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Abstract: Influential observations (IOs), which are outliers in the x direction, y direction or both, 

remain a problem in the classical regression model fitting. Spatial regression models have a peculiar 

kind of outliers because they are local in nature. Spatial regression models are also not free from the 

effect of influential observations. Researchers have adapted some classical regression techniques to 

spatial models and obtained satisfactory results. However, masking or/and swamping remains a 

stumbling block for such methods. In this article, we obtain a measure of spatial Studentized pre-

diction residuals that incorporate spatial information on the dependent variable and the residuals. 

We propose a robust spatial diagnostic plot to classify observations into regular observations, ver-

tical outliers, good and bad leverage points using a classification based on spatial Studentized pre-

diction residuals and spatial diagnostic potentials, which we refer to as 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 −

𝑃𝑜𝑠𝑖. Observations that fall into the vertical outliers and bad leverage points categories are referred 

to as IOs. Representations of some classical regression measures of diagnostic in general spatial 

models are presented. The commonly used diagnostic measure in spatial diagnostics, the Cook’s 

distance, is compared to some robust methods, 𝐻𝑖
2 (using robust and non-robust measures), and 

our proposed 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 plots. Results of our simulation study and applications 

to real data showed that the Cook’s distance, non-robust Hsi1
2  and robust 𝐻𝑠𝑖2

2  were not very suc-

cessful in detecting IOs. The Hsi1
2  suffered from the masking effect, and the robust 𝐻𝑠𝑖2

2  suffered 

from swamping in general spatial models. Interestingly, the results showed that the proposed 

𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 plot, followed by the 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 plot, was very successful in classifying observations 

into the correct groups, hence correctly detecting the real IOs. 

Keywords: spatial regression model; influential observation; outlier; leverage; prediction residual; 

masking and swamping; diagnostic 

 

1. Introduction 

Belsley et al. [1] defined an influential observation (IO) as one which, either individ-

ually or together with several other observations, has a demonstrably large impact on the 

calculated values of various estimates. An influential observation could be an outlier in 

the X-space (leverage points) or outlier in the Y-space (vertical outlier). Leverage points 

can be classified into good (GLPs) and bad leverage points (BLPs). Unlike BLPs, GLPs 

follow the pattern of the majority of the data; hence, they are not considered as IOs as they 

have little or no influence on the calculated values of numerous estimates [2,3]. In this 

connection, Rashid et al. [2] stated that IOs could be vertical outliers (VO) or BLPs. Thus, 

it is very crucial to identify IOs as they are responsible for misleading conclusions about 

the fitted regression models and various other estimates. Once the IOs are identified, there 

is a need to study their impact on the model and subsequent analyses. There is a handful 
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of studies on the diagnostic of IOs in linear regression; some examples are [1,3–12]. Other 

articles in the literature deal with regressions with correlated residuals, e.g., [13–17]. How-

ever, only a few articles deal with the detection of IOs in spatial regression models; some 

examples include [18–22]. Some robust estimation methods in spatial regression are [23–

25]. Christensen et al. [18] and Haining [19] adapted one of the diagnostic measures in [3] 

to detect influential observations in spatial error autoregression model. They achieved this 

by defining correlated errors through the spatial weight matrix and coefficient of spatial 

autocorrelation in the error term. They also presented the spatial Studentized prediction 

residuals and the spatial leverage terms that contain error terms in spatial information. 

The presence of high or low attribute value in the neighbourhood of a spatial location 

may result in the inability to detect the true spatial outlier, or the false identification of a 

good observation as an outlier [26]. Hadi [27] has also noted that spatial outlier detection 

methods inherit the problem of masking and swamping. Masking occurs when outlying 

observations are incorrectly declared as inliers. Swamping on the other hand, occurs when 

clean observations are incorrectly classified as outliers [28]. Aggarwal [29] observed that 

spatial outlier breaks the spatial autocorrelation and continuity of spatial locations. Spatial 

autocorrelation is a systematic pattern in attribute values that are recorded in several lo-

cations on a map. Attribute values in one location that are associated with values at neigh-

bouring locations indicate the presence of autocorrelation. Positive autocorrelation indi-

cates similar values that are clustered together. Negative autocorrelation indicates low 

attribute values in the neighbourhood of high attribute values and vice-versa [30]. 

Robust estimation methods mostly focus on estimations that are not influenced much 

by the effects of outliers. Anselin [23] has extended the bootstrap estimation to mixed re-

gressive spatial autoregressive models, where pseudo error terms are generated by sam-

pling from the vector of error terms. The spatial structure of the data is maintained 

through the generation of error terms. Politis et al. [31] and Heagerty and Lumley [32] also 

adopted the bootstrap method on blocks of contiguous locations to generate replicates of 

the estimates of the asymptotic standard error of statistics. Cerioli and Riana [24] argued 

that a robust estimator of the spatial autocorrelation parameters did not exist based on all 

datasets. They proposed a forward search algorithm based on blocks of contagious spatial 

locations (BFS). The BFS algorithm are drawn in such a way that the blocks retain the 

spatial dependence structure of the original data. Yildirim [25] proposed a robust estima-

tion method of the log-likelihood with influence function in the spatial error model. This 

is achieved iteratively using scoring algorithm to estimate the parameters. Though they 

succeeded in obtaining robust estimates, identifying spatial outliers, which is vital in spa-

tial statistics [26], was not achieved. Popular graphical techniques to detect spatial outliers 

are the scatterplot [33], the Moran’s scatterplot [30] and the pockets of nonstationarity [34]. 

Besides being prone to the problem of masking and swamping [26], they focused mainly 

on spatial outliers in the Y- space only. 

Diagnostic works on models that have both spatial autocorrelations in dependent 

variable and residual terms are missing in the literature. The problem of masking and 

swamping is prevalent in spatial regression model diagnostics, which may be due to the 

presence of vertical outliers as well as leverage points, as in the case of linear regression 

([27]). This motivates us to represent the spatial Studentized prediction residuals and spa-

tial leverage values in the general spatial model, and to adapt and extend some robust 

diagnostic measures of detection of outliers and IOs in linear regression, such as Hadi’s 

potential (𝑝𝑜𝑖𝑖), Cook’s distance (𝐶𝐷𝑖) [3], the overall potential influence (𝐻𝑖
2) [10], and the 

external (ESRs) and internal (ISRs) Studentized residuals [1,9,10], to spatial regression 

models in order to minimize the problem of masking and swamping in spatial models. 

In this article, we propose a robust spatial diagnostic plot and adapt some diagnostic 

measures in the linear regression model. Representations of the diagnostic measures in 

the spatial regression model are obtained, with a special emphasis on the general spatial 

regression model (GSM) that performs autoregression on both the dependent variable and 

error terms. 
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The main objective of this study is to propose a robust spatial diagnostic plot. Other 

objectives are: (1) to represent the leverage values of the hat matrix of the linear regression 

in the GSM model; (2) to extend the ISR of the linear regression to the GSM model; (3) to 

extend the ESR of the linear regression to the GSM model; (4) to extend the Cook’s dis-

tance and the overall potential influence of the linear regression to the GSM model (5) to 

develop a method of identification of the influential observations of the GSM model by 

proposing a procedure of classification of the observations into regular observations, ver-

tical outliers, good and bad leverage points, and hence IOs; (6) to evaluate the perfor-

mances of the proposed methods by using simulation studies; (7) to apply the proposed 

methods on gasoline price data for retail sites in Sheffield, UK, COVID-19 data in Georgia, 

USA, and the life expectancy data from USA counties. The significance of this study is that 

it can contribute to the development of a method of identification of influential observa-

tions in spatial regression models. 

2. Identification of Influential Observations in a Linear Regression Model 

Consider a k-variable regression model: 

𝒚 = 𝑿𝛃 + 𝜺 (1) 

where 𝒚 is an 𝑛 × 1 vector of observations of dependent variables, 𝑿 is an 𝑛 × 𝑘 ma-

trix of independent variables, 𝛃 is a 𝑘 × 1 vector of unknown regression parameters, 𝛆 

is an 𝑛 × 1  vector of random errors with identical normal distributions, that is, 

𝛆~𝑁𝐼𝐷(0, σ2). 

The ordinary least squares (OLS) estimates in Equation (1) are given by: 

𝛃̂  =  (𝑿𝑇𝑿)−1𝑿𝑇𝒚 (2) 

The vector of predicted values can be written as: 

𝒚̂ = 𝑿𝛃̂ = 𝑿(𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 = 𝑷𝒚,  

where 𝑷 =  𝑿(𝑿𝑇𝑿)−1𝑿𝑇 is the hat/leverage matrix. The diagonal elements of the lever-

age matrix are called the hat values, denoted as 𝑝𝑖𝑖, and given by: 

𝒑𝒊𝒊 = 𝒙𝒊
𝑻(𝑿𝑻𝑿)−𝟏𝒙𝒊,            𝒊 = 𝟏, 𝟐,⋯ , 𝒏.  

The hat matrix is often used as diagnostics to identify leverage points. Leverage is 

the amount of influence exerted by the observed response 𝑦𝑖 on the predicted variable 

𝑦̂𝑖. As a result, a large leverage value indicates that the observed response has a large effect 

on the predicted response. 

Hoaglin and Welsh [3] suggested that an observation which exceeds 
2𝑘

𝑛
, where 

2𝑘

𝑛
 is 

the average value of 𝑝𝑖𝑖, is considered as a leverage point, while Vellman and Welsch 

suggested 
3𝑘

𝑛
 as a cut-off point for leverage points. Huber [7] suggested that the ranges 

𝑝𝑖𝑖 ≤  0.2, 0.2 <  𝑝𝑖𝑖 ≤  0.5 and 𝑝𝑖𝑖 >  0.5 are safe, risky and to be avoided, respectively, 

for leverage values. 

Unfortunately, the hat matrix suffers from the masking effect. As a result, 𝑝𝑖𝑖 often 

fails to detect high leverage points. Hadi [10] suggested a single-case-deleted measure 

called potentials or Hadi’s potentials. The diagonal element of a potential denoted as 𝑝𝑜𝑖𝑖, 

is given by: 

𝑝0𝑖𝑖 = 𝒙𝑖
𝑇(𝑿(𝑖)

𝑇 𝑿(𝑖))𝒙𝑖 ,       𝑖 = 1,2,⋯ , 𝑛 (3) 

where 𝑋(𝑖) is the matrix X with the 𝑖𝑡ℎ row deleted. We can rewrite 𝑝0𝑖𝑖 as a function of 

𝑝𝑖𝑖 as: 

𝑝0𝑖𝑖 =
𝑝𝑖𝑖

1 − 𝑝𝑖𝑖
,                 𝑖 = 1,2,⋯ , 𝑛.  

The vector of the residuals, 𝒓, can be written as: 
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𝒓 = 𝒚 − 𝒚̂ = (𝑰 − 𝑷)𝒚 = 𝑸𝒚,  

The Studentized residuals (internally Studentized residuals) denoted as ISRs and R-

Student residuals (externally Studentized residuals) denoted as ESRs are widely used 

measures for the identification of outliers (see [7]). The ISR, denoted as 𝑡𝑖, is defined as: 

𝑡𝑖 = 
𝑟𝑖

𝜎̂√1 − 𝑝𝑖𝑖
  

where 𝜎̂ is the standard deviation of the residuals, 𝑟𝑖 and 𝑝𝑖𝑖 are the 𝑖𝑡ℎ residual and 
diagonal element of the matrix 𝑷, respectively (see [9] for details). Meanwhile, Chatterjee 

and Hadi [9] defined ESR denoted as 𝑡𝑖
∗ and given by: 

𝑡𝑖
∗ = 

𝑟𝑖

𝜎̂(𝑖)√1 − 𝑝𝑖𝑖
  

where 𝜎̂(𝑖) is the residuals mean square excluding the 𝑖𝑡ℎ case. The ESR follows a Stu-

dent’s t-distribution with (𝑛 − 𝑘 − 1) degrees of freedom [9]. 

One of the most employed measures of influence in linear regression is the Cook’s 

distance [3]. It measures the influence on the regression coefficient estimate or the pre-

dicted values. The Cook’s distance is given by 

𝐶𝐷̂𝑖(𝑿
𝑻𝑿, 𝑘σ̂2) =

(𝛃̂(−𝒊) − 𝛃̂)
𝑻
(𝑿𝑻𝑿)(𝛃̂(−𝒊) − 𝛃̂)

𝑘σ̂2
, (4) 

where 𝜷̂ is the vector of estimates of 𝜷 using the full data, 𝜷̂(−𝒊) is the vector of estimates 

of 𝜷 with the 𝑖𝑡ℎ observation of 𝑦𝑖 and 𝑥𝑖 omitted, k is the number of parameters and 

σ̂2 is the estimate of variance. Any 𝑖𝑡ℎ observation is declared influential observation (IO) 

if 𝐶𝐷̂𝑖 >  𝐹[0.5;  𝑘, (𝑛 −  𝑘)]. Meloun [12] noted that any observation in which 𝐶𝐷𝑖 >  1 is 

considered as an influential observation. The Cook’s distance can also be written as [8,9]: 

𝐶𝐷̂𝑖(𝑿
𝑻𝑿, 𝑘σ̂2) =

(𝒚̂ − 𝒚̂𝒊)
𝑻(𝒚̂ − 𝒚̂𝒊)

𝑘σ̂2
 (5) 

Computing the 𝐶𝐷̂𝑖(𝑿
𝑻𝑿, 𝑘σ̂2) does not require fitting a regression equation for each 

of the 𝑖𝑡ℎ observations and the full model; instead, Equation (3) can further be simplified 

as ([3,8,9]): 

𝐶𝐷̂𝑖(𝑋
𝑇𝑋, 𝑘σ̂2) =  

1

𝑘
𝑡𝑖
2
𝑝𝑖𝑖
𝑞𝑖𝑖

 (6) 

where 𝑡𝑖 =
𝑒𝑖

𝜎̂√𝑞𝑖𝑖
 is the ISR and  

𝑝𝑖𝑖

𝑞𝑖𝑖
 (𝑞𝑖𝑖 = 1 − 𝑝𝑖𝑖) is referred to as the potential [7–9]. In-

terestingly, the Cook’s distance is a measure of influence based on the potential (
𝑝𝑖𝑖

𝑞𝑖𝑖
) and 

Studentized residual (𝑡𝑖). 

Hadi [10] demonstrated the drawback of methods that are multiplicative of func-

tions, such as the Cook’s distance [3], Andrews–Pregibon statistic [5], Cook and Weisberg 

statistic [8], etc. (see [10] for details), and proposed a method that is additive of the func-

tions. Though both the multiplicative and additive methods are functions of residuals and 

leverage values, the former diminishes towards zero for smaller value of any of the two 

functions or both, while in the latter case, the measure is large if one of the two functions 

or both are large. He proposed a measure of overall potential influence, denoted as 𝑯𝒊
𝟐, 

and defined as follows: 

𝐻𝑖
2 =

𝑘

𝑚

𝒆𝑰
𝑻(𝑰𝒎 − 𝑷𝑰)

−1𝒆𝑰

𝒆𝑻𝒆 − 𝒆𝑰
𝑻𝒆𝑰

+
1

𝑚
𝑡𝑟(𝑷𝑰(𝑰𝒎 − 𝑷𝑰)

−1), (7) 

with k, the number of the parameters in the model, 𝑰 = {𝑖1, 𝑖2, ⋯ , 𝑖𝑚} the set of indices of 

observations of length m, and 𝑷𝑰 the leverage indexed by I. 

For 𝑚 = 1 and 𝐼 =  𝑖, Equation (7) simplifies to: 
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𝐻𝑖
2 =

𝑘

(1 − 𝑝𝑖𝑖)

𝑒𝑖
2

(𝒆𝑻𝒆 − 𝑒𝑖
2)
+

𝑝𝑖𝑖
1 − 𝑝𝑖𝑖

=
𝑘

(1 − 𝑝𝑖𝑖)

𝑑𝑖
2

(1 − 𝑑𝑖
2)
+

𝑝𝑖𝑖
1 − 𝑝𝑖𝑖

, (8) 

where ∑𝑝𝑖𝑖 = 𝑘, ∑𝑑𝑖
2 = 1, 𝑑𝑖

2 =
𝑒𝑖
2

𝒆𝑻𝒆
 is the square of the 𝑖𝑡ℎ normalized residual. 

Hadi [10] suggested a cut-off point for Hadi’s potential (𝑝𝑜𝑖𝑖 ) 𝑎𝑛𝑑 , 𝐻𝑖
2 denoted as 

(𝑙1) which is given as follows: 

𝑙1 = 𝑚𝑒𝑎𝑛(𝑝𝑜𝑖) + 𝑐√𝑉𝑎𝑟(𝑝𝑜𝑖)  

=
𝑘

𝑛
+ 𝑐√

𝑛𝑠 − 𝑘2

𝑛(𝑛 − 1)
,  

where 𝑐 =  2, 3, 𝑠 = ∑𝑝𝑖𝑖 and 𝒑𝒐𝒊 is the vector of Hadi’s potential. Since both the mean 

and the standard deviation are easily affected by outliers, he suggested to employ such a 

confidence-bound type of cut-off points by replacing the mean and the standard deviation 

by robust estimators, namely the median and normalized median absolute deviation, re-

spectively. The resulting cut-off point is denoted as 𝑙2; 

𝒍𝟐 = 𝑴𝒆𝒅(𝒑𝒐𝒊) + 𝒄𝑴𝑨𝑫(𝒑𝒐𝒊), 
 

3. Influential Observations in Spatial Regression Models 

The general spatial autoregressive model (GSM) ([21,35,36]) includes the spatial lag 

term and spatially correlated error structure. The data generating process (DGP) of the 

general spatial model is given by: 

𝒚 = ρ𝑾𝟏𝒚 + 𝑿𝛃 + 𝛏,   𝛏 = λ𝑾𝟐𝛏 + 𝛆,   𝛆 ∼ 𝑁(0, σ
2𝑰𝒏), (9) 

where 𝒚 is an 𝑛 × 1 vector of dependent variables. 𝑿 is an 𝑛 × 𝑘 matrix of explanatory 

variables. 𝑾𝟏  and 𝑾𝟐  are 𝑛 × 𝑛 spatial weight matrices. 𝑰𝒏  is an 𝑛 × 𝑛 identity ma-

trix. 𝛏 is the spatially correlated error term, and 𝛆 is the random residual term. The pa-

rameter ρ is the coefficient of the spatially lagged dependent variables 𝑾𝟏𝒚, and λ is the 

coefficient of the spatially correlated errors. 

The general spatial autoregressive model in Equation (9) can be rewritten as: 

𝑨𝒚 = 𝑿𝛃  + 𝑩−𝟏𝛆, (10) 

where 𝑨 = 𝑰𝒏 − ρ𝑾𝟏 , 𝛏 = 𝑩−𝟏𝛆, 𝑩 = 𝑰𝒏 − λ𝑾𝟐 , 𝛏 ∼ 𝑁(0, σ2𝑽) , and 𝑽 = (𝑩𝑻𝑩)−𝟏 . Esti-

mation of the parameters is achieved using the maximum likelihood estimation method. 

The log-likelihood function (𝐿) is given by: 

𝐿 = −
𝑛

2
𝑙𝑛(σ2) + 𝑙𝑛|𝑨| + 𝑙𝑛|𝑩| −

1

2σ2
(𝑨𝒚 − 𝑿𝛃)𝑻𝑩𝑻𝑩(𝑨𝒚 − 𝑿𝛃) (11) 

Let ρ̂, λ̂, σ̂2, 𝛃̂ be the maximum likelihood estimates (MLEs) of ρ, λ, σ2, 𝛃, respectively. 

The MLEs are obtained iteratively using numerical methods in the maximum likelihood 

estimation. Anselin [35] and LeSage [36] discussed the maximum likelihood estimation 

procedure of the parameters. 

3.1. Leverage in Spatial Regression Model 

Denote the vector of parameters in Equation (11) as 𝛃𝒂𝒚. The estimate of 𝛃𝒂𝒚, 𝛃̂𝒂𝒚, is 

given by: 

𝛃̂𝒂𝒚 = (𝑿
𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑽̂−𝟏𝑨̂𝒚.  

The model (11) is viewed as fitting a general linear model, 𝑨𝒚 on 𝑿, that has corre-

lated residual terms. Set 𝒛 =  𝑨𝒚, where 𝑣𝑎𝑟(𝑨𝒚) = σ2𝑽. Therefore, 

𝒛̂ = 𝑿𝛃̂𝒂𝒚 = 𝑿(𝑿
𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑽̂−𝟏𝒛 = 𝑷𝒂𝒚𝒛  
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The hat matrix, in this case, is given by 𝑷𝒂𝒚, 

𝑷𝒂𝒚 = 𝑿(𝑿
𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑽̂−𝟏.  

Let 𝑸𝒂𝒚 = 𝑰𝒏 − 𝑷𝒂𝒚. Though 𝑷𝒂𝒚 and 𝑸𝒂𝒚 have satisfied the idempotence property 

and their sum of diagonal elements equals k and 𝑛 −  𝑘, respectively, they are not sym-

metric. As a result, they are not positive semi-definite, and as such, the diagonal elements 

of 𝑷𝒂𝒚 will have negative values. The hat matrices 𝑷𝒂𝒚 and 𝑸𝒂𝒚 are not symmetric, and 

their diagonal values do not lie between 0 and 1 (inclusive). 

Martins [15] proposed a measure of leverage that is orthogonal, in the models with 

correlated residuals, whose diagonal values lie in the interval [0, 1], which we denote by 

𝑷𝒂𝒚
∗ , such that: 

𝑷𝒂𝒚
∗ = 𝑽̂−𝟏𝑷𝒂𝒚 = 𝑽̂

−𝟏𝑿(𝑿𝑻𝑽̂−𝟏𝑿)
−𝟏
𝑿𝑻𝑽̂−𝟏  

Let 𝑸𝒂𝒚
∗ = 𝑰𝒏 − 𝑷𝒂𝒚

∗ . 𝑷𝒂𝒚
∗  and 𝑸𝒂𝒚

∗  are idempotent, symmetric and orthogonal with 

respect to 𝑽, i.e., 

1. 𝑷𝒂𝒚
∗ 𝑽̂𝑷𝒂𝒚

∗ = 𝑷𝒂𝒚
∗  

2. 𝑸𝒂𝒚
∗ 𝑽̂𝑸𝒂𝒚

∗ = 𝑸𝒂𝒚
∗  

3. 𝑷𝒂𝒚
∗ 𝑽̂𝑸𝒂𝒚

∗ = 𝟎 

Note that the sum of the diagonal elements of 𝑷𝒂𝒚
∗  and 𝑸𝒂𝒚

∗ , the leverage, does not 

sum to 𝑘 and 𝑛 −  𝑘. 

Again, consider a new set of dependent variables obtained by pre-multiplying Equa-

tion (11) by the matrix 𝑩 (𝑩 as defined in Equation (10)) so that 𝒛∗ = 𝑩𝑨𝒚. Schall and 

Dunne [14] defined the matrix 𝑽−𝟏 as a singular value decomposition such that 𝑽−𝟏 =

𝑩𝚫𝑩𝑻; where 𝑩 is of the same order as 𝑽−𝟏 and 𝚫 is a diagonal matrix. The transfor-

mation 𝒛∗ is the principal component score. Puterman [13] and Haining [19] defined it as 

canonical variates such that 𝑩𝑿(𝑿𝑻𝑽−𝟏𝑿)𝑿𝑻𝑩𝑻 is positive semi-definite. By setting 𝒛∗ =

𝑩𝑨𝒚, Equation (9) is rewritten in a generalized least squares (GLS) form as: 

𝒛∗ = 𝑿∗𝛃𝒔 + 𝛆, 𝛆 ∼ 𝑁(0, σ
2𝑰𝒏) (12) 

where 𝑿∗ = 𝑩𝑿. 

The estimate 𝛃̂𝒔 of 𝛃𝒔 is now given by: 

𝛃̂𝒔 = (𝑿
∗𝑻𝑿∗)

−𝟏
𝑿∗
𝑻

𝒛∗ 
 

Thus, 

𝒛̂∗ = 𝑿∗(𝑿∗𝑻𝑿∗)
−𝟏
𝑿∗
𝑻

𝒛∗ (13) 

where, 𝑨̂ = 𝑰𝒏 − ρ̂𝑾𝟏 and 𝑩̂ = 𝑰𝒏 − λ̂𝑾𝟐. Note that 𝒚̂ is deduced from Equation (13) as 

follows: 

𝑩̂𝑨̂𝒚̂ = 𝑩̂𝑿(𝑿𝑻𝑩̂𝑻𝑩̂𝑿)
−𝟏
𝑿𝑻𝑩̂𝑻𝑩̂𝑨̂𝒚 

 

𝒚𝒊𝒆𝒍𝒅𝒔
→   𝒚̂ = 𝑨̂−𝟏𝑿(𝑿𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑽̂−𝟏𝑨̂𝒚  

Denote the projection matrix in the transformed spatial regression model as 𝑷𝒔, then: 

𝑷𝒔 = 𝑿
∗(𝑿∗𝑻𝑿∗)

−𝟏
𝑿∗
𝑻

  

= 𝑩̂𝑿(𝑿𝑻𝑽̂−𝟏𝑿)
−𝟏
𝑿𝑻𝑩̂𝑻,   𝑽̂ = (𝑩̂𝑻𝑩̂)

−𝟏
  

The properties of the leverage in the transformed spatial model in Equation (13) are: 

Property I: idempotent and symmetric. 

Property Ia: idempotence 
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𝑷𝒔
𝟐 = 𝑩̂𝑿(𝑿𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑩̂𝑻𝑩̂𝑿(𝑿𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑩̂𝑻  

= 𝑩̂𝑿(𝑿𝑻𝑽̂𝑿)
−𝟏
𝑿𝑻𝑩̂𝑻  

= 𝑷𝒔  

Hence, 𝑷𝒔 is idempotent. 

Property Ib: symmetric 

𝑷𝒔
𝑻 = (𝑩̂𝑿(𝑿𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑩̂𝑻)

𝑻

  

= 𝑩̂𝑿(𝑿𝑻𝑽̂−𝟏𝑿)
−𝟏
𝑿𝑻𝑩̂𝑻  

= 𝑷𝒔  

The matrix 𝑷𝒔 is symmetric. Therefore, 𝑷𝒔 in the transformation 𝒛∗ = 𝑩̂𝑨̂𝒚 is both 

idempotent and symmetric. 

Property II: the sum of the diagonal terms of the projection matrix is 𝒌, the number 

of parameters including the constant term. 

𝑡𝑟𝑎𝑐𝑒(𝑷𝒔) = 𝑡𝑟𝑎𝑐𝑒 (𝑩̂𝑿(𝑿
𝑻𝑽̂−𝟏𝑿)

−𝟏
𝑿𝑻𝑩̂𝑻)  

= 𝑡𝑟𝑎𝑐𝑒 (𝑩̂𝑻𝑩̂𝑿(𝑿𝑻𝑽̂−𝟏𝑿)
−𝟏
𝑿𝑻) (𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥)  

= 𝑡𝑟𝑎𝑐𝑒 (𝑿𝑻𝑽̂−𝟏𝑿(𝑿𝑻𝑽̂−𝟏𝑿)
−𝟏
) (𝑐𝑦𝑐𝑙𝑖𝑐 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥)  

= 𝑡𝑟𝑎𝑐𝑒(𝐼𝑘)  

= 𝑘,  

where 𝑰𝒌 is an 𝑘 × 𝑘 identity matrix. 

Therefore, ∑ 𝑝𝑠𝑖𝑖
𝑘
𝑖=1 = 𝑘. 𝑝𝑠𝑖𝑖 is the 𝑖𝑡ℎ diagonal element of the leverage 𝑷𝒔. 

Property III: bounds on the spatial leverage. 

The bound on the leverage of the classical regression is 0 ≤ 𝑝𝑖𝑖 ≤ 1 due to the fact 

that the hat matrix 𝑷 satisfies all the orthogonal properties, including symmetry. As such, 

it is positive semi-definite. However, the spatial leverage 𝑷𝒂𝒚 is not symmetric because 

positive semi-definite matrix is symmetric [37–39]. The transformation in Equation (11) 

yields the projection 𝑷𝒔 that satisfies the symmetry condition. 

From the idempotent property of 𝑷𝒔, 

𝑷𝒔 = 𝑷𝒔
𝟐.  

Equating diagonal terms of LHS and RHS, we have: 

𝑝𝑠𝑖𝑖 = 𝑝𝑠𝑖𝑖
2 +∑ 𝑝𝑠𝑖𝑗𝑗≠𝑖 𝑝𝑠𝑗𝑖 ,    ∑ 𝑝𝑠𝑖𝑗𝑗≠𝑖 𝑝𝑠𝑗𝑖 ≥ 0, (14) 

where 𝑝𝑠𝑖𝑗 are the off-diagonal terms. Equation (14) implies that 𝑝𝑠𝑖𝑖 ≥ 0. Therefore, 

𝑝𝑠𝑖𝑖 ≥ 𝑝𝑠𝑖𝑖
2   

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑝𝑠𝑖𝑖 ≤ 1.  

Note that 𝑷𝒔 and 𝑸𝒔 are orthogonal: 

1. 𝑷𝒔𝑷𝒔 = 𝑷𝒔 
2. 𝑸𝒔𝑸𝒔 = 𝑸𝒔 
3. 𝑷𝒔𝑸𝒔 = 𝟎 
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The model in Equation (9) gives rise to different special spatial regressions in accord-

ance with different restrictions. Such special spatial regression models are the spatial au-

toregressive-regressive model (SAR) and the spatial error model (SEM). While the former 

has spatial autoregression in the response variable, the latter has spatial autoregression in 

the model residual; model (9) (GSM) combines both features. 

The spatial autoregressive-regressive model is obtained when the coefficient of the 

lagged spatial autoregression in the residuals of Equation (9) is zero, i.e., λ =  0. Thus, the 

SAR model is given by: 

𝒚 = 𝛒𝑾𝟏𝒚 + 𝑿𝛃 + 𝛆,   𝛆 ∼ 𝑁(0, σ
2𝑰𝒏). (15) 

The 𝑷𝒔 corresponding to the model in Equation (13) reduces to: 

𝑷𝒔 = 𝑿(𝑿
𝑻𝑿)−𝟏𝑿𝑻,  

with the transformation in Equation (11) simplifying to 𝒛∗ = 𝑨𝒚, since 𝑽 = (𝑩𝑻𝑩)−𝟏 and 

𝑩 = 𝑰𝒏, when λ =  0. Clearly, the hat matrix in the SAR model preserves the features of 

the hat matrix in the classical regression model. 

In the spatial error model (SEM), the coefficient of the spatial autoregression on the 

lagged dependent variable is zero, i.e., ρ =  0. This yields the model: 

𝒚 = 𝑿𝛃 + 𝛏,   𝛏 = 𝛌𝑾𝟐𝛏 + 𝛆,   𝛆 ∼ 𝑵(𝟎, 𝛔
𝟐𝑰𝒏) (16) 

The transformation in Equation (11) simplifies to 𝒛∗ = 𝑩𝒚, and the projection matrix 

remains: 

𝑷𝒔 = 𝑩𝑿(𝑿
𝑻𝐕−𝟏𝑿)−𝟏𝑿𝑻𝑩𝑻.  

It can be observed that the leverage measure in the spatial regression model is dom-

inated by the autocorrelation in the residual term. 

Works on spatial regression diagnostics in the literature mainly focus on the autocor-

relation in the residuals, mostly using a time series analogy [13–15]. Some remarkable 

works on the spatial regression model can be found in [18,19,21]. 

3.2. Influential Observations in Spatial Regression Model 

The leverages 𝑷𝒔 and 𝑸𝒔 in Equation (11) satisfy all the properties of a projection 

matrix, including that the sum of the diagonal terms of 𝑷𝒔 and 𝑸𝒔 equal 𝒌 and 𝑛 –  𝑘, 

respectively. It also incorporates the autocorrelation in the dependent variables, 𝑾𝒚. 

Hence, it can be used as a diagnostic measure of leverage points in a spatial regression 

model. 

By extending the results of linear regression to spatial regression with slight modifi-

cation, the Cook’s distance in the spatial regression of Equation (13), denoted as 𝐶𝐷𝑠𝑖, can 

be formulated as follows: 

𝑪𝑫̂𝒔𝒊 =
(𝛃̂𝒔

(−𝒊)
−   𝛃̂𝒔)

𝑻

(𝑿∗𝑻𝑿∗) (𝛃̂𝒔
(−𝒊)

− 𝛃̂𝒔)

𝒌𝝈̂𝟐
 

 

=
(𝛃̂𝒔

(−𝒊)
−   𝛃̂𝒔)

𝑻

((𝑩𝑿)𝑻(𝑩𝑿)) (𝛃̂𝒔
(−𝒊)

−   𝛃̂𝒔)

𝒌𝝈̂𝟐
 

 

=
(𝛃̂𝒔

(−𝒊)
−   𝛃̂𝒔)

𝑻

(𝑿𝑻𝑩𝑻𝑩𝑿) (𝛃̂𝒔
(−𝒊)

−   𝛃̂𝒔)

𝒌𝝈̂𝟐
 

 

=
(𝛃̂𝒔

(−𝒊)
−   𝛃̂𝒔)

𝑻

(𝑿𝑻𝑽−𝟏𝑿) (𝛃̂𝒔
(−𝒊)

−   𝛃̂𝒔)

𝒌𝝈̂𝟐
, 

 

where: 
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𝛃̂𝒔
(−𝒊)

= 𝑿(𝒊)(𝑿(𝒊)
𝑻 𝑽̂(𝒊,𝒊)

−𝟏 𝑿(𝒊))
−𝟏
𝑿(𝒊)
𝑻 𝑽̂(𝒊,𝒊)

−𝟏 𝑨̂(𝒊,𝒊)𝒀(𝒊). 
 

𝑽̂(𝒊,𝒊) and 𝑨̂(𝒊,𝒊) denote 𝑽̂ and 𝑨̂ with the 𝑖𝑡ℎ row and the 𝑖𝑡ℎ column deleted, re-

spectively. 

The spatial Cook distance, 𝐶𝐷𝑠𝑖, is declared large if 𝐶𝐷𝑠𝑖 > 0.70 [19]. In its simplified 

form, the Cook’s distance in spatial regression is written as 

𝐶𝐷̂𝑠𝑖(𝑋
𝑇𝑉−1𝑋, 𝑘σ̂2) =

1

𝑘
𝑡𝑠𝑖
2 psi

qsi
, (17) 

where 𝑡𝑠𝑖 is the spatial Studentized prediction residual (also called spatial internally Stu-

dentized residual), 𝑝𝑠𝑖 is the spatial leverage, which is the 𝑖𝑡ℎ diagonal element of 𝑷𝒔, 

and 𝑞𝑠𝑖 = 1 − 𝑝𝑠𝑖. Let 𝑟𝑠𝑖 = 𝑦𝑖 − 𝑦̂𝑖, then: 

𝑡𝑠𝑖 =
𝑏𝑖
𝑇𝑎𝑖𝑟𝑠𝑖

𝜎̂√𝑞𝑠𝑖
, (18) 

where 𝒃𝒊 and 𝒂𝒊 are the 𝑖𝑡ℎ columns of matrices 𝑩 and 𝑨, respectively. The spatial Stu-

dentized residual has a cut-off point of 2 to declare a point large [19,40]. 

Similarly, the spatial externally Studentized residual (ESRs), is defined as: 

𝒕𝒔𝒊
∗ = 

𝒓𝒔𝒊

𝝈̂(𝒊)√𝟏 − 𝒑𝒔𝒊
  

= 𝒕𝒔𝒊√
𝒏 − 𝒌 − 𝟏

𝒏 − 𝒌 − 𝒕𝒔𝒊
𝟐 ,    𝝈̂(𝒊) = 𝛔̂ (

𝒏 − 𝒌 − 𝒕𝒔𝒊
𝒏 − 𝒌 − 𝟏

). 
 

where 𝜎̂(𝑖) is the residuals mean square excluding the 𝑖𝑡ℎ case. The ESRs follow a Stu-

dent’s t-distribution with (𝑛 − 𝑘 − 1) degrees of freedom. Thus, the spatial Studentized 

prediction residuals contain the neighbourhood information of both the dependent vari-

able and the residual of each 𝑟𝑠𝑖, and the leverage 𝑷𝒔 contains the residual autocorrela-

tion effect. The spatial potential, which is analogous to the potential in [10], is defined in 

Equation (19) as: 

𝑝𝑜𝑠𝑖 =
𝑝𝑠𝑖
𝑞𝑠𝑖
  (19) 

where 𝑞𝑠𝑖 = 1 − 𝑝𝑠𝑖. Let 𝑞𝑜𝑠𝑖 = 1 − 𝑝𝑜𝑠𝑖. 

We define the spatial measure of overall potential influence as 

𝐻𝑠𝑖
2 =

𝑘

𝑞𝑜𝑠𝑖

𝑑𝑖
2

(1 − 𝑑𝑖
2)
+
𝑝𝑜𝑠𝑖
𝑞𝑜𝑠𝑖

  (20) 

When measuring the influence of an observation in a linear regression model by us-

ing the Cook’s distance [3], the observation in question is deleted, and the model is then 

refitted. In a similar way, usually a group of suspected influential observations is deleted 

in the linear regression and admitted into the model if it is proven clean (BACON [41], 

[42], DGRP [11]). This is because IOs in linear regression are global in nature; however, in 

a spatial regression model, IOs are local. Haining [20] noted that spatial outliers are local 

in nature; their attribute values are outliers if they are extreme relative to the set of values 

in their neighbourhood on the map. IOs in spatiotemporal statistics usually carry vital 

information in applications. Kou et al. [26] further pointed out that detecting spatial out-

liers can help in locating extreme meteorological events such as tornadoes and hurricanes, 

identify aberrant genes or tumour cells, discover highway traffic congestion points, pin-

point military targets in satellite images, determine possible locations of oil reservoirs and 

detect water pollution incidents. Thus, measuring the influence of multiple spatial loca-

tions requires a contiguous set of points to reveal the unusual features related to that 

neighbourhood. 
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Although methods that detect multiple outliers in spatial regression work well (see 

[21]), we refer to methods that group observations as clean or suspect, irrespective of their 

positions (with reference to spatial data), and admit them into the model as clean obser-

vations according to some conditions. 

According to Hadi [10], examining each value of influence measure alone, such as 

𝑷𝒔𝒊, ISRs, ESRs, 𝐶𝐷𝑠𝑖 and 𝐻𝑠𝑖
2 , might not be successful to indicate the IOs or the source of 

influence. Imon [43] and Mohammed [44] noted that one should consider both outliers 

and leverage points when identifying IOs. The easiest way to capture IOs is by using di-

agnostic plots. Following [43,45], we adopt their rules for the classification of observations 

into four categories, namely regular observations, vertical outliers, GLPs and BLPs. Once 

observations are classified accordingly, those observations that fall in the vertical outliers 

and BLPs categories are referred to as IOs. However, due to the local nature of spatial IOs, 

we have to make some modifications to the classification scheme. In this paper, a new 

diagnostic plot is proposed by plotting the ISRs (or ESRs) on the Y-axis against the spatial 

potential, 𝑷𝒐𝒔𝒊, on the X-axis. We consider the ISRs and ESRs because both measures con-

tain spatial information. On the other hand, the potentials that are obtained from the trans-

formed model in Equation (13) are considered in order to reflect spatial dependence. 

Hence, the proposed diagnostic plots are denoted as 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖  and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖  plot, 

and they are based on the following classification schemes: 

(a) 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 

i. 𝑖𝑡ℎ observation is declared RO if |𝐼𝑆𝑅𝑠|  <  2.0 and 𝑝𝑜𝑠𝑖 < 𝑙2. 

ii. 𝑖𝑡ℎ observation is GLP if |𝐼𝑆𝑅𝑠|  <  2.0 and 𝑝𝑜𝑠𝑖 > 𝑙2. 

iii. 𝑖𝑡ℎ observation is BLP if |𝐼𝑆𝑅𝑠|  >  2.0 and 𝑝𝑜𝑠𝑖 > 𝑙2. 

iv. 𝑖𝑡ℎ observation is IO if |𝐼𝑆𝑅𝑠| ≥ 2.0 and 𝑝𝑜𝑠𝑖 ≤ 𝑙2. 

Figures 1 and 2 show the classification of the observations as RO, GLP and IOs ac-

cording to 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖, respectively. 

 

Figure 1. Classification of RO, GLP, and IO according 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖. 
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Figure 2. Classification of RO, GLP, and IO according 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖. 

(b) 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 

i. 𝑖𝑡ℎ observation is declared RO if |𝐸𝑆𝑅𝑠| < 𝑡𝑛−𝑘−1 and 𝑝𝑜𝑠𝑖 < 𝑙2. 

ii. 𝑖𝑡ℎ observation is GL if |𝐸𝑆𝑅𝑠|  <  𝑡𝑛−𝑘−1 and 𝑝𝑜𝑠𝑖 > 𝑙2. 

iii. 𝑖𝑡ℎ observation is IO if |𝐸𝑆𝑅𝑠|  >  𝑡𝑛−𝑘−1 and 𝑝𝑠𝑖 > 𝑙2. 

iv. 𝑖𝑡ℎ observation is IO if |𝐸𝑆𝑅𝑠| ≥ 𝑡𝑛−𝑘−1 and 𝑝𝑠𝑖 ≤ 𝑙2. 

4. Results and Discussions 

In this section, the performance of all the proposed methods, i.e., the Cook’s Distance 

(𝐶𝐷̂𝑠𝑖), 𝐻𝑠𝑖
2 (𝐻𝑠𝑖1

2 (non-robust) and 𝐻𝑠𝑖2
2 (robust)), 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖, is evaluated 

using a simulation study, artificial data and real datasets of gasoline price data in the 

southwest area of Sheffield, UK, COVID-19 data in the counties of the State of Georgia, 

USA and the life expectancy data in counties of the USA. 

Simulated Data 

We simulated the spatial regression model in Equation (9) for a square spatial grid 

with sample size, 𝑛 =  400, 𝜌 =  0.4, 𝜆 =  0.5 and 𝑾𝟏 = 𝑾𝟐 , using row-standardized 

Queen’s contiguity spatial weights. 𝒙𝟎 = 𝟏, 𝒙𝟏 ∼ 𝑁(0,1), 𝜷𝟎 = 𝟎, 𝜷𝟏 = 𝟏 (bold face 0 

and 1 refer to column vectors of values zeros and ones, respectively). The contamination 

is taken at two percent in each of 𝑿 and 𝒚 directions. The contamination in the 𝒚 direc-

tion is taken from the Cauchy distribution because of its fat tails. Contamination in the 𝑿 

direction is taken from the following multivariate distribution, 

𝑿 ∼ ([
0
2
] , [
1 0
0 1

])  

However, it is important to note that during the contamination, some of the contam-

inations may have attributes similar to those in their neighbourhood, as noted by Dowd 

[46], and spatial simulation is conditioned to a real dataset. 

Figure 3 shows the graph of average attribute values in the neighbourhood of loca-

tions against their attribute values with added contamination. It can be observed that 

some of the added contamination, in black dots, are in the middle of clean data points 

while some stand out from the bulk of the data (i.e., away from their average neighbour-

hood values), which clearly indicates outlyingness. 
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Figure 3. Graph of average attribute values in neighbourhood of locations against the attribute val-

ues in the locations with contamination (black points). 

Table 1 presents the values of ISRs, ESRs and 𝒑𝒐𝒔𝒊, where values in parentheses are 

their corresponding cut-off points. It shows seven locations with large Studentized resid-

uals according to ISRs and ESRs. There are 54 observations with large potentials (>0.0078). 

Two out of the fifty-four potentials correspond to Studentized residuals greater than the 

thresholds of ISRs and ESRs (locations 51 and 201). 

Table 1. ISRs, ESRs and 𝒑𝒐𝒔𝒊 of locations with large Studentized residuals in the simulated GSM 

model, with their cut-off points in parentheses. 

Location 
𝑰𝑺𝑹𝒔 
(2.00) 

𝑬𝑺𝑹𝒔 
(1.97) 

𝒑𝒐𝒔𝒊 
(0.0078) 

1 15.0378 22.8179 0.0008 

4 4.5847 4.7046 0.0033 

35 −7.1434 −7.6397 0.0026 

51 −4.4695 −4.5801 0.0430 

91 4.7613 4.8965 0.0068 

201 −6.9336 −7.3840 0.0280 

265 −2.2644 −2.2762 0.0068 

In order to confirm the outlyingness of the locations classified as spatial IOs, the 

threshold of each outlier neighbourhood given by 

med𝑖 + 3𝑀𝐴𝐷𝑖  

is computed for the Studentized residuals of the classified location and its immediate 

neighbourhood, where med𝑖 is the median of the Studentized residuals and 𝑀𝐴𝐷𝑖 is the 

median absolute deviation. The absolute value of the Studentized residuals is compared 

to the neighbourhood threshold for confirmation as an outlier. 

The 𝐶𝐷𝑠𝑖 detected location 201, which has large ISRs, ESRs and 𝑝𝑠𝑖. 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 

𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 classified locations 1, 4, 35, 51, 91, 201 and 265 as IOs. As noted on Figure 4, 

𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 classified locations 1, 4, 35, 91 and 265 as outliers in the 𝑦 

direction, and locations 51 and 201 in both 𝑋  and 𝑦  directions. The cut-off limits of 

𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 are narrower than 2 for the 5% cut-off point of the Student’s t-distribution, 

which is around 1.96 for large sample sizes. 
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(a) (b) 

Figure 4. Graph of IO classification according to GLP, BLP and vertical outlier in 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 for simu-

lated data. (a) 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖; (b) 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖. 

𝐻𝑠𝑖1
2  classified location 1 only as IO. Location 1 has large ISRs and ESRs with small 

𝑝𝑜𝑠𝑖. It is an outlier in the 𝑦 direction. 𝐻𝑠𝑖2
2  identified 60 locations as IOs, including all the 

locations classified by the other methods. However, a diagnostic examination of the 53 

other locations classified by 𝐻𝑠𝑖2
2  alone reveals that all locations that have small ISRs and 

ESRs with large potential values are classified as IOs. Moreover, the locations with small 

Studentized residuals, which show no difference with their neighbourhood, are classified 

as IOs. This is a clear case of swamping, perhaps due the local nature of the spatial IOs. 

In a 1000-run of the simulation described above at different error variances of 0.01, 

0.1, 0.2 and 0.3 as shown in Table 2, the 𝐶𝐷𝑠𝑖 consistently maintained low classification of 

influential observations with consistent swamping rates of 0%. The 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 demon-

strated a high detection to the tune of 98% while 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 had 100% accurate classifi-

cation of the IOs, both with swamping rates of 0%. 𝐻𝑠𝑖1
2  had less than 40% accurate clas-

sification with zero swamping rate, while the 𝐻𝑠𝑖2
2  had up to 99% accurate IO classifica-

tion, but usually with very high swamping rates. 

Table 2. Influential observations classification rate based on large prediction Studentized residuals 

and large potentials. 

𝝈𝟐 Method Accurate Classification (%) Swamping (%) 

 𝐶𝐷𝑠𝑖 22.25 0.0 

 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 98.54 0.0 

0.01 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 100.00 0.0 

 𝐻𝑠𝑖1
2  39.45 0.0 

 𝐻𝑠𝑖2
2  99.71 81.41 

 𝐶𝐷𝑠𝑖 20.64 0.0 

 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 98.36 0.0 

0.1 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 100.00 0.0 

 𝐻𝑠𝑖1
2  38.09 0.0 

 𝐻𝑠𝑖2
2  99.14 76.48 

 𝐶𝐷𝑠𝑖 17.86 0.00 

 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 97.51 0.00 

0.2 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 100.00 0.00 

 𝐻𝑠𝑖1
2  37.23 0.00 
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 𝐻𝑠𝑖2
2  97.34 69.25 

 𝐶𝐷𝑠𝑖 16.36 0.00 

 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 96.57 0.00 

0.3 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 100.00 0.00 

 𝐻𝑠𝑖1
2  36.23 0.00 

 𝐻𝑠𝑖2
2  96.00 64.42 

5. Illustrative Examples 

5.1. Example 1 

The gasoline price data for 61 retail sites in the southwest area of Sheffield from [19] 

were used in Example 1. The analysis indicated the presence of spatial interaction in the 

error term with a Moran’s I of 0.239. 

The fitted SEM model is given by Equation (21): 

𝒚̂𝑀 = 35.78 + 0.71𝑿𝐹 + λ̂𝑾𝝃 (21) 

where, 𝒚𝑀 and 𝑿𝑀 are the March and February sales from the southwest Sheffield gas-

oline sale data, respectively, λ̂ = 0.15 is the estimate of coefficient of correlation in the 

residuals, 𝑾 is the standardized weight matrix and 𝝃 is the vector of correlated residu-

als. 

Table 3 shows the results of the detected IOs in the SEM model for the gasoline data 

with all the sites detected by the methods. A “yes” under a method column indicates that 

the site has been detected by the method as IO and a “no” means otherwise. The values 

in bold in columns ISRs, ESRs and 𝑝𝑠𝑖 indicate large Studentized residuals and potentials 

greater than 0.0335, respectively. Figure 5 shows the classification of observations by 

𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖. 

Table 3. Sites with IOs in the analysis of the southwest Sheffield gasoline data. 

S/N Site 
ISRs 

(2.00) 

ESRs 

(2.00) 
𝒑𝒐𝒔𝒊 

(𝟎. 𝟎𝟑𝟑𝟓) 
𝑪𝑫𝒔𝒊 𝑰𝑺𝑹𝒔 − 𝑷𝒐𝒔𝒊 𝑬𝑺𝑹𝒔 − 𝑷𝒐𝒔𝒊 𝑯𝒔𝒊𝟏

𝟐  𝑯𝒔𝒊𝟐
𝟐  

1. 3 −1.8879 −1.9301 0.3538 no No No no Yes 

2. 9 1.4810 1.4962 0.0223 no No No no Yes 

3. 22 1.0127 1.0129 0.0779 no No No no Yes 

4. 25 5.4292 7.5481 0.2773 yes Yes Yes yes Yes 

5. 26 1.4438 1.4573 0.1352 no No No no Yes 

6. 30 2.2054 2.2813 0.2489 no No No no Yes 

7. 40 1.5692 1.5890 0.0194 no No No no Yes 

8. 41 1.1974 1.2058 0.0218 no No No no Yes 

9. 42 −1.9150 −1.9598 0.0378 no No No no Yes 

10. 46 0.1003 0.0995 0.1319 no No No no Yes 

11. 55 −1.2042 −1.2089 0.0219 no No No no Yes 

12. 61 −1.8011 −1.8363 0.0319 no No No no Yes 
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Figure 5. Graph of the lagged residuals against the residuals, of the 61 sites of the southwest Shef-

field fitted with SEM, showing the IO points in red dots. 

The 𝐶𝐷𝑠𝑖, 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖, 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖, and 𝐻𝑠𝑖1
2  coincidentally identified site 25 only as 

IO. 𝐻𝑠𝑖2
2  detects 11 more sites as IOs in addition to site 25. Haining [19] has made elaborate 

diagnostic analysis of the data where he emphasized the effect of site 25 as IO in the data. 

Our methods have classified site 30 in addition to location 25 as IO. Figure 5 shows the 

graph of the lagged residuals against the residuals. It is noticeable from the graph that site 

30 has also been marked as an IO. 

Though the 𝐻𝑠𝑖2
2  has detected all the suspected IOs, it is prone to swamping. The 

remaining high potentials are classified as GLP by 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖  and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖  since 

their Studentized values are small. 

Figure 6 shows the graph of classification of the 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 (a) and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 (b) 

indicating the outliers in red dots, where both are classified as outliers in both the 𝑿 and 

𝒚 directions. 

  

(a) (b) 

Figure 6. Graph of IO classification according to GLP, BLP and vertical outlier in South West gasoline data. (a) 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖; 

(b) 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖. 
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5.2. Example 2 

The data for example 2 were the COVID-19 data for the 159 counties of the State of 

Georgia, USA, as of 30 June 2020 (http://dph.georgia.gov/covid-19-daily-status-report; ac-

cessed on 30 June 2020) and the health ranking (http://www.countyheathrankings.org; ac-

cessed on 30 June 2020). The case-rate per 100,000 of COVID-19 was the dependent varia-

ble. The independent variables were the population of black race in the county (𝑿1), pop-

ulation of Asians (𝑿2), population of Hispanic (𝑿3), population of people that are 65 years 

and above (𝑿4), population of female in the county (𝑿5) and life expectancy (𝑿6). 

The model was fitted with the SAR model (model with the lowest Akaike information 

criteria (AIC) value of 2192). The SAR model is presented in Equation (22): 

𝒚̂ = ρ̂𝑾𝒚̂ + 𝛃̂0 +∑𝛃̂𝑖𝑿𝑖

6

𝑖=1

 (22) 

where ρ̂ = 0.6967 , 𝛃̂0 = 1087.7388 , 𝛃̂1 = 9.7831 ,  𝛃̂2 = −6.2210 , 𝛃̂3 = −54.1402 , 𝛃̂4 =

−28.5874, 𝛃̂5 = 4.8288 and 𝛃̂6 = 40.3323. 𝑿1, 𝑿3 and ρ̂ are significant at 5%, while 𝑋2 

and 𝑋5 are significant at 10%. 𝑋4 and 𝑋6 are not significant. 

The Cook’s distance only classified county 50 as an IO. The 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 −

𝑃𝑜𝑠𝑖 coincided in detecting counties 3, 26, 49, 50, 70, 120, 135, 141 and 142 as IOs. The 𝐻𝑠𝑖1
2  

(non-robust) detected 26 and 50 as IOs. The 𝐻𝑠𝑖2
2  (robust) detected 3, 26, 50, 58, 67, 70, 98, 

118, 120, 128, 131, 134, 135, 139, 141, 142, 153 and 155 counties. Table 4 shows the detected 

locations by the various methods with large ISRs, ESRs and high potentials in bold font. 

Table 4. Detected IOs counties by different methods in the Georgia COVID-19 data. 

County 
ISRs 

(2.00) 

ESRs 

(1.98) 

𝒑𝒔𝒊 
(𝟎. 𝟎𝟖𝟓𝟏) 

𝑪𝑫𝒔𝒊 𝑰𝑺𝑹𝒔 − 𝑷𝒐𝒔𝒊 𝑬𝑺𝑹𝒔 − 𝑷𝒐𝒔𝒊 𝑯𝒔𝒊𝟏
𝟐  𝑯𝒔𝒊𝟐

𝟐  

3 2.2245 2.2539 0.0257 no no no no Yes 

26 4.5733 4.9060 0.1956 no yes yes yes Yes 

49 2.7685 2.8313 0.0265 no yes Yes no Yes 

50 5.7504 6.4737 0.2298 yes yes Yes yes Yes 

58 0.7090 0.7079 0.6893 no no No yes Yes 

67 0.1018 0.1015 0.3524 no no No no Yes 

70 3.1334 3.2285 0.0895 no yes Yes no Yes 

98 −1.8549 −1.8699 0.0105 no no No no Yes 

118 −1.5657 −1.5731 0.0827 no no No no Yes 

120 3.0168 3.1006 0.0544 no yes Yes no Yes 

128 −2.0152 −2.0359 0.4557 no yes yes no Yes 

131 −1.6718 −1.6862 0.0565 no no No no Yes 

134 −1.6168 −1.6253 0.0818 no no No no Yes 

135 2.1674 2.1942 0.0338 no yes Yes no Yes 

141 2.6726 2.7283 0.0163 no Yes yes no Yes 

142 2.1805 2.2079 0.0174 Yes yes no no Yes 

153 −1.2693 −1.2718 0.2234 No No no no Yes 

155 −1.2334 −1.2359 0.2472 No No no no Yes 

The IOs identified by 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 both have large Studentized re-

siduals and large potentials as can be observed in Table 4. Figure 7 shows the outliers in 

X, y and both X and y directions. The 𝐶𝐷𝑠𝑖 detected the largest Studentized residual with 

a high potential as IO. The 𝐻𝑠𝑖1
2  identified two observations with large Studentized values 

and high potential values. The 𝐻𝑠𝑖2
2  detected all suspected IOs, but with many having 

both small values of Studentized residuals and potential values. 
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(a) (b) 

Figure 7. Graph of IO classification according to GLP, BLP and vertical outlier in the State of Georgia, USA COVID-19 

data. (a) 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖; (b) 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖. 

While examining the outlyingness of the classified counties, we find that county 50 

is clearly an IO since it has both large Studentized residual and a large potential value. It 

is outside the threshold value of its neighbourhood. 

Four of the counties classified by 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 (i.e., 26, 50, 70 and 128) 

are classified as vertical outliers while the counties 3, 49, 120, 135,141 and 142 have large 

potential values and Studentized values greater than their threshold values and are clas-

sified as BLPs and hence IOs. 

Besides the counties classified by 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖, all the other counties 

detected by 𝐻𝑠𝑖2
2  have their Studentized difference residuals below their neighbourhood 

threshold. Though their potential values are mostly large, their prediction Studentized 

residuals are small in both ISRs and ESRs. 

5.3. Example 3 

In example 3, the life expectancy of the counties of the US was measured by popula-

tion density (𝑿1), fair/poor health status (𝑿2), obesity (𝑿3), population in rural area (𝑿4), 

inactivity rate (𝑿5), population of smokers (𝑿6), population of black people (𝑿7), popula-

tion of Asians (𝑿8) and population of Hawaiians (𝑋9). The data were obtained from the 

Kaggle website (https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-so-

ciohealth-data; accessed on 13 December 2020). 

The spatial error model (SEM) had the lowest AIC value and was fitted to the data. 

The model was significant at the 5% level with a significant Moran’s I of 0.2160. 𝑿1 and 

𝑿4 were not significant at the 5%. All the other estimates were significant at the 5% level. 

The fitted model is given by: 

𝒚̂ = 𝛃̂0 +∑𝛃̂𝑖𝑿𝑖

9

𝑖=1

+ 𝜆̂𝑾𝝃  

where λ̂ = 0.4343 , 𝛃̂0 = 88.4885 , 𝛃̂1  = 0.0000, 𝛃̂2 = −0.0954 $, 𝛃̂3 = −0.0377 , 𝛃̂4 =

0.0040 , 𝛃̂5 = −0.0630 , 𝛃̂6 = −0.3892 , 𝛃̂7 = −0.0113 , 𝛃̂8 = 0.1437 , 𝛃̂9 = −0.2016 . 

Counties with fair/poor health facility had a 0.1 lower life expectancy for an increase in 

the population. Counties with a larger number of obese people had a decrease in life ex-

pectancy of 0.03. Similarly, those counties with a large number of people with inactivity 

had a life expectancy decreased by 0.06, and counties with a larger number of smokers 

had a life expectancy decreased by 0.04 per increase in the population. Countries with a 

higher number of black people and Hawaiians had a life expectancy decreased by 0.01 

and 0.2, respectively, while those with a higher number of Asians had an increased rate 

of 0.14 in population. 
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The 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖  classified 139 counties as IOs, while 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖  classified eight 

more counties, making a total of 147. 𝐻𝑠𝑖1
2  and 𝐻𝑠𝑖2

2  have classified 24 and 324 counties as 

IOs, respectively. 𝐶𝐷𝑠𝑖 classified no county as IO. 

6. Conclusions 

In this article, we demonstrated the application of influential observations (IOs) de-

tection techniques from the classical regression to the spatial regression model. Measures 

that contained spatial information in the spatial autoregression in the dependent variables 

and residuals were obtained. We also evaluated the performance of some methods em-

ployed in classical regression to their spatial counterparts. Though the methods work well 

in classical regression models, they are mostly prone to either masking or swamping in 

spatial applications. This is attributable to the local nature of spatial outliers. Hence, we 

proposed new 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 and 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 plots to classify observations into four cate-

gories: regular observations, vertical outliers, good leverage points and bad leverage 

points, whereby IOs are those observations which fall in the vertical and bad leverage 

point categories. Interestingly, the proposed 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 diagnostic plot was very suc-

cessful in classifying observations into the correct categories followed by the 𝐼𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖, 

as demonstrated by the results obtained from a simulation study and real data examples. 

Thus, the newly established 𝐸𝑆𝑅𝑠 − 𝑃𝑜𝑠𝑖 plot can be a suitable alternative to identify IOs 

in the spatial regression model. 

Author Contributions: Conceptualization, A.M.B. and H.M.; methodology, A.M.B.; software, 

A.M.B.; validation, A.M.B. and H.M.; formal analysis, A.M.B. and N.H.A.R.; investigation, A.M.B. 

and N.H.A.R.; resources, A.M.B., H.M. and M.B.A.; data curation, A.M.B.; writing—original draft 

preparation, A.M.B.; writing—review and editing, A.M.B., H.M., M.B.A. and N.H.A.R.; visualiza-

tion, A.M.B. and M.B.A.; supervision, H.M.; project administration, H.M.; funding acquisition, H.M. 

All authors have read and agreed to the published version of the manuscript. 

Funding: This article was partially supported by the Fundamental Research Grant Scheme (FRGS) 

under the Ministry of Higher Education, Malaysia with project number 

FRGS/1/2019/STG06/UPM/01/1 

Data Availability Statement: Data are available online. Data for Example 1 are available in page 

332 of [19]. Data for Example 2 are available online, website link (http://dph.georgia.gov/covid-19-

daily-status-report; accessed on 30 June 2020 and http://www.countyheathrankings.org; accessed 

on 30 June 2020). Data for Example 3 are available online, website link 

(https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-sociohealth-data; accessed on 

13 June 2020) 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & 

Sons: New York, NY, USA, 1980; Volume 571. 

2. Rashid, A.M.; Midi, H.; Slwabi, W.D.; Arasan, J. An Efficient Estimation and Classification Methods for High Dimensional Data 

Using Robust Iteratively Reweighted SIMPLS Algorithm Based on Nu -Support Vector Regression. IEEE Access 2021, 9, 45955–

45967, doi:10.1109/ACCESS.2021.3066172. 

3. Cook, R.D. Influential Observations in Linear Regression. J. Am. Stat. Assoc. 1977, 74, 169–174. 

4. Hoaglin, D.C.; Welsch, R.E. The Hat Matrix in Regression and ANOVA. Am. Stat. 1978, 32, 17, https://doi.org/10.2307/2683469. 

5. Andrews, D.F.; Pregibon, D. Finding the Outliers That Matter. J. R. Stat. Soc. Ser. B (Methodol.) 1978, 40, 85–93. 

6. Hawkins, D.M. Identification of Outliers; Springer: Berlin/Heidelberg, Germany, 1980; Volume 11. 

7. Huber, P. Robust Statistics; John Wiley and Sons: New York, NY, USA, 1981. 

8. Cook, R.D.; Weisberg, S. Monographs on statistics and applied probability. In Residuals and Influence in Regression; Chapman 

and Hall: New York, NY, USA, 1982; ISBN 978-0-412-24280-9. 

9. Chatterjee, S.; Hadi, A.S. Sensitivity Analysis in Linear Regression; John Wiley & Sons: New York, NY, USA, 1988; Volume 327. 

10. Hadi, A.S. A New Measure of Overall Potential Influence in Linear Regression. Comput. Stat. Data Anal. 1992, 14, 1–27. 



Symmetry 2021, 13, 2030 19 of 20 
 

 

11. Habshah, M.; Norazan, M.R.; Rahmatullah Imon, A.H.M. The Performance of Diagnostic-Robust Generalized Potentials for the 

Identification of Multiple High Leverage Points in Linear Regression. J. Appl. Stat. 2009, 36, 507–520, 

https://doi.org/10.1080/02664760802553463. 

12. Meloun, M.; Militkỳ, J. Statistical Data Analysis: A Practical Guide; Woodhead Publishing Limited: Sawston, Cambridge, 2011;. 

13. Puterman, M.L. Leverage and Influence in Autocorrelated Regression Models. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1988, 37, 76–86. 

14. Schall, R.; Dunne, T.T. A Unified Approach to Outliers in the General Linear Model. Sankhyā Indian J. Stat. Ser. B 1988, 50, 157–

167. 

15. Martin, R.J. Leverage, Influence and Residuals in Regression Models When Observations Are Correlated. Commun. Stat.-Theory 

Methods 1992, 21, 1183–1212. 

16. Shi, L.; Chen, G. Influence Measures for General Linear Models with Correlated Errors. Am. Stat. 2009, 63, 40–42. 

17. Cerioli, A.; Riani, M. Robust Transformations and Outlier Detection with Autocorrelated Data. In From Data and Information 

Analysis to Knowledge Engineering; Spiliopoulou, M., Kruse, R., Borgelt, C., Nürnberger, A., Gaul, W., Eds.; Studies in 

Classification, Data Analysis, and Knowledge Organization; Springer: Berlin/Heidelberg, Germany, 2006; pp. 262–269, ISBN 

978-3-540-31313-7. 

18. Christensen, R.; Johnson, W.; Pearson, L.M. Prediction Diagnostics for Spatial Linear Models. Biometrika 1992, 79, 583–591, 

https://doi.org/10.1093/biomet/79.3.583. 

19. Haining, R. Diagnostics for Regression Modeling in Spatial Econometrics*. J. Reg. Sci. 1994, 34, 325–341, 

https://doi.org/10.1111/j.1467-9787.1994.tb00870.x. 

20. Haining, R.P.; Haining, R. Spatial Data Analysis: Theory and Practice; Cambridge University Press: Cambridge, England, 2003. 

21. Dai, X.; Jin, L.; Shi, A.; Shi, L. Outlier Detection and Accommodation in General Spatial Models. Stat. Methods Appl. 2016, 25, 

453–475, https://doi.org/10.1007/s10260-015-0348-1. 

22. Singh, A.K.; Lalitha, S. A Novel Spatial Outlier Detection Technique. Commun. Stat. Theory Methods 2018, 47, 247–257. 

23. Anselin, L. Some Robust Approaches to Testing and Estimation in Spatial Econometrics. Reg. Sci. Urban Econ. 1990, 20, 141–163, 

https://doi.org/10.1016/0166-0462(90)90001-J. 

24. Cerioli, A.; Riani, M. Robust Methods for the Analysis of Spatially Autocorrelated Data. Stat. Methods Appl. 2002, 11, 335–358, 

https://doi.org/10.1007/BF02509831. 

25. Yildirim, V.; Mert Kantar, Y. Robust Estimation Approach for Spatial Error Model. J. Stat. Comput. Simul. 2020, 90, 1618–1638, 

https://doi.org/10.1080/00949655.2020.1740223. 

26. Kou, Y.; Lu, C.-T. Outlier Detection, Spatial. In Encyclopedia of GIS; Springer: Boston, MA, USA, 2008; 1539–1546. 

27. Hadi, A.S.; Imon, A.H.M.R. Identification of Multiple Outliers in Spatial Data. Int. J. Stat. Sci. 2018, 16, 87–96. 

28. Hadi, A.S.; Simonoff, J.S. Procedures for the Identification of Multiple Outliers in Linear Models. J. Am. Stat. Assoc. 1993, 88, 

1264–1272, https://doi.org/10.1080/01621459.1993.10476407. 

29. Aggarwal, C.C. Spatial Outlier Detection. In Outlier Analysis; Springer: New York, NY, USA, 2013; pp. 313–341, ISBN 978-1-

4614-6395-5. 

30. Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. 

31. Politis, D.; Romano, J.; Wolf, M. Bootstrap Sampling Distributions. In Subsampling; Springer: New York, NY, USA, 1999; 

Available online: https://link.springer.com/chapter/10.1007/978-1-4612-1554-7_1 (accessed on 16 September 2021). 

32. Heagerty, P.J.; Lumley, T. Window Subsampling of Estimating Functions with Application to Regression Models. J. Am. Stat. 

Assoc. 2000, 95, 197–211, https://doi.org/10.1080/01621459.2000.10473914. 

33. Anselin, L. Exploratory Spatial Data Analysis and Geographic Information Systems. New Tools Spat. Anal. 1994, 17, 45–54. 

34. Cressie, N.A.C. Statistics for Spatial Data, Rev. ed.; Wiley series in probability and mathematical statistics; Wiley: New York, NY, 

USA, 1993; ISBN 978-0-471-00255-0. 

35. Anselin, L. Spatial Econometrics: Methods and Models; Studies in Operational Regional Science; Springer: Dordrecht, The 

Netherlands, 1988; Volume 4, ISBN 978-90-481-8311-1. 

36. LeSage, J.P. The Theory and Practice of Spatial Econometrics; University of Toledo: Toledo, OH, USA, 1999; Volume 28. 

37. Olver, P.J.; Shakiban, C.; Shakiban, C. Applied Linear Algebra; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1. 

38. Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, NY, USA, 2012; ISBN 978-0-521-

83940-2. 

39. Liesen, J.; Mehrmann, V. Linear Algebra; Springer Undergraduate Mathematics Series; Springer International Publishing: Cham, 

Germany, 2015; ISBN 978-3-319-24344-3. 

40. Shekhar, S.; Lu, C.-T.; Zhang, P. A Unified Approach to Detecting Spatial Outliers. GeoInformatica 2003, 7, 139–166. 

41. Billor, N.; Hadi, A.S.; Velleman, P.F. BACON: Blocked Adaptive Computationally Efficient Outlier Nominators. Comput. Stat. 

Data Anal. 2000, 34, 279–298. 

42. Imon, A. Identifying Multiple High Leverage Points in Linear Regression. J. Stat. Stud. 2002, 3, 207–218. 

43. Rahmatullah Imon, A.H.M. Identifying Multiple Influential Observations in Linear Regression. J. Appl. Stat. 2005, 32, 929–946, 

https://doi.org/10.1080/02664760500163599. 

44. Midi, H.; Mohammed, A. The Identification of Good and Bad High Leverage Points in Multiple Linear Regression Model. Math. 

Methods Syst. Sci. Eng. 2015, 147–158. 

45. Bagheri, A.; Midi, H. Diagnostic Plot for the Identification of High Leverage Collinearity-Influential Observations. Sort: Stat. 

Oper. Res. Trans. 2015, 39, 51–70. 



Symmetry 2021, 13, 2030 20 of 20 
 

 

46. Dowd, P. The variogram and kriging: Robust and resistant estimators. In Geostatistics for Natural Resources Characterization; 

Springer: Berlin/Heidelberg, Germany, 1984; pp. 91–106. 


