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Abstract: Important aspects of QED-corrections to hadronic decays are reviewed with emphasis
on conceptual points such as infrared divergences and structure dependence. These matter are
illustrated for the e+e− → hadrons, the leptonic decay π+ → `+ ν̄ and the semileptonic decay
B → π`+ ν̄. Aspects of structure dependence include the (non)-cancellation of hard-collinear logs
(e.g., ln m` and ln mπ) of charged final states.
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1. Introduction

Quantum electrodynamics (QED) can be regarded as the oldest and possibly most
accurate and successful quantum field theory (QFT) there is. The renormalisation of QED,
by the pioneers Dyson, Feynman, Schwinger, Tomonaga and others [1], gave birth to the
successful application of quantum field theory to all of particle physics culminating in the
Standard Model (SM) in the 1960s [2–4] and finally the Higgs-boson discovery in 2012 [5,6].
Since the QED coupling constant is small α ≡ e2

4π ≈ 1
137 perturbation theory is a reliable

tool for many cases. A topical example is the anomalous magnetic moment of the muon
aµ = (gµ − 2)/2 with the theory average aµ = 116591810(43)10−11 [7] very close to the
experimental average aµ = 116592061(41)10−11 [8], currently with some tension.

The application of QED to particle decays comes with additional subtleties that can
be traced back to two idealisations, infinite space and infinitely precise measurement
apparatuses, which do not hold in practice leading to infrared- (IR) divergences and IR-
sensitive terms. In well-defined observables, IR-divergences cancel and the understanding
thereof is based on cancellation-theorems [9–11] relying on principles such as unitarity.
IR-sensitivity, leading to large logs, can invalidate the naive counting in perturbation
theory. In B → πe+ν̄ for example, one will find α → α ln mb/me ≈ 0.05 to all orders in
perturbation theory.

In reporting experimental results in flavour physics the QED-radiation is regarded
as a background and is removed by using Monte-Carlo programs such as PHOTOS [12].
Such tools are based on versions of scalar QED (point-like approximations). The cross-
validation of these programs seems essential in assuring precision extraction of CKM
matrix elements (e.g., |Vu(c)b|) or the testing of lepton flavour universality [13] (e.g., RK =
Γ[B→ Kµ+µ−/Γ[B→ Ke+e−]). This topic certainly deserves further discussion and study.
However, we will not do so in this text and focus instead on theoretical aspects. (Let us
add that one needs to distinguish kaon physics from D- and B-physics in this respect. In
the former case the situation is better as the logs are not that large, structure-dependent
analyses in chiral perturbation theory exist and experiment is more inclusive in the photon
such that Monte-Carlo tools are not indispensable in principle.)

We will not comment on the infrared problems of quantum chromodynamics (QCD)
but refer the reader to an excellent list of text books [14–18] and review articles [19,20].
We content ourselves emphasising that QCD is conceptually very different from QED in
that there is a mass gap for the observable hadronic spectrum. All particle masses are
proportional to a non-perturbative scale ΛQCD = O(200 MeV) with the exception of the
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pion for which m2
π = mqO(ΛQCD) due to its pseudo-goldstone nature. The challenge in

QCD is to establish factorisation theorems whereby collinear divergences arising from a
hard kernel, computed with quarks and gluons, are absorbed in a meaningful way into
hadronic objects such as the parton distribution functions or jets.

These short notes are organised as follows. In Section 2, we describe the origin of
infrared divergences and the cancellation thereof in observables. Three examples, e+e− →
hadrons, π+ → `+ν̄ and B→ π`+ν̄ in increasing complexity are reviewed in Section 3 at
the level of the point-like approximation. Aspects of going beyond this approximation are
discussed in Section 4 and we end with conclusions in Section 5. Aspects of infrared physics
such as the Low-theorem, the KLN-theorem, coherent states, infrared singularities of one-
loop diagrams and terminology are briefly discussed in Appendices A–F, respectively.

2. Infrared Divergences and Infrared-Sensitivity

IR-divergences are associated with massless particles and there are two known mech-
anisms for enforcing massless particles, goldstone bosons and gauge bosons (without
confinement and unbroken gauge symmetry). (The fermion mass in QCD can be put to
zero and remains zero in perturbation theory due to chiral symmetry but the zero value
in itself does not stand out by any mechanism.) The goldstone effective theory, chiral
perturbation theory in QCD, is largely free from IR-divergences as the shift symmetry
enforces derivative interactions which tame the IR-behaviour. Now, the only gauge boson
of the type mentioned is our well-known photon and this places QED as a unique labo-
ratory for IR-problems. (To some extent this also applies to the graviton and gravity as
already studied by Weinberg [21,22] for renewed interest.) Before venturing any deeper it is
advisable to review the basics of IR-divergences. Since real and virtual photon radiation are
connected by cancellation theorems it is sufficient, at first, to consider real radiation only.

Disregarding ultraviolet (UV) divergences the only type of divergences that can arise
are from propagators going on-shell which are of the IR-type. At leading order this is
particularly simple as we may just consider real emission of a photon from a charged
particle, e.g., a lepton `, as depicted in Figure 1. The propagator 1

(p+k)2−m2
`

denominator,

for on-shell p, behaves like

(p + k)2 −m2
` = 2p · k = 2EγE`(1− β cos θ) , (1)

where k = Eγ(1, 0, 0, 1), p = (E`, κn̂), E` =
√

m2
` + κ2, β = κ/E` and θ the angle between

the unit vector n̂ and the z-axis. The propagator is singular if either the photon energy
Eγ or the angle θ approach zero (and m` → 0). These divergences are known as soft and
collinear, respectively. In d = 4 they lead to logarithmic singularities ln mγ and ln m`. (A
photon mass mγ is introduced to regulate the soft divergence, in addition to (1), which in
dimensional regularisation would map into 1

εIR
. Note that the photon mass also regularises

the collinear divergences.) In certain regions of phase space these divergences combine
and lead to soft-collinear divergences ln mγ ln m`. Generally, at n-loops there are terms of
the order lnk mγ lnl m` with l ≤ n and k + l ≤ 2n.

e−

p − k p

γ(k)

Figure 1. Photon-emission from an external electron in a generic process.

It seems worthwhile to briefly digress on the collinear term ln m`. For finite lepton
mass this is a physical effect, see for example the previously mentioned sizeable α ln me/mb-
terms in B → π`+ν̄. (At a technical level the problem reoccurs when computing with
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massless quarks and gluons in which case the collinear divergences are absorbed into
hadronic quantities such as distribution amplitudes, parton distribution functions or jets
in the context of what is known as factorisation theorems.) The question of whether QED
is well-defined for zero lepton masses gave rise to the KLN-theorem (cf. Appendix B for
further comments). We shall assume leptons masses to be non-zero and special emphasis
will be given to ln m`-terms to which we refer to as hard-collinear logs. In what follows we
use the terms IR-divergences and soft-divergences as done in much of the literature.

Observables are Infrared Finite

Of course physical observables have to be free of divergences and this is where one
expects deep physical principles to dictate cancellations. Cancellations segregate observable
from non-observable quantities. (In his book on string theory, Joe Polchinski refers to IR-
divergences as follows in his glossary: “ . . . if you encounter IR-divergences you have not
asked the right question.”)

There are essentially two approaches to deal with the IR-problems. The fixed particle
Fock-space is abandoned in favour of the coherent states which take into account that
charged particles are surrounded by a soft photon-cloud [23–27]. This was first made rigor-
ous by Faddeev and Kulish for QED in 1970. In this approach the S-matrix is well-defined,
e.g., unitary and gauge invariant, and this is important for the studying more formal
aspects of the theory. The second approach is more relevant to experiment as in colliders
physics one does not deal with coherent states. Namely, one defines observables which
are inclusive enough such that these divergences cancel. This approach was pioneered by
Bloch and Nordsieck 1937 [9], extended by the KLN-theorem [10,11] to include collinear
singularities in the sixties and applied to correlation functions in form of the Kinoshita–
Poggio–Quinn-theorem [10,28,29]. As a rule of thumb, the more inclusive a quantity is,
the fewer divergences or IR-sensitive terms there are. Despite their apparent different
motivation, the second approach can be seen as a limit of the first one by expanding in
powers of the α.

Thinking a little bit about it, one notices that the IR-divergences are interlinked with
the very definition of what a particle is and the measurement process itself. How can one
distinguish a single electron from an electron with an ultrasoft photon or an electron with a
photon emitted at an infinitesimally small angle? That is also indeed where the resolution
lies, what is measurable needs to be assessed carefully. One needs to come back to the
idealisation mentioned in the introduction: infinite space and infinite detector resolution.

In view of it being more general we consider it worthwhile to discuss the coherent
state approach. The presentation is largely based on the excellent presentation in Duncan’s
book [30]. The first thing to realise is that detectors cannot resolve or measure the energy
of incoming photons to an arbitrary precision. We may assume that the detector can
only capture photons with an energy above ∆ and reject photons with energies above
that threshold. (In practice one may of course increase ∆ but not decrease it.) Thus, it is
advisable to replace the electron state, to which we adhere for illustration, by a state with
any number of photons with energies smaller than the detector cut-off

|e−(q)〉 → |e−(q)〉n ≡ |e−(q), γ(k1) . . . γ(kn)〉(Eγ)i<∆ , (2)

and |e−(q)〉 = ∑n≥0 cn|e−(q)〉n is the coherent state, with appropriate cn, which can be
written as an exponential of an integral over the creation operators cf. Appendix C.
Denoting by Pn the probability of n-soft photon emission, the total probability is a sum
of all possibilities Ptot = ∑n≥0 Pn. Kulish and Faddeev [27] showed that this leads to
a finite S-matrix in QED, which is gauge invariant and a separable Hilbert space. The
QCD-version is dealt with in [31] but hardly relevant in practice because of the mass gap
and factorisation theorems.

Let us briefly digress and motivate the abandonment of the fixed-number Fock space
from a different viewpoint. The S-matrix of the fixed-number Fock space does not exist
as it turns out to be zero. The IR-divergences, caused by the absence of a mass gap, can
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be seen as an indication for the ill-defined fixed number Fock space S-matrix. This can be
understood in two different ways. First the IR-divergences ln mγ exponentiate such that
the S ∝ exp(|a| ln mγ + . . . ) → 0 in the limit of zero photon mass. Thus, the asymptotic
completeness of the in and out Hilbert space ceases to make sense as there is no S-matrix
connecting the two. (Whereas the S-matrix is gauge invariant in perturbation theory this
is not the whole story. It has been shown recently, in an interesting paper and stream of
work, that the reason the S-matrix vanishes is that it is not gauge invariant under so-called
large gauge transformations of asymptotic symmetries on what is known as the celestial
sphere by now [32].) Another way to look at it is to realise that due to the massless photons
the single particle pole, assumed by the LSZ-formalism, is softened by the presence of
radiative corrections (p2 −m2)−1 → (p2 −m2)−1+α|A| into a branch cut [33]. This makes
the particle of mass m disappear from the S-matrix when multiplied by the LSZ-factor
p2 − m2 upon taking the on-shell limit p2 → m2. In fact Buchholz has shown, using
very general arguments, that a charged particle obeying Gauss’ law cannot be a discrete
eigenstate of the momentum squared operator [34].

Advocates of the Bloch–Nordsieck and KLN approach would simply point to the
fact that the S-matrix is not an observable but rather an intermediate auxiliary quantity.
However, as stated above, a scattering theory can be formulated between the coherent
states of the type (2) with well-defined S-matrix [27]. When the total transition probability
Ptot of all n-states (2) is considered, the momentum space integrals are cut-off below at ∆
and are thus manifestly IR-finite (no soft-divergences). The S-matrix is well-defined and
the IR-divergences are absorbed into the definition of the states. It seems worthwhile to
point out that this bears some resemblance with the absorption of the UV divergences into
the parameters of the theory which in turn also originates from an idealisation, namely that
space-time is a continuum. Reassuringly, upon expanding to finite order in α one recovers
the Bloch–Nordsieck solution. For example, at O(α) P0,1 correspond to the non-radiative
(virtual) and radiative (real) part. More concretely, in order to compute theO(α) corrections
to a decay process i → f one has to consider its radiative counterpart i → f γ(k)Eγ<∆. In
the total transition probability one can show that the IR-divergences cancel diagram by
diagram—as beautifully illustrated in many textbooks, e.g., for e+e− → q̄q in [16]. These
cancellations have been shown to hold to all orders in QED by exponentiation [21,35].
(The case of QCD, which is beyond the scope of these notes, is complicated as the simple
combinatorics in QED are spoiled by zero mass charged particles (the gluons) and the
colour structure. The Bloch–Nordsieck mechanism is replaced in perturbation theory by
the KLN-theorem, whose features are briefly discussed in Appendix B, and for the more
involved case of hadrons in final states we refer to the textbooks [14,18].) In conclusion
in practice the infrared problem of QED is bypassed in the pragmatic approach by IR-
regularisation (e.g., mγ 6= 0) and removing the regulator (mγ → 0) in observable such as
decay rates. In practice, for a number of reasons (e.g., no additional scale) dimensional
regularisation is the choice of most authors.

3. Decay Rates and Their Infrared-Effects

Following the discussion of the origin of IR-divergences and why they disappear from
observables we discuss the mechanisms in three practical examples with decreasing level
of inclusiveness and increasing level of IR-effects. Namely, the (inclusive) e+e− → hadrons
cross section, the leptonic decay π+ → `+ν̄ and the semileptonic case B → π`+ν̄. In the
latter two cases, the hadrons will be treated in the point-like approximation with comments
beyond this treatment deferred to Section 4.

For most practical applications first order O(α) is sufficient. At the amplitudes level
we therefore need O(e0,1,2,), denoted A(0,1,2), corresponding to tree, real and virtual. We
refer to A(0) and A(2) as the non-radiative and to A(1) as the radiative amplitude. The
cancellation of IR-divergences is then a result of Re[A(0)(A(2))∗] vs. |A(1)|2 when properly
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integrated over phase space. Let us rephrase this in terms of a generic decay i→ f at the
level of the rates

dΓ(i→ f ) ∝ 1+
α

π
(AV ln mγ + BV ln mγ, f ln m f + CV ln m f +O(1))dΦ f ,

dΓ(i→ f γ) ∝
α

π
(AR ln mγ + BR ln mγ, f ln m f + CR ln m f +O(1))dΦ f dΦγ , (3)

where dΦ is the phase space measure, m f i a small mass of a final state particle (e.g.,
an electron mass) and mγ, f stands for either m f or mγ. The subscripts V and R denote
virtual and real and A, B and C stand for soft, soft-collinear and hard-collinear divergences.
Integrating over the entire photon phase space

dΓ(i→ f ) +
∫

dΦγ dΓ(i→ f γ) ∝ (1 +
α

π
C ln m f +O(1)) dΦ f , (4)

with all the soft-divergences cancelling and the collinear logs cancel,

C = (CV +
∫

dΦγCR) =

{
zero IR-safe differential variables

non-zero non IR-safe differential variables
(5)

depending on the differential variables with further comments below. The further statement
of the cancellation-theorems (Bloch–Nordsieck and KLN) is that that if one integrates over
the remaining phase space dΦ f , then (in the total rate)

Γ(i→ f ) + Γ(i→ f γ) ∝ 1 +
α

π
O(1) , (6)

all IR-divergences are absent, schematically: ([A, B, C]V + [A, B, C]R)inc = 0. This picture
broken in practice by two sources.

(i) The experiment is not fully photon-inclusive and rejects hard photons with Eγ > ∆
where ∆ is the previously discussed threshold which is (slightly) larger than the actual
detector resolution. (If one if the final state particles is very light then a cut has to be
placed on the angular resolution as well.) This leads to the replacements

(AV + AR) ln mγ → (AV(∆) + AR(∆)) ln ∆ ,

(BV + BR) ln mγ ln m f → (BV(∆) + BR(∆)) ln ∆ ln m f .

C ln m f → C(∆) ln m f , (7)

where C(∆) 6= 0 generically independent on whether the differential variables are
IR-safe or not.

(ii) The rate can be differential in some final state kinematics and therefore not a total
rate as in (4). In this case the unitarity argument, on which the cancellation is based,
does not necessarily hold since the kinematics make the sum too restrictive. The
(non)-cancellation needs to be reassessed and depending on the kinematic variables
hard-collinear effects ln m f do not cancel.

3.1. A Classic Example of Infrared Finiteness: e+e− → hadrons

Here we briefly deviate from the QED-course as we consider finiteness under correc-
tion in the strong coupling constant to e+e− → hadrons. An analogue in QED would be
the somewhat exotic νν̄→ Z → `+`−. By the optical theorem the total cross-section

σtot(e+e− → hadrons)(q2) ∝ Im[Π(q2)] , (8)
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is related to the imaginary part of the vacuum polarisation Π(q2)(
qµqν − q2gµν

)
Π(q2) = i

∫
d4xeix·q〈Tjµ(x)jν(0)〉 , (9)

where jµ = ∑ f eQ f f̄ γµ f is the electromagnetic current and Q f the electromagnetic charge.
On the non-perturabative level there is no question as to whether this quantity is well-
defined because of the mass gap. In particular, in the large-Nc limit Im[Π(s)] = π ∑V=ρ0,ω.

δ(s − m2
V) f 2

V with fV the vector meson decay constants and most importantly mρ0 ≈
770 MeV is the lowest mass exhibiting the mass gap. The question we would like to address
is whether it is finite to all orders in perturbation theory using quarks and gluons as degrees
of freedom.

According to the cancellation-theorems and the discussion outlined in the beginning
of this section this must be the case since this is a fully inclusive observable (and conditions
(i) and (ii) are not met). Alternatively, this can be established on grounds of the Kinoshita–
Poggio–Quinn-theorem [10,28,29] which states: In massless renormalisable theories the one-
particle irreducible correlation functions are IR-finite for non-exceptional (external) Euclidean
momenta. (Non-exceptional momenta configurations are such that no subset of momenta
adds to zero.) Renormalisability is important as it settles power counting for the proof and
the Euclidean momenta condition avoids particles going on-shell. This applies to the case
at hand since Im[Π(q2)] = 1

2i (Π(q2 + i0)−Π(q2 − i0)) and the q2 ± i0 effectively count as
off-shell (or Euclidean in practice). Hence σtot(q2) must be IR-finite (in perturbation theory)
as found in many explicit computations for any q2 > 0 in particular.

One can learn a fair amount considering the one-loop corrections since the imaginary
part is proportional to the discontinuity and the latter is proportional to the sum of all
cuts by the Cutkosky rules (e.g., [14]) as shown in Figure 2. The different types of cuts
include the radiative and non-radiative parts cf. figure caption. Each one of these cuts is
IR-divergent but they cancel in the sum as dictated by the arguments given above. That
individual contributions behave very different from the total contribution is not restricted
to IR effects but can also appear in the power-behaviour of a heavy quark mass or an
external momentum in case they are assumed to be large.

e−

p − k p

γ(k)

Figure 2. Corrections to the strong coupling to the vacuum polarisation Π(q2) (9), at O(αs), which
necessarily involves quarks and gluons (partons). As its imaginary part corresponds to the total
cross Section (8) the cuts give rise to various subprocesses which include the virtual and real parts.
The dashed or blue cuts and the dotted or red cuts correspond to the virtual and the real parts,
respectively.

3.2. Leptonic Decay of Type π+ → `+ν̄

We now turn to a simple example of an exclusive decay, the pion decay π+ → `+ν̄.
The photon energy cut-off ∆ will introduce the log-terms as in (7). The hard-collinear logs
(C-type in (3)) are a bit peculiar in this decay in the SM that the amplitude is O(m`) and
therefore automatically finite in the limit m` → 0. This helicity suppression is relieved for
S−P interactions and we thus include them along the V−A structure in order to illustrate
the straightforward nature of the hard-collinear logs in this example. The real photon
emission will be treated with an energy cut-off Eγ < ∆ in the pion restframe. This will
lead to soft- and soft-collinear terms as indicated in Table 1. Hard-collinear logs, ln l`, can
only be present for the S−P case with photon energy cut-off and have to disappear in the
photon-inclusive limit 2∆mπ → m2

π −m2
` .
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Table 1. Types of observables considered where diff. is short for differential in γ or f (final states) and (i) and (ii) refer to the
itemised conditions above.

Type (i) Diff. in γ (ii) Diff. in f IR-Terms Section

e+e− → hadrons no no none Section 3.1
π+ → `+ ν̄ yes no A, B, (C) Equations (3) and (7) Section 3.2
B→ π`+ ν̄ yes yes A, B, C Equations (3) and (7) Section 3.3

The four-Fermi effective Lagrangian, including S−P- and V−A-interactions, reads

Leff = 4
√

2GF
(
CV−AūγµdL ¯̀γµνL + CS−PūdL ¯̀νL

)
, (10)

where 2 fL ≡ (1− γ5) f and in the SM (CV−A, CS−P) = (Vud, 0). The LO amplitude is given by

A(0)(π+ → `+ν̄) ∝ CV−A(L0)µHµ
0 + CS−PL0H0 ,

= i(CV−AFπm` − CS−PGπ)L0 , (11)

where the leptonic matrix elements read

L(µ)
0 ≡ 〈ν̄`+| ¯̀Γ(µ)ν|0〉 = ū(pν)Γ(µ)ν(p`) , (12)

with Γ = (1− γ5) and Γµ = γµΓ and the hadronic matrix elements are

〈0|Aa
5 µ|πb(p)〉 = δab(H0)µ = iδabFπ pµ ,

〈0|Pa|πb(p)〉 = δabH0 = − iδabGπ , Gπ =
Fπm2

π

2mq
=
−〈q̄q〉

2Fπ
, (13)

with Aa
5 µ = q̄Taγµγ5 q, Pa = q̄Taγ5 q and Ta the adjoint SU(2)-representation matrix

corresponding to q = (u, d) (with (u)p and (d)own quarks). Note that use of the equation of
motion was made for the V−A-part in (11) which makes the m`-suppression factor explicit.
The LO decay rate is given by

Γ(π+ → `+ν̄)(0) =
G2

F
πm3

π
|CV−Am`Fπ − CS−PGπ |2|~p`|2 , (14)

where the lepton velocity, in the pion’s restframe, is

|~p`| =
λ1/2(m2

π , m2
` , 0)

2mπ
=

mπ

2

(
1− m2

`

m2
π

)
, (15)

and λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz denotes the Källèn function. Notably
Fπ ≈ 92 MeV, a non-perturbative parameter of QCD known as the pion decay constant, is
the order parameter of the spontaneous breaking of chiral symmetry SU(2)L × SU(2)R →
SU(2)V (in the mq → 0 limit). When QED-corrections are considered it ceases to be an
observable and it is essentially degraded to the status of a wave function renormalisation
constant. This can be seen from the explicit results in the review [36] where Fπ is found to
be gauge dependent and divergent in the mπ → 0 limit. Unlike in QCD, in QED the chiral
logs ln mπ are not protected by powers in the pion mass since Fπ is not an observable. This
is a point we will come back to at the end of the section.

Next we discuss how to incorporate radiative corrections in the point-like approxima-
tion. This is a straightforward exercise in effective field theory. The hadronic operator are
matched to pions (〈0|πa|πb〉 = δab)

Aa
5 µ → −Fπ Dµπa , Pa → −iGππa , (16)
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such that the LO matrix element (13) is reproduced. The leading radiative amplitude is
given by

A(1)(π+ → `+ν̄γ) ∝

∑
i

Ci

(
Q̂`1 ū

2ε∗ · ˆ̀1 + /ε∗/k
2k · ˆ̀1

(Γ · H0)iv + Q̂ ¯̀2
ū(Γ · H0)i

2ε∗ · ˆ̀2 + /k/ε∗

2k · ˆ̀2
v +

Q̂π(L0 · H0)i|p→ p̄
ε · ( p̂ + ˆ̄p)

2k · p̂ + Q̂π(L0 · H0)i|p→ε∗

)
, (17)

where p̄ = p − k, `, ν → `1, `2 in order to be more general, i = S−P, V−A and the
conventions are the same as in [37]: Q̂j = ±Qj (Q̂ j̄ = −Q̂j) and p̂j = ±pj for out(in)-going
states. The last term in (17), and centre of Figure 3, is the so-called contact term, only present
from V−A since it originates from the photon in Dµπa = (∂µ + ieQπa Aµ)πa. Additionally,
the following compact notation has been introduced

(L0 · H0)i =

{
(L0)µHµ

0 i = V−A
L0H0 i = S−P

, (18)

likewise for L0 → Γ. The terms of the Low-theorem (cf. Appendix A) are explicit which
include the O(E−1

γ ) eikonal term

A(1) = A(0) ∑
i

Q̂i
ε∗ · p̂i
k · p̂i

+O((Eγ)
0) , (19)

and the O((Eγ)0)-term related to the angular momentum can be seen in the leptonic
parts. Gauge invariance amounts to A(1)|ε→k = 0 which does hold provided ∑i Q̂i =
Q̂`1 + Q̂ ¯̀2

+ Q̂π = 0 which is nothing but charge conservation. The latter has to be
imposed in gauge-fixed perturbation theory but would be automatic in a manifestly gauge
invariant formalism as the path-integral used in lattice computations. Hence the radiative
amplitude is gauge invariant and thus the virtual (or non-radiative) amplitude must be
as well. In particular in the virtual amplitude the gauge dependence of the O(α) pion
decay constant cancels against the lepton–pion and lepton radiative corrections. (In fact in
the virtual case one finds that the covariant gauge-fixing parameter ξ appears in the form
A(2) ∝ ξ(∑i Q̂i)

2 + . . . and is again effectively absent because of charge conservation [37].
This time the charge condition is quadratic of course.) As previously said, we present the
S-P and V-A interaction separately as they both have different features.

e−

p − k p

γ(k)

π+ ℓ+

ν̄

π+ ℓ+

ν̄

π+ ℓ+

ν̄

Figure 3. Real emission diagram of the pion decay. The diagram in the centre is the so-called contact
term and does appear for the V-A but not the S-P interaction. The real amplitude is given in (17).

3.2.1. Leading Logs with S-P Interaction

For the S-P interaction (CS−P 6= 0, CV−A = 0) we may parametrise the O(α) rate as
follows (In the case where the LO rate is differential the form below does hold for the soft
but not for the collinear part. An example of which is the semileptonic decay considered in
the next section.)

Γ(π+ → `+ν̄) = Γ(π+ → `+ν̄)(0)(1+
α

4π
Q̂2

`+

(
Fsoft(m̂2

` , 2∆̂)+Fcoll(∆̂) ln m̂`+non-log
)
) , (20)
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where “non-log” stands for anything that is neither a soft, soft-collinear or hard-collinear
log. Hatted quantities, except charges, are understood to be divided by the pion mass
in this section. The quantity ∆ is the previously introduced photon energy cut-off and
its photon-inclusive limit is 2∆̂ → 1− m̂2

` . Below we discuss both Fsoft and Fcoll without
resorting to the full computation.

• The soft and soft-collinear terms are universal and given by

Fsoft(x, y) = −(41 + x2

1− x2 ln x2 + 8) ln y , (21)

and its exponentiation is a well established [21,35]

Γ(α→ β) = Γ(α→ β)LO exp(−A ln
λ

Λ
) , , (22)

where λ and Λ are IR and UV cut-offs. These are to be replaced with ∆ and the largest
scale in the problem beyond that are undetermined by the nature of the leading log
approximation. (We will have more to say on how this happens in computation in
Section 3.3 as the breaking of Lorentz-invariance by introducing a photon energy
cut-off in a specific frame introduces a practical challenge.) Now, the factor A has a
pleasing form

A =
α

π ∑
i,j

Q̂iQ̂j
1

2βij
ln

1 + βij

1− βij
(23)

where the sum is over the charged particles in the decay and

βij =
βi + β j

1 + βiβ j
=

√√√√1−
m2

i m2
j

(pi · pj)2 , (24)

is the relativistic addition of the velocities of the i, j-particles in the ij-restframe. With
βii = 1 for i = π+, `+ (since the relative velocities are zero ) and β`π = (1− m̂2

`)/(1 +
m̂2

`) one recovers (21). The integral definition of the summand in (23) is given a few
lines below. Furthermore, note that the second formula in (24) is often more useful in
practice as it makes use of Lorentz invariance in a manifest way.
It is instructive to reproduce the leading term from the eikonal part (19) which is of
course what the original papers did. Following [37], we denote the decay rate as

dΓ = dΓLO +
α

π ∑
i,j

Q̂iQ̂j(Hij +Fij(∆))dφ f = dΓLO(1 + ∆ dφ f ) , (25)

whereH and F stand for the non-radiative and the radiative part, respectively, and ∆
is the relative correction, not to be confused with the photon energy cut-off, which is
a function of the non-trivial differential variables dφ f = ∏

n f
i=1 dϑi (with n f = 0 and

n f = 2 in the leptonic and semileptonic case, respectively). After making use of gauge
invariance, by choosing the Feynman gauge ξ = 1, performing the polarisation sum
∑λ ε∗µ(λ)εν(λ) = −gµν + (1− ξ)kµkν/k2 → −gµν over the eikonal part one gets

Fij(∆) = (2π)2
∫

∆

−pi · pj

(k · pi)(k · pj)
dΦγ = −KR(∆)I(0)ij + non-soft (26)

where “non-soft” stands for finite non-logarithmic regularisation dependent terms.
The KR(∆)-term is the regularisation dependent energy integrals and I(0)ij an angular

integral. In the leading log approximation KR(∆) and I(0)ij are separately Lorentz
invariant [37]. This is non-trivial since the introduction of photon energy cut-off
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introduces a preferred frame and complicates the analytic evaluation of the non-
approximated integrals. More concretely,

KR(∆) =
∫ ∆

0

dEγ

Eγ
=

 −
1
2 ln mγ

µ + ln
(

∆
µ

)
+O(mγ) mγ-reg

− 1
2ε + ln

(
2∆
µ

)
+O(ε) dim-reg

, (27)

given in dimensional regularisation d = 4− 2ε and photon mass regularisation (cf.
Appendix D [37] for some more detail). The angular integral produces a term

Iij =
∫

dΩ
E2

γ pi · pj

(k · pi)(k · pj)
=

1
2βij

ln
1 + βij

1− βij
= 1 +O(βij) , (28)

which matches the expression in (23) and thus reproduces (21) as outlined earlier.
• The hard-collinear logs can be obtained from the splitting function which has been

verified in [37] for the more advanced semileptonic case. The formula for the collinear
logs reads

∆|ln m`
= − α

π
Q̂2

`+ ln m̂`

(
dΓLO

dφ f

)−1 ∫ 1

z(∆̂)
dzPf→ f γ(z)

dΓLO( fi(z)ϑi)

dφ f

= − α

π
Q̂2

`+ ln m̂`

∫ 1

1−2∆̂
dzPf→ f γ(z)

= − α

π
Q̂2

`+ ln m̂`

(
3
2
− 2∆̂(2− ∆̂)

)
, (29)

(and thus Fcoll(∆̂) = −4Q̂2
`+(

3
2 − 2∆̂(2− ∆̂)) with fermion splitting function

Pf→ f γ(z) =
1 + z2

(1− z)+
+

3
2

δ(1− z) (30)

and 1
(1−z)+

the plus distribution
∫ 1

0 dz f (z)
(1−z)+

=
∫ 1

0 dz f (z)− f (1))
1−z . For the leptonic case

the formula is trivial since there are no phase space variables. Crucially, in the photon-
inclusive limit 2∆̂→ 1 the hard-collinear logs cancel Fcoll(

1
2 ) = 0 in accordance with

the KLN-theorem. This has to hold since
∫ 1

0 dzPf→ f γ(z) = 0 which in turn follows
from the conservation of the electromagnetic current.

3.2.2. Leading Order Result with V-A Interaction as in the Standard Model

The Standard Model computation (CS−P = 0, CV−A 6= 0) has of course been obtained a
long time ago [38,39] and we quote

Γ(π+ → `+ν̄) = Γ(π+ → `+ν̄)(0)(1 +
α

4π
Q̂2

`+

(
−3 ln m̂2

W + F(m̂2
` , 2∆̂)

)
) , (31)

and comment on the various terms further below. In (31) −3 ln m̂2
W incorporates the

matching to the MW-scale [39]. The explicit radiative function F(x, y) is given by [40]

F(x, y) = 4
1 + x2

1− x2 Li2(y) + ln x2 +
2− 10x2

1− x2 ln x2 − 4
1 + x2

1− x2 Li2(1− x2)− 3

+
3 + y2 + 4y(x2 − 1)

2(1− x2)2 ln(1−y) +
y(4−y−x2)

(1− x2)2 ln x2 +
y(22− 3y− 28x2)

2(1− x2)2

+ Fsoft(x, y) . (32)
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In the photon-inclusive case, Finc(x) ≡ F(x, 1− x2), the radiative function assumes the form

Finc(x) = − 8 ln(1− x2)− 3x2

(1− x2)2 ln x2 − 8
1 + x2

1− x2 Li2(1− x2)

+
13− 19x2

2(1− x2)
+

6− 14x2 − 4(1 + x2) ln(1−x2)

1− x2 ln x2) . (33)

Let us now turn to the logs as previously discussed.

• The soft and soft-collinear terms are universal and Fsoft(x, y) is indeed the same function
as in (21).

• Hard-collinear logs, of the type ln m`, are not present. The LO V-A amplitude is O(m`)-
suppressed. and this is enough to guarantee the absence of the latter at O(α) which
can be seen as follows. In the real radiation rate the ln m`-terms arise from the eikonal
part (19) that are proportional the LO amplitude which is O(m`) and thus the logs
can be at worst of the form m2

` ln m2
` in the rate. Since the ln m`-terms in the virtual

and the real part of the O(α) rate have to cancel the virtual rate cannot contain them
either. We are to conclude that O(α)m2

` ln m` are the leading logs of this type. Since
the limit m` → 0 is not divergent these logs do not have to cancel. Inspection of
(33) shows that they do indeed not cancel since F = −3m̂2

` ln m̂2
` + . . . . This does

not apply to the S−P interaction, which we have taken for granted in Section 3.2.1
by using the splitting function to obtain the ln m`-terms. The moral of the story is
that collinear logs only cancel if they have to due to the principle of unitarity which
underlies the KLN-theorem. The reason the terms do not cancel in the V-A case is
that there are regions in phase space, different from the collinear region, where the
O(m`) suppression is relieved.

• A different type of collinear log: We may however turn the tables and consider the decay
τ− → π−ν̄ and regard ln mπ as a collinear log. The amplitude which is identical to the
one for the leptonic decay is not O(mπ)-suppressed, thus there will be ln mπ terms in
the real and the virtual part of the rate and they have to cancel in the total rate. (There
are some differences in the integration over phase space for the radiative part but not
for the relevant eikonal terms.) Inspecting (33) taking the 1/x → 0 limit and adding
the log in (31), one collects α

4π (6 + 16 + 6 + 0 + 0− 28) ln mπ = 0 and it is seen that
the logs do cancel as they should.

3.3. Semileptonic Decay of the Type B→ π`+ν̄

The new element in the semileptonic decay B→ π`+ν̄ is the extra meson in the final
state leading to two non-trivial kinematic variables. They can be chosen to be the Dalitz-
plot variables or the more commonly used lepton momentum squared q2 = (`1 + `2)

2 and
the angle θ of a lepton to the decay axis in the q-restframe (as depicted in Figure 4). Hence
the LO decay is differential unlike in the leptonic case (cf. for instance Appendix B.1 in [37]
for the explicit result).

In many ways the QED-treatment of the semileptonic decay B→ π`+ν̄ in the point-
like approximation is similar to the leptonic decay and we shall be brief on those matters.
There are also new aspects which bring in a certain amount of complication which we
identify and examine more closely:

1. The role of the pion decay constant Fπ is taken by two form factors f B→π
± (q2),

〈0|Aa
5 µ|πb(p)〉 = − iδabFπ pµ →

〈π|Vµ|B〉 = f B→π
+ (q2)(pB+pπ)µ + f B→π

− (q2)(pB−pπ)µ . (34)

Often in the literature the form factor is taken to be a constant, which is a good
approximation in K → π`+ν̄ but less so for B → π`+ν̄. Expanding the form factor
in q2, as in [37], leads to a more involved effective theory which goes beyond the



Symmetry 2021, 13, 2036 12 of 20

point-like approximation. The effect of the expansion is most prominent when the
photon energy cut is large for which refer the reader to the plots in Appendix A
in [37]. (The FCNC case is peculiar in that for B0 → π0`+`− the form factor expansion
amounts to the replacement fo the constant form factor by f± → f±(q2), whereas in
the charged case B+ → π+`+`− the expansion is necessary and can be quite relevant
because of the migration of radiation in conjunction with resonance-contributions
entering non-resonant bins.)

2. For the radiative matrix element the (q2, θ)-variables have to be adapted because of
the additional photon. We follow the discussion in [37] (replacing the kaon by the
pion) where the following kinematic variables

{q2
a, ca} =


q2
` = (`1 + `2)

2 , c` = −
(

~̀1·~pπ

|~̀1||~pπ |

)
q−RF

q2
0 = (pB − pπ)2 , c0 = −

(
~̀1·~pπ

|~̀1||~pπ |

)
q0−RF

,
(35)

are defined with q − RF and q0 − RF denoting the q and q0 ≡ q + k restframes,
respectively. The (q2

0, c0)-variables are difficult to measure at a hadron collider where
the components of the B-momentum are unknown.

3. The leading order amplitude is not O(m`)-suppressed and it is only the total rate
which is well-defined in the photon-inclusive limit for m` → 0. (For finite m` as in
real world this leads to a sizeable and measurable effect.) This raises the interesting
question as to whether this property remains intact in any of the differential variables
in the photon inclusive case.

4. The photon interacts with many particle-pairs and this complicates the analytic
evaluation of the phase-space integrals as one can choose the restframe only once.
As previously discussed, the energy- and soft-integrals (28) are separately Lorentz-
invariant in the soft-limit and can therefore each be evaluated using a preferred
frame [37].

Point 1. is of a technical nature, we refer the reader to reference [37]. Point 4. is
covered by Appendix E. Provided a constant form factor is assumed the computation of
the real and virtual amplitude is very similar to the leptonic case albeit more involved.
In the case of charged meson(s) a non-constant form factor complicates the computation
with each order in the Taylor expansion around q2 = 0. Gauge invariance works out in the
same way, namely as an interplay between contact and non-contact terms and total charge
conservation. The points raised in 1. and 2. deserve a closer look.

(Non)-Cancellation of Hard-Collinear Logs

The soft-divergences which have to cancel at the differential level, can of course
be derived using the same techniques as for the lepton case (22) with relevant practical
remarks deferred to Appendix E. The hard-collinear divergences have been isolated using
the phase space slicing technique. They cancel charge by charge in the photon-inclusive
total rate in accordance with (6).

Let us now turn to the question, phrased in point 3., whether or not these logs cancel
in the differential variables defined in (35). It is found by explicit computation that the
ln m`-terms cancel in the (q2

0, c0)- but not the (q2, c`)-variables [37].
We wish to discuss this result from a physical point of view. The cancellation of soft-

divergences at the differential level is quite plausible since the soft photon does not make
a difference to the radiative versus the non-radiative decay topology. For the (energetic)
collinear photon this is not the case. The topologies of the radiative and non-radiative
amplitude are rather different and a priori one would not expect cancellations. In the
total rate these cancellations are non-trivial and based on unitarity. Thus, it is natural to
ask whether it can be understood from this viewpoint. The answer is affirmative. The
q2

0-variable is the four momentum of the total lepton-photon system and for fixed q2
0 one
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may interpret it as a decay of a boson of mass q2
0 into the two leptons and the photon.

Essentially this corresponds to the leptonic case which is not differential and thus the
ln m` terms have to cancel. Alternatively, one may regard q2

0 as the analogue of a jet where
radiative and non-radiative parts are not distinguished and the problem of discerning the
lepton from the lepton with a photon emitted at an infinitesimally small angle does not
pose itself.

e−

p − k p

γ(k)

π+ ℓ+

ν̄

π+ ℓ+

ν̄

π+ ℓ+

ν̄

ℓ+

ν̄

Bπ
θ

Figure 4. Sketch of semileptonic decay B → π`+ ν̄ with the definition of the lepton angle θ (and
q2 = (p`+ + pν)2). The definition of these variables need to be revised when the photon emission is
considered in addition (35).

4. Structure-Dependent QED-Corrections—Resolving the Hadrons
4.1. Summary on Status of Structure-Dependent QED-Corrections

The field of QED-corrections to hadronic decays including structure-dependent cor-
rections (i.e., going beyond the point-like approximation) is not yet at a mature stage. The
physical picture is well-motivated from the hydrogen atom where the proton and electron
make up a charge neutral object but photonic interaction plays an important role. Thus, it
cannot be expected that a photon does not interact with a neutral B-meson composed of b-
and d-valence quark. It is precisely for this meson that one can expect the largest effects
as it is composed of a heavy and a light quark. There are various reasons why this is a
difficult task. One of them is of course the cancellations of IR-divergences which enforces to
consider real radiation. A task which goes beyond standard flavour physics and interferes
with confinement at shorter distance.

Amongst the continuum methods there is chiral perturbation theory and light-cone
approaches such as soft-collinear effective theory (SCET). QED in Chiral perturbation
is well established [41,42], and presumably the main challenge is the determination of
the counterterms (which seem to follow the pattern of vector resonance saturation as in
QCD). In SCET the leptonic FCNC decay Bs → µ+µ− has been investigated in [43,44] with
the main parametric uncertainty coming from the QCD B-meson distribution amplitude.
Hadronic decays of the type B → Kπ have been investigated in [45] and the definition
of the charged light-meson distribution amplitudes is non-trivial. A remarkable aspect
is that so far in SCET only virtual contributions have been considered. Real radiation is
only incorporated via the universal soft-photon part (22). Lattice QCD + QED comes with
its own challenges such as containing the massless photon in a finite box (cf. [46] for a
review). A program has been proposed in [40] where currently only virtual corrections are
computed and for the real correction the point-like approximation is proposed which is a
good enough approach for K+, π+ → `+ν. First results have been reported in [47,48] for
these decays. Notably this formalism uses gauge-variant interpolating operators. A fully
gauge invariant approach to lattice QCD, building upon ideas from Dirac and others, has
been proposed for determining hadron masses [49]. Decays have so far not been attacked
in this formalism.

4.2. Cancellation of Hard-Collinear Logs for Structure Dependent Contribution

Technicalities aside, one may in particular be concerned that hard-collinear logs
O(α) ln me/mb, originating from structure-dependent corrections, which do lead to large
uncertainties as currently unknown. Fortunately a rigorous result can be established
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forbidding those logs [37], based on gauge invariance. The basic idea of the proof is that
when one considers a light particle like the electron and photon then `e = k +O(m2

e ) in
the collinear region which lends itself to the use of gauge invariance. We will sketch some
more detail by decomposing the radiative amplitude (A(1) → A for brevity)

A = ε∗ ·(Ae + (A−Ae)) , Ae ∝ Q̂e
ε∗ · `1

k · `e
, (36)

such that the entire eikonal term of the electron is in Ae. Squaring this matrix element,
summing over polarisation in the Feynman gauge (cf. Section 3.2.1) and integrating over
the photon phases space one gets three terms∫

dΦγA·A∗ =
∫

dΦγ((A−Ae)·(A−Ae)
∗ + 2Re[Ae ·A∗]−Ae ·A∗e ) . (37)

The first is by construction finite in the collinear region of the lepton `1. The second has no
hard collinear logs since it is proportional to

`e · A = k · A+O(m2
e ) = O(m2

e ) , (38)

in the collinear region. The third one gives raise to the collinear logs. Firstly, we learn that
the ln me-terms are necessarily proportional to Q̂2

e . Second, and more importantly there
cannot be any further hard collinear logs in the structure dependent part. This is the case
since the addition of structure dependent term will just change A → A+ δA where δA is
itself gauge invariant and will be finite in the first term and not change the conclusions in
the second either.

Hence the result is: any gauge invariant addition (to the point-like approximation) can at
most lead to logs of the form O(α)m2

e ln me. These terms are not sizeable and in particular
vanish in the chiral limit me → 0. This result has been verified in the derivative expansion
of the form factor which is a particular approach that goes beyond the point-like approxi-
mation. This is fortunate as it puts RK, or more generally tests in the lepton universality,
on much firmer grounds since Monte Carlo tools such as PHOTOS do not incorporate
structure-dependence.

5. Discussions ans Conclusions

QED-corrections have a long history. In particular electromagnetic corrections have
been the vehicle to the development of quantum mechanics and QFT. The massless photon
leads to IR-effects which have a high degree of universality. The Bloch–Nordsieck cancella-
tion mechanism from 1937, predates the solid development of QED in the 1940s, and is a
strong indication of the universality of the IR-domain. The IR-effects are interlinked with
the measurement process and govern the largest QED-corrections.

We have reviewed the very basic of IR-divergences in Section 2 along with the con-
nection to the elegant coherent states formalism. How IR-effects affect predictions was
the topic of Section 3 including three examples of increasing IR-sensitivity: the (inclusive)
e+e− → hadrons cross section, the leptonic decay π+ → `+ν̄ and the semileptonic case
B → π`+ν̄ in Sections 3.1–3.3, respectively. We have highlighted the peculiarity of the
leading collinear logs in the leptonic decay in the Standard Model and clarified the impor-
tance of the choice of kinematic variables in the differential distribution of the semileptonic
decay types. Going beyond the point-like approximation, taking into account structure
dependence, is the next step in the precision physics program of weak decays and the topic
of Section 4. We have given a brief summary of the different methods and approaches in
Section 4.1. The text ends in Section 4.2 with the model-independent demonstration, based
on gauge invariance, that the structure dependent part does not lead to new hard-collinear
logs. This is fortunate as it will considerably reduce the uncertainty in many important
observables such as the precision determination of heavy-light CKM-elements and tests of
lepton flavour universality. However, the implementation of these corrections in experi-
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ment will necessitate the development or extension of Monte-Carlo tools. This demands a
joint effort of theory experiment.
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Appendix A. Low-Theorem

By the physical picture of the multipole expansion of electrodynamics a soft photon
should be sensitive to the charge (monopole) and dipole distribution in the next approxi-
mation. One thus expects low energy theorems. In field theory such low energy theorems
are connected Ward identities. The circle of ideas closes as Ward identities derive from
gauge invariance which in turn allows for the massless photon. Somewhat coincidentally
this theorem was put forward by a scientist to the name of Low and extended by others
and is known as the Low–Burnett–Kroll–Goldberger–Gell–Mann theorem [50–53]. The
statement is that adding a real photon to an amplitude α → β, the two first terms in an
Eγ-expansion are universal

〈βγ(k, λ)|S|α〉 = (J(0)λ + J(1)λ )〈β|S|α〉+O(Eγ) , (A1)

where the monopole and dipole term of O(E−1
γ ) and O((Eγ)0), respectively, are given by

J(0)λ = ∑
j

Q̂j
ε∗(k, λ) · p̂j

k · p̂j − i0
, J(1)λ = −i ∑

j
Q̂j

ε∗µ(k, λ)kν Jµν
j

k · p̂j − i0
. (A2)

where Above Jµν
j = ip[µj ∂

ν]
pj = i p̂[µj ∂

ν]
p̂j

is the orbital angular momentum operator and square
brackets denoting antisymmetrisation in indices as usual. Hatted quantities have the same
meaning as described below (17).

The derivation is rather straightforward. Parametrising the amplitude

〈βγ(k, λ)|S|α〉 = ε∗µ(k)Aµ(pi, k) , (A3)

with the additional convenient notation Aµ(pi, k) ≡ Aµ( p̂1 . . . p̂n, k) which resolves the
issue of in- and out-going states. Now, (A1) is obtained by making an ansatz for the the
Ward identity and solving it to the appropriate order. We may write the ansatz as follows

Aµ(pi, k) =
n

∑
j=1

Q̂j
(pj)µ

k · pj
An( p̂1, p̂j + k, p̂n) + Rµ(pi, k) (A4)
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where R stands for the remainder. The QED Ward identity reads

0 = k · A(pi, k) =
n

∑
j=1

Q̂j An( p̂1, p̂j + k, p̂n) + k · R(pi, k) , (A5)

and the essential step is to Taylor expand, as appropriate for a low-energy theorem in k

0 =
n

∑
j=1

(Q̂j An|k=0 + k · ∂ p̂j An|k=0) + k · R(pi, k) +O(k2) . (A6)

Note that, one will not be able to make a statement about O(k2) as this probes the structure
dependent part of the of the process. Equating terms one gets

O(|k|0) :
n

∑
j=1

Q̂j = 0 ,

O(|k|1) :
n

∑
j=1

Q̂jk · ∂ p̂j An|k=0 = −k · R , (A7)

charge conservation at O(|k|0). To make the O(|k|1) equation useful one needs to un-
contract the k. This is allowed since no information is lost. This can be seen as follows.
Assume k · y = 0 then the only non-trivial solution appears for two external vectors with
yµ = u · k vµ − vs. · k uµ. Hence

Rµ = −
n

∑
j=1

Q̂j(∂ p̂j)µ An|k=0 . (A8)

Now we may take this equation and insert it into (A4) and Taylor expand in k to finally obtain

A(pj, k)µ =
n

∑
j=1

Q̂j

k · pj
Lµ

j An(pi) +O(|k|) , Lµ
j = pµ

j − ikν Jµν
j , (A9)

Low’s theorem (A1) in the notation used here. This theorem does not receive any non-
perturbative corrections. The only argument against it is that QED is possibly not well-
defined because of the Landau pole in the UV but that is outside of any concerns for
practitioners. Analogous theorems in QCD do receive corrections, at least when coloured
external particles are considered, as then some loop contributions have non-local corrections
and this is where the analogous derivation, as given above, falls short.

Appendix B. KLN-Theorem

Whether QED with massless matter is well-defined is a question that was asked in the
mid-1960s by Kinosthita [10] and Lee and Nauenberg [11]. The statement of the theorem
is: S-matrix elements squared are finite if one sums over energy-degenerate initial and final states.
Schematically

KLN-theorem: ∑
i, f∈[E−∆,E+∆]

|〈 f |S|i〉|2 = finite , (A10)

which relies on unitarity and involves the use of time-ordered or old-fashioned perturbation
theory. We refer the reader to Weinberg’s book for an alternative proof closer to the coherent
state approach [15]. A few remarks are in order

• One might be inclined to ask what the infinites mean in the context of massless QED.
The point is that no detector apparatus can distinguish an electron from an electron
with a photon at (nearly) zero angle. Again the divergences are associated with an
idealisation. For remarks on QCD and collider physics cf. Appendix F under IR safety.
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• The requirement of the summation over degenerate energy states does invalidate
some differential decay rates or cross section as observables. Cf. the discussion in
Section 3.3.

• The KLN-theorem was established before the advent of QCD in the late seventies but
is often referred to in the context of QCD (when ignoring hadronisation). The problem
with QCD or non-abelian gauge theories, confined or not, is that coloured states are
not valid asymptotic states since the colour of any state can always be changed by
emitting a soft gluon, e.g., [17]. The KLN-theorem reduces to the Bloch–Nordsieck
mechanism when the states are direct product states of fixed number of charged
particles cf. chapter 13.4. in [15]. It is the fixed number of charged particle assumption
which fails in the case of massless lepton QED. Historically the first counterexample to
the Bloch–Nordsieck mechanism was found in q̄q→ µ+µ− q̄q at the 2-loop level [54].

• If one sums over either all initial or all final states then the S-matrix elements squared
are of course finite: ∑i or f |〈 f |S|i〉|2 = finite by unitarity (SS† = 1) of the S-matrix. It
is by selecting exclusive (final) states that IR-sensitivity appears.

• The KLN-theorem is reminiscent of a theorem in CP-violation that states that if one
sums over all final states that can rescatter into each other under the strong force,
then the rate of particle and anti-particle process are the same (∑ f∈rescatter(Γ(i →
f )− Γ(ī→ f̄ ) = 0) [55]. Not only the flair of the theorem but also its method of proof,
namely unitarity, is the same.

Appendix C. Brief Synopsis of Coherent States

In this brief appendix we sketch some elements of coherent states following the ex-
cellent exposition in [30]. The coherent state can be seen as the state maximising the
number-phase uncertainty relation. One can derive analogues of the Heisenberg uncer-
tainty relation ∆x∆p ≥ h̄ for the particle number and the phase. Searching for a solution
thereof, and justifiably truncating the Hilbert space, one arrives at the condition that this
state is to be an eigenstate of the annihilation operator. This makes it clear that this state
must be a coherent sum over the infinite series of all excitation modes.

Starting with the standard harmonic oscillator ([a, a†]nm = δnm, a†|n〉 =
√

n + 1|n+ 1〉,
a|0〉 = 0) and imposing the eigenvalue equation a|ω〉 = ω|ω〉 for a generic ansatz, a set of
recursion relation emerges which is solved by the coherent state

|ω〉 = e−
1
2 |ω|2 ∑

n≥0

ωn
√

n!
|n〉 . (A11)

Or alternatively |ω〉 = S(ω)|0〉 where S(ω) = e−
1
2 |ω|2 eωa†

and the prefactor assures
〈ω|ω〉 = 1 (since S(ω)†S(ω) = 1). This state saturates the number-phase inequality and
can be regarded as a state close to a classical state. In particular |〈n|ω〉|2 = e−|ω|

2 ωn

n! follows
a Poisson distribution. In QED each n corresponds to the emission of n undetectable soft
photons. In QED the prefactor e−

1
2 |ω|2 is the analogue of the (divergent) virtual amplitude.

For a (scalar) quantum field theory the analogue of the operator S is given by S( f ) ∝
exp( 1

2

∫
d3k(2π)3/2

√
2E(k) f̃ (k)a†

k) where f̃ , Fourier transform of f (x), is the momentum
distribution defining the wave packet. The state f is then given by | f 〉 = S( f )|0〉 and
the omitted normalisation factor above is the analogue of the virtual amplitude defined
without emission of extra soft-particles created by a†. The coherent states used in the
IR-definition of the S-matrix then comes with f̃ (k) = θ(∆− |~k|).

Appendix D. Heuristic Discussion of Infrared Divergences in One-Loop Diagrams

We consider it worthwhile to briefly give the essence of how IR-singularities are
identified in one-loop diagrams paralleling the real-emission discussion in Section 2.

The collinear-divergences are simpler than the soft ones in the sense that one does
not need to involve power counting arguments based on the dimension of spacetime.
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Collinear-divergences occur when a massless particles is emitted from another massless
particle and the two momenta are collinear. If either of the particles has a (small) mass m
then the divergence is regulated by ln m cf. (1).

The soft-divergences are more subtle as the inverse power in the photon energy Eγ.
The criteria is that two external momenta are to be on-shell with a photon propagating in
the loop. The relevant power counting then assumes

∫ d4k
k2((k + p1)2 −m2

1)(k + p2)2 −m2
2)
(1 +O(k))→

∫ dkk3dΩ
k2(2k · p1)(2k · p2)

, (A12)

where p2
1,2 = m2

1,2 and O(k) were dropped in the second step. We see that this integral is
logarithmically divergent for d = 4 when k→ 0 as previously stated.

There are algorithms to extract soft and collinear-divergences at one-loop [56] and
two loops [57]. An approach that works more generically is to realise that IR-singularities
are associated with singularities in the complex plane which in turn can be studied in
perturbation theory by the Landau equations. This involves though two further non-trivial
steps. First, one needs to check whether the singularity in question is on the first sheet.
Second, not every singularity or branch points leads to a IR-singularity. For example,
(p2 −m2) ln(p2 −m2) has a branch cut starting at p2 = m2 but is not singular at that point
itself. The second topic is discussed in detail in Sterman’s book chapter 13 [14] as well as in
his lecture notes [19,20]. The systematic development of singularities in terms of effective
Lagrangians is the theory of soft-collinear effective theory [58] with the advantage of the
systematic use of the equation of motion and a renormalisation program.

Appendix E. How to Handle Non-Analytic Decay Rates Numerically

It seems relevant to briefly mention the practical problem of dealing with IR-divergences
numerically. For the leptonic decay (in the point-like approximation) everything can be
done analytically and then matters are straightforward. For the semileptonic case it is
already more challenging but since there is just one non-trivial phase space integral, namely
when the photon couples to the pion and the lepton, it is still doable [59]. In the generic
case, if we take all particles to be charged [37], it is maybe possible but the effort is not
worthwhile. At higher loops in QCD this becomes totally unfeasible and people resort to
so-called subtraction schemes (e.g., dipole, antenna or Carani–Seymour subtraction). The
idea is simple, one decomposes

A(1) = A(1)
A + (A(1) −A(1)

A ) , (A13)

where A(1)
A is doable analytically and the term in bracket is free from IR-divergences.

Preferably, it is also free from large logs in order to avoid numerical instabilities. It is
for this reason that the evaluation of the phase space integral in (26) in the leading log
approximation is valuable in practice. It is fortunate that in this approximation both
integrals can be shown to be separately Lorentz invariant!

Appendix F. Terminology

Whereas terminology can always be a hurdle for people learning a subject, QED-
corrections are riddled with multiple expressions meaning the same thing and are historic
or context based rather than logical. This short appendix ought to help clarifying a few of
these matters.

• When hadrons are treated as point-like particles one often refers to this approach as
scalar-QED presumably in the context of scalar mesons such as the pion. Of course one
can also treat a baryon as point-like but it being a fermion then makes the term scalar-
QED seem inappropriate. Going beyond the point-like approximation, resolving the
hadrons beyond the monopole approximation, is referred to as a structure-dependent
contribution which is the context of Section 4.
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• IR-divergences are often synonymous with soft-divergences which includes soft-
collinear-divergences. Collinear terms, referred to as ln m f in the text where f stands
for final states, are referred to as collinear-divergences if m f → 0 (when computing
with massless quarks in QCD) or (hard-)collinear logs (if m f � mi). It should usually
be clear from the context but it is useful to be aware of the potential of confusion.

• The concept of IR-safety has been introduced by Sterman and Weinberg [60] and
means the following. An observable computed with quark and gluons is IR-safe if the
quark masses can be taken to zero without encountering singularities (i.e., avoiding
hard-collinear singularities of the ln mq-type). As previously stated, In the context
of QCD this amounts to either defining inclusive enough quantities or legitimately
absorbing collinear logs into hadronic objects (jets or parton distribution functions) at
the expense of introducing a factorisation scale.

• In the context of O(α) computations and the use of the Bloch–Nordsieck and KLN
cancellations of IR-divergences (6) one refers to Γ(i→ f ) and Γ(i→ f γ) as the non-
radiative and radiative rate, respectively. Often the terms virtual and real are used
synonymously since those correspond to the precise O(α)-terms.
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