The local controller is applied in Sections 5.2.1 and 5.2.2.

5.2.1. Impact of DC Reactor Evaluation of Influence of DCCBs

The impacts of DCCBs were investigated by comparing the time-domain responses of
a MTDC system with DCCBs and its counterpart; time-domain simulations are shown in
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Figure 10. As illustrated in Figure 10a, the power of VSC3 and VSC4 step simultaneously
from 0 to −0.2, −0.4 and −0.6 p.u., at 0.5, 2.5, 4.5 and 7.5 s, respectively. Without loss of
generality, the DC voltage of VSC2 is employed to represent the overall trends of the DC
voltages. The overshoot ratio of the voltage in the system without DCCBs is roughly 80%,
whereas, for the DCCB-equipped system, this value is 180%. High transient over-voltages
may give risk to the malfunction of protection equipment.

Figure 10. Time−domain simulation results of the MTDC system under a series power change.
(a) DC voltage of VSC2 (active power jump). (b) DC voltage of VSC2 (negative power jump).

The negative p.f. case was tested, and the results are shown in Figure 10b. Clearly,
the transient oscillations are more intense and hardly damped. When the inverting power
of VSC3 and VSC4 rise to 0.6 p.u., the system becomes instable. The above simulations
validate the proposition that the DCCB could impose stability limitations to the operating
area of MTDC systems, which is consistent with the conclusions drawn from the discussions
in modal analysis.

5.2.2. Instability Suppression Scenario

As discussed in Section 5.2.1, the existing of DCCBs could limit the stable operating
area. In this subsection, the instable scenarios are studied. The state of the studied system
is selected as Equilibrium I. The time responses of a MTDC system utilizing DC-PSS and
its counterpart are shown in Figure 11. When the system is not equipped DC-PSS, instable
oscillations arise after the contingency, with a 55.6 rad/s oscillating frequency. On the
other hand, after activating the DC-PSS, the DC oscillations are effectively damped. The
comparisons show that the proposed controller could enhance the transitions and enlarge
the stable operation area, which is limited by the DCCBs.
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Figure 11. Time−domain simulation results under instabilities. (a) DC voltage of VSC2. (b) Active
power of VSC2.

5.2.3. Accurate Power Sharing between VSCs

When power controlled VSC has a big power jump, the local controller cannot keep
power balance of voltage controlled VSCs’ output power. As shown in Figure 12, the power
of VSC3 and VSC4 step simultaneously from 0 to 0.4 p.u., at 0.5 s, and a 0.4 p.u. power jump
of VSC4 occur at 2 s; DC-PSS is equipped at 1.5 s. The time-domain response of the power
flow of VSC1 and VSC2 is shown in Figure 12. Figure 12a shows the power waveform
with local controller, and Figure 12b shows the power waveform with the global controller.
At the beginning of the simulation, DC-PSS is not equipped; the jump of the power
contributes to the output of VSC1, and VSC2 is unbalanced. After DC-PSS is available, the
local controller stabilizes the power flow faster, but it cannot coordinate the output power
of each VSC. Compared with the local controller, the global controller realizes balance
power sharing, which improves the synergies between VSC1 and VSC2, and improves the
robustness of the power transmission performance of the system. Moreover, by changing
the input of the global controller, the output power of each converter can be combined
arbitrarily in theory.
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Figure 12. Time−domain simulation results of power under reference power change. (a) Ac-
tive power of VSC1 and VSC2 with local controller. (b) Active power of VSC1 and VSC2 with
global controller.

6. Conclusions

In this study, DC resonance problems in DCCB-equipped VSC–MTDC systems were
thoroughly investigated. A modal analysis and a time-domain simulation were performed
to identify key factors influencing the VSC–MTDC system stability. It was found that a
large reactor has an adverse effect on the system stability and limits the stable operating
area, especially for the negative power factor case. To damp DC oscillations and improve
the robustness of MTDC system, a novel damping controller based on mixed sensitivity
was proposed, which can stabilize the system and specified distribution of power among
multiple terminals. The effectiveness of proposed method has been verified by transient
time-domain simulations. The simulation results show that the proposed DC-PSS can
increase the damping ratio of the critical mode by 327%.

The DC-PSS greatly improves the stability of the system and the transportable capacity
of the system, which has practical significance. However, the proposed controllers use the
empirical method to select the weight function, which is convenient, but the controller
performance may not be the best. Furthermore, the artificial intelligence algorithm can be
used to adjust the weight function to improve the performance of the controller.
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Nomenclature

N1, NC Total number of cables and converters in a MTDC system
VSCi, VSCj The i-th and j-th voltage-sourced converter in a MTDC system
Vdc

0 The steady-state value of a DC voltage
∆Vdc

0 The small signal value of a DC voltage

Vdc, Ps
The measurement value of a DC voltage and the active power injections atthe
point of the common coupling

Ps
m, Ps

* The modulation value of a droop controller and the reference value of
an active power controller

Lr, Rr The inductance and resistance of a DC reactor
Kp, Ki The proportional coefficient and integral coefficient of a PI controller
en, zn The error and its integral values of the n-th PI controller. (n = 1, 2, 3, 4)
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