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Abstract: The propagation of electron-acoustic waves (EAWs) in an unmagnetized plasma, compris-
ing (r, q)-distributed hot electrons, cold inertial electrons, and stationary positive ions, is investigated.
Both the unmodulated and modulated EAWs, such as solitary waves, rogue waves (RWs), and
breathers are discussed. The Sagdeev potential approach is employed to determine the existence
domain of electron acoustic solitary structures and study the perfectly symmetric planar nonlinear
unmodulated structures. Moreover, the nonlinear Schrödinger equation (NLSE) is derived and its
modulated solutions, including first order RWs (Peregrine soliton), higher-order RWs (super RWs),
and breathers (Akhmediev breathers and Kuznetsov–Ma soliton) are presented. The effects of plasma
parameters and, in particular, the effects of spectral indices r and q, of distribution functions on the
characteristics of both unmodulated and modulated EAWs, are examined in detail. In a limited
cases, the (r, q) distribution is compared with Maxwellian and kappa distributions. The present
investigation may be beneficial to comprehend and predict the modulated and unmodulated electron
acoustic structures in laboratory and space plasmas.

Keywords: non-Maxwellian plasmas; Sagdeev potential; a nonlinear Schrödinger equation; unmod-
ulated solitary waves; rogue waves and breathers

1. Introduction

The electron-acoustic waves (EAWs), first proposed by Fried and Gould in 1961 [1],
have been extensively investigated in laboratory experiments [2] and observed in various
areas of Earth’s magnetosphere, such as geomagnetic tails [3], bow shock [4], Earth’s
magnetosheath [5], polar cusp [6], and dayside auroral region [7]. The planar symmetric
electron acoustic solitary waves (EASWs) in space can either be compressive or rarefactive,
and the corresponding amplitude of the electric field ranges from a few mV/m to several
100 mV/m [8]. Moreover, the high frequency region of broadband electrostatic noise (BEN),
studied by the satellite missions in various regions of magnetospheres, such as plasma
sheet boundary layer (PSBL), the cusp of the magnetosphere, inner magnetosphere, and
geomagnetic tail, has been explained successfully in terms of EAWs [9–11].

The EAWs occur in a plasma environment with cold (temperature Tc) electrons that
oscillate due to their inertia, hot (temperature Th) electrons that provide the restoring force,
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along with ions that act as a neutralizing background [12]. The frequency of EAWs is
usually high and they propagate with a phase velocity greater than thermal velocity of
cold electrons and slower than the thermal velocity of hot electrons [13]. However, this
mode is strongly Landau-damped and can only contribute when the temperatures of cold
and hot electrons are such that 10Tc . Th and the number density of hot and cold electrons
is related as 0 < nc < 0.8ne, where ne = nc + nh [12,14]. Owing to their importance in
the magnetosphere, the propagation of nonlinear EAWs has been discussed by several
researchers for both unmagnetized [9,15] and magnetized plasma systems [16–19].

Most of the studies in plasma physics mainly relied on the Maxwellian distribution
for analyzing the dynamics of constituent particles, until recently. However, it has been
observed that the distribution functions deviate significantly from Maxwellian distribution
in astrophysical and space plasmas, such as magnetosheath, magnetosphere, ionosphere,
solar wind, and interstellar medium [20–22]. Vasyliunas [23] first introduced the kappa or
generalized Lorentzian distribution to study the superthermal electrons in the terrestrial
magnetosphere. This distribution contains the spectral index κ for measuring the deviation
from Maxwellian distribution and reduces to the Maxwellian distribution as κ → ∞. Apart
from the observations of high energy tails, satellite missions have also reported the electron
distributions that exhibit flat top behavior and have different shapes than the Maxwellian
distribution in the magnetosheath, terrestrial bow shock, and in the magnetotail [24–27].

The distribution function with both flat top and high energy tails is different from
the Maxwellian, kappa, and Cairns distributions. Qureshi et al. [28] first introduced a
more general and comprehensive velocity distribution, and named it the double spectral
index or generalized (r, q) distribution. Here, the q-index alters the electrons population in
the tail of the distribution whereas the r-index determines the electrons at low energies to
describe the flat top behavior. Since then, the effects of double spectral index (r, q) on the
linear and nonlinear propagation of plasma waves have been studied by a few researchers.
Qureshi et al. studied the parallel propagating electromagnetic structures in an (r, q)-
distributed plasma and obtained a new dispersion relation for Alfvén waves [28]. Later,
Qureshi et al. [29] revisited the study of terrestrial lion roars using the (r, q) distribution,
previously studied by Masood et al. [25] for the bi-Maxwellian distribution, and showed
sufficient accordance between theory and data. Shah et al. [30] investigated EAWs in the
small amplitude limit for planetary magnetospheres and showed that, besides rarefactive
solitons, the compressive solitons are also formed for specific values of parameter r, using
(r, q) distribution.

The dynamical behaviors of the symmetric arbitrary amplitude unmodulated EASWs
have been studied via the Sagdeev potential approach [31], where the dynamics of the soli-
tary pulses are determined through an energy integral equation and the existence domain
of the solitons could be estimated from the maximum and minimum Mach numbers. On the
contrary, the modulationally unstable region and the propagation of modulated waves can
be analyzed by deriving a nonlinear Schrödinger equation (NLSE) [32–38]. These modu-
lated structures include rogue waves (RWs), i.e., Peregrine soliton (first-order RW) [39], and
higher-order RWs (super RWs) [40,41], as well as the breathers, i.e., Akhmediev breathers
(ABs) [42], and the Kuznetsov–Ma (KM) soliton [43,44], which can be investigated using
the derivative expansion method (DEM).

Rogue waves (RWs) are high amplitude pulses with tremendous energy, which appear
as a result of the amplitude modulation in the nonlinear dispersive medium [45–56]. RWs
are robust and ubiquitous in nature and have been observed in various contexts, such as
in biology [57], hydrodynamics [58], optical fibers [59], Bose–Einstein condensates [60], in
plasma physics [61], in oceans [62], and in the atmosphere [63]. For a multi-component
plasma, Bailung et al. [64] gave the first experimental evidence of first-order RWs, i.e.,
Peregrine solitons. They showed that the amplitude of the Peregrine soliton becomes thrice
the amplitude of nearby waves with a critical concentration of negative ions. Merriche and
Tribeche [65] studied electron acoustic RWs in a plasma having Tribeche–Tsallis–Cairns
distributed electrons, and observed that nonthermal nonextensive electrons vary in the
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region of modulational instability and structure of RWs. Shakir et al. [66] investigated
ion acoustic waves and showed that (r, q) distributed electrons modify the domain of
modulational instability. Recently, the EAWs have been studied in a collisionless three-
component unmagnetized plasma with ions, cold electrons, and (r, q) distributed warm
electrons, to show that the indices r and q tend to decrease the growth rate of modulational
instability [67].

The breathers are the localized periodic solutions of NLSE [68,69] where the term
originates from the fact that most of the breathers oscillate along the spatial or temporal
scale. Thus, the ABs are periodic in the space domain, but localized in the time domain,
while the KM solitons are localized along the spatial scale, but undergo periodic evolution
during propagation. The first experimental observation of KM solitons came out quite
late, by Kibler et al. [70] for optical fibers, although, they were proposed theoretically in
1977 [43].

In the present work, the electron-acoustic structures, including the unmodulated
(solitary waves) and modulated (rogue waves and breathers) in a non-Maxwellian unmag-
netized plasma, comprising (r, q)-distributed hot electrons, cold inertial electrons, and the
stationary positive ions, were investigated. The paper is arranged as follows: Section 2
deals with the basic set of governing equations for EAWs in a collisionless unmagnetized
plasma. In Section 3, we derive the Sagdeev pseudo-potential and discuss the existence
conditions for solitons. The variations of unmodulated solitary structures for plasma
parameters is studied in Section 3. Section 4 concentrates on the derivation of NLSE, deter-
mining the domain of modulational instability. The rogue waves and the breather solutions
of NLSE are analyzed in Section 5. The obtained results are summarized in Section 4.

2. Physical Model and Governing Equations

Consider a collisionless unmagnetized plasma consisting of (r, q) distributed hot
electrons (with density nh), cold inertial electrons (with density nc), and stationary positive
ion (with density ni). The propagation of wave is considered along x-axis. Accordingly,
the condition of charge neutrality reads ni0 = ne0 = nc0 + nh0, where nh0, nc0 and ni0
represent the unperturbed number densities of hot electrons, cold electrons, and positive
ions, respectively. The dynamics of EAWs in the plasma model are governed by the set of
normalized equations [71], given as

∂nc

∂t
+

∂(ncuc)

∂x
= 0, (1)

∂uc

∂t
+ uc

∂uc

∂x
− ∂φ

∂x
+

σ

nc

∂pc

∂x
= 0, (2)

∂pc

∂t
+ uc

∂pc

∂x
+ 3pc

∂u
∂x

= 0, (3)

∂2φ

∂x2 − µnh − nc + (µ + 1) = 0. (4)

Here, σ = Tc/Th represents the cold to hot electron temperature ratio. The density
nc, velocity uc, pressure pc, and electrostatic potential φ are scaled, respectively, by equi-
librium number density, cs =

√
kBTh/me, nc0kBTc, and kBTh/e. Moreover, the space and

time variables are, respectively, scaled by the Debye length λDe = (kBTh/4πnc0e2)1/2

and inverse plasma frequency ω−1
pc = (4πnc0e2/me)−1/2. In the normalized form, the

neutrality condition is ni0/nc0 = 1 + µ, where µ = nh0/nc0 represents the concentration of
hot electrons.

The normalized number density of generalized (r, q)-distributed hot electrons is given
by [28]

nh = 1 +
∞

∑
s=1

αsφs, (5)
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where the coefficients αs are

α1 =
Γ
[
q− 1

2+2r

]
Γ
[

1
2+2r

]
(q− 1)

−1
1+r

2βΓ
[ 3

2+2r
]
Γ
[
q− 3

2+2r
] ,

α2 =
−Γ
[
−1

2+2r

]
Γ
[
q + 1

2+2r

]
(q− 1)

−2
1+r

8β2Γ
[ 3

2+2r
]
Γ
[
q− 3

2+2r
] , (6)

α3 =
Γ
[
q + 3

2+2r
]
Γ
[ −3

2+2r
]
(q− 1)

−3
1+r

16β3Γ
[ 3

2+2r
]
Γ
[
q− 3

2+2r
] ,

and so on.

Here β = 3(q− 1)−1/(1+r)Γ
[
q− 3

2+2r
]
Γ
[ 3

2+2r
]
/(2Γ

[
q− 5

2+2r
]
Γ
[ 5

2+2r
]
) and Γ is the

gamma function. The spectral indices “q” and “r” describe the superthermality of high
energy particles and the flatness of the curve for low energy particles. Moreover, r and
q are sometimes called the flatness and tail parameters. This is the general distribution,
in the sense that Maxwellian distribution is retrieved for r = 0 and q → ∞ and kappa
distribution is recovered for r = 0 and q → κ + 1. Moreover, for physically meaningful
results, the following conditions must be fulfilled: q > 1 and q(r + 1) > 5/2 [28].

3. Sagdeev Potential Approach

The Sagdeev potential approach is devoted to the study of unmodulated arbitrary
(but finite) amplitude electron acoustic solitary waves (EASWs). We would like to mention
here that the amplitude of KdV type solitons mitigate with its width. However, the EASWs
observed by the spacecrafts may show an opposite amplitude–width relationship, i.e.,
the amplitude of soliton may enhance as its width increases. The solitons given by the
Sagdeev pseudo-potential technique exhibit a different property from the KdV solitons,
i.e., the amplitude of their solitons may increase or decrease with width depending upon
the model and region of application [10,72]. Therefore, the Sagdeev pseudo-potential
technique is a better candidate for studying the EASWs belonging to space, although, it
may not necessarily show this amplitude–width relation for each plasma model. To apply
this approach, we first make use of the following transformation

ξ = x−Mt, (7)

for the localized solutions in the moving frame, where M = v/cs is the normalized Mach
number and v is the moving frame velocity. Using transformation (7) and integrating the
model Equations (1)–(3) gives

uc = M(1− 1
nc

),

uc = M−
(

M2 + 2φ− 3n2
c σ + 3σ

)1/2
,

pc = n3
c . (8)

Here, the boundary conditions(
uc, nc, φ, φ′

)
→ (0, 1, 0, 0) at ξ → ±∞, (9)

have been utilized. Simultaneously solving the above set of Equation (8) yields a bi-
quadratic equation, which can be solved to obtain the following cold electron density

nc =
1
2
(n1 ± n2), (10)
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where n1,2 =

√(
2φ +

(
M±

√
3σ
)2
)

/3σ. Substituting the value of nc into Equation (4)

after transformation (7) gives

∂2φ

∂ξ2 = µ
∞

∑
s=1

αsφs − 1 +
1
2
(n1 − n2) = −

dV(φ)

dφ
. (11)

Multiplying Equation (11) by dφ/dξ and integrating once over ξ, we finally get the
pseudo-energy balance equation

1
2

(
dφ

dξ

)2
+ V(φ) = 0, (12)

Equation (12) describes the energy integral for an oscillating particle with unit mass
and velocity dφ/dξ in a potential well V(φ) at the position φ. The normalized Sagdeev
pseudo-potential V(φ) is then evaluated to be

V(φ) = −µ
∞

∑
s=1

αsφs+1

s + 1
+ φ +

1
6
√

3σ

[(
M +

√
3σ
)3
−
(

M−
√

3σ
)3
]

+
1

6
√

3σ

[
−
(

2φ +
(

M +
√

3σ
)2
)3/2

+

(
2φ +

(
M−

√
3σ
)2
)3/2

]
(13)

Therefore, the Sagdeev pseudo-potential shows variation with the Mach number, the
density ratio µ, the temperature ratio σ,, and the nonthermality parameters (r, q) through
the coefficients αs, i.e., V(φ) = V(φ, M, σ, µ, r, q).

For the existence of EASWs, the following conditions must be satisfied

(i) V(φ)|φ=0 = V(φ)|φ=φmax
= dV(φ)/dφ|φ=0 = 0,

(ii) d2V(φ)/dφ2
∣∣
φ=0 < 0 gives the minimum/critical Mach number,

where φmax is the maximum value at which the curve of potential V(φ) crosses the φ-axis
for φ 6= 0. The particles oscillate between the origin and the maximum position (φmax). The
condition for minima (which describes V(φ) to be a potential well, rather than a hill) gives

d2V(φ, M, σ, µ, r, q)
dφ2

∣∣∣∣
φ=0

= −µα1 +
1

M2 − 3σ
< 0, (14)

which gives M(µ, σ, r, q) > Mmin =
√

1
µα1

+ 3σ. Note the range of the Mach number
changes by changing the hot to cold electron concentration, cold to hot electron temperature
ratio, and the electron distribution. Furthermore, note that the value of α1 would be
different for different electron velocity distributions. The maximum value of M is attained
from the fact that cold electron density becomes complex at φ = φmax that gives φmax =

−
(

M−
√

3σ
)2

/2 for which the Sagdeev potential given by Equation (13) becomes

V(φ)|φ=φmax
= −µ

∞

∑
s=1

αs

s + 1

[
−1

2

(
M−

√
3σ
)2
]s+1

− 1
2

(
M−

√
3σ
)2

+ M2 + σ− 4
3

M3/2(3σ)1/4. (15)

Solving V(φ)|φ=φmax
= 0 gives us the maximum value of the Mach number Mmax.

Figure 1 shows the curves for maximum (upper) and minimum (lower) Mach numbers, so
that the admissible values of the Mach numbers are confined within the region between
those curves. These permitted values [Mmin, Mmax] define the existence domain of EASWs.
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Further, we check the variation of the permitted domain with the variation of number
densities of hot electrons µ, temperature ratio σ, and the nonthermal parameters (r, q).
Comparison of Figure 1a,b illustrate that increasing the concentration of hot electrons, µ, not
only reduces the allowed region, but also shifts it to lower values of the Mach numbers. The
increasing electron temperature ratio, σ, on the other hand shrinks the region [Mmin, Mmax],
but shifts to the higher values of Mach numbers as can be seen from Figure 1a,c. Moreover,
enhancing the flatness parameter r broadens and shifts upward the permitted region of
Mach numbers, as illustrated by the comparison of Figure 1a,d. Figure 1e,f describe the
comparison of the (r, q) distribution with those of kappa and Maxwellian distributions.
Thus, the comparison of Figure 1a,e shows that the existence region of solitary structures
not only shrinks, but also shifts to lower values of Mach numbers for kappa distribution.
However, as the value of kappa increases, it shifts to higher values of Mach numbers.
Furthermore, Figure 1f illustrates that the permitted domain of the existence of solitons
for Maxwellian limits not only shifts, rapidly, to lower values of Mach numbers with an
increasing ratio µ, but also gets shrunk. The upshot of this analysis is that changing the hot
electron distribution function alters the existence domains of the formation or propagation
of the electron acoustic solitary structures.
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(f): Maxwellian limit

Figure 1. Variation of Mmin and Mmax versus q to determine the existence domain of EASWs (Mmin < M < Mmax). (a) for
(µ, r, σ) = (0.8, 1, 0.05), (b) for (µ, r, σ) = (1, 1, 0.05), (c) for (µ, r, σ) = (0.8, 1, 0.1), (d) for (µ, r, σ) = (0.8, 1.5, 0.05), (e) for
(µ, σ) = (0.8, 0.05) of kappa distribution (r = 0 and q→ κ + 1) and (f) for σ = 0.05 of Maxwellian distribution (r = 0 and
q→ ∞).

4. Unmodulated Electron-Acoustic Solitary Waves

Before proceeding to the parametric analysis of EASWs, it is important to mention
that the present plasma model supports only rarefactive EASWs, although the compressive
solitary structures have also been observed in space by the spacecrafts for EAWs. However,
we have only used a simple model to study EASWs and compressive structures have been
predicted theoretically under certain conditions [15,73]. The values of relevant physical
parameters (µ, σ, q) are chosen to minimize the Landau damping of EASWs and are found
to correspond to the ones observed in various regions of space, specifically for the plasmas
present in terrestrial magnetosphere. Moreover, the flat topped distribution (r > 0) is
chosen rather than spiky distribution (r < 0), since most of space data support the flat
topped distribution.

Figure 2a demonstrates the relation between the Sagdeev pseudo-potential V(φ) and
the hot electron concentration µ. It is shown that increasing µ leads to the enhancement
of the depth and width of the Sagdeev potential. The behavior of the corresponding
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solitary waves can be predicted from that of the Sagdeev pseudo-potential profiles. The
enhancement of the depth of potential profile corresponds to the reduction of width of
that soliton structure, whereas, the amplitude of soliton structure increases if the width
of the Sagdeev potential increases. The numerically plotted EASWs corresponding to this
Sagdeev potential in Figure 2b show that the increasing concentration of hot electrons
enhances the amplitude of solitons but mitigates their width.
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Figure 2. Effect of µ on (a) the Sagdeev pseudo-potential V(φ) and (b) the electrostatic potential φ of EASWs with
(q, r, σ, M) = (2, 1, 0.05, 1.27).

Figure 3a,b exhibit the variation of Sagdeev pseudo-potential with the ratio of tem-
perature of cold to hot electrons σ. One can see that increasing the ratio σ reduces the
depth and width of the potential well. Furthermore, the amplitude of the corresponding
EASWs also reduces with the enhancement of the temperature of cold electrons. Physically,
increasing (decreasing) of the amplitude of the EASWs with increasing value of µ (σ) is
related to the fact that this mode becomes highly Landau damped with the increase of
concentration and temperature of the cold electrons. Figure 4a,b elucidate the effects of
spectral index r on the Sagdeev pseudo-potential and on the corresponding solitons. It
shows that increase in the values of the flatness parameter r (r > 0) reduces the depth
and width of the Sagdeev potential. Moreover, the amplitude of the EASWs enervates
whereas the width enhances by increasing the number of low energy electrons. It should be
pointed out here that compressive EASWs have been predicted for a few negative values of
parameter r [30]; however, the negative values of r correspond to a spiky (r, q) distribution,
which is yet to be observed and, therefore, not included in this study.
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Figure 3. Effect of σ on (a) the Sagdeev pseudo-potential V(φ) and (b) the electrostatic potential φ of EASWs with
(µ, q, r, M) = (0.8, 2, 1, 1.3).
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Figure 4. Effect of r on (a) the Sagdeev pseudo-potential V(φ) and (b) the electrostatic potential φ of EASWs with
(µ, q, σ, M) = (0.8, 2, 0.05, 1.28).

Figure 5a depicts the variation of normalized Sagdeev pseudo-potential with increas-
ing spectral index q, which is tantamount to decreasing the energetic electrons in the tail
or the electrons in the region of low phase space density. The plot demonstrates that
increasing the index q reduces the depth of the Sagdeev potential and shrinks the width of
the potential well. The corresponding EASWs in Figure 5b show that increasing the q-value
mitigates the amplitude of solitons. Figure 5a further manifests the Maxwellian behavior
of the potential well when r = 0 and q −→ ∞ and the kappa behavior when r = 0 and
q −→ κ + 1 (where 2 < κ < 6 for space plasmas) and compares it with (r, q) distribution.
The Sagdeev potential is deepest and widest for kappa distribution, intermediate for (r, q)
distribution (with low r and q values), and Maxwellian distribution, whereas it is most
shallow and narrow for (r, q) distribution having a flat top and Maxwellian tail. Figure 5b
of corresponding EASWs show that amplitude is largest for kappa distribution and smallest
for (r, q) distribution with less energetic electrons in the tail and increasing low energy
electrons. In a nutshell, we learn from Figure 5a,b that pumping in, or increasing the
number of electrons in low regions of phase space density, enervate the amplitude of the
EASWs and increasing the superthermal electrons in high regions of phase space density,
invigorates the amplitude of EASWs. Note that the amplitude of the EASWs for kappa
distribution is higher than the generalized (r, q) distribution, because, over there, we only
enhance the tail population, leaving the percentage of low energy electrons unchanged
as opposed to (r, q) distribution, where the percentage of both the high and low energy
electrons is changed and, hence, the observation of increased mitigation in the amplitude
in this case.
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Figure 5. Effect of q on (a) the Sagdeev pseudo-potential V(φ) and (b) the electrostatic potential φ of EASWs with
(µ, σ, r, M) = (0.8, 0.06, 0.7, 1.25) for dotted and dashed curves, (µ, σ, M) = (0.8, 0.06, 0, 1.25) for dotted-dashed curve
(Maxwellian distribution r = 0, q → ∞) and (µ, σ, M, κ) = (0.8, 0.06, 1.25, 3) for solid curve (kappa distribution r = 0,
q→ κ + 1).
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5. Nonlinear Schrödinger Equation and Modulational Instability

In order to study nonlinear modulated structures, such as Peregrine solitons (first-
order RWs) and higher-order RWs (super RW) in the present plasma model, NLSE has
to be derived. The derivative expansion method (DEM) is employed to obtain the NLSE.
Accordingly, the following stretchings for the independent variables (x, t) and expansions
for the dependent quantities are, respectively, introduced [32–35,74,75]:

X = ε(x− λt), T = ε2t, (16)

and

R(x, t) = R(0) +
∞

∑
m=1

εm
m

∑
l=−m

R(m)
cl (X, T)eilΘ, (17)

withR(x, t) ≡ [nc, uc, φ], R(m)
cl (X, T) ≡

[
n(m)

cl , u(m)
cl , φm

l

]
, R(0) ≡ [1, 0, 0], and Θ = (kx−ωt),

where k and ω represent the normalized wave number and frequency of the carrier waves,
respectively. The dependent quantities R(m)

cl (X, T) must satisfy the reality condition, i.e.,

R(m)
−l = R∗(m)

l , where the asterisk indicates the conjugate of complex quantities. According
to the stretching (16) and the derivative expansion method (DEM), the following operators
are introduced {

∂
∂t →

∂
∂t − ελ ∂

∂X + ε2 ∂
∂T ,

∂
∂x →

∂
∂x + ε ∂

∂X .
(18)

Using the expansions given by Equation (17) and the differential operators given
by (18) into the governing Equations (1)–(5), and after several tedious, long, but simple
calculations, a system of reduced equations with different orders of ε will be obtained. We
only mention the basic steps to solve this system in order to obtain the NLSE:

The coefficient of eiΘ for the first-mode (m = 1) gives the linear dispersion relation

ω =

√
3σk2 +

k2

α1 + k2 .

The coefficient of eiΘ for the second-mode (m = 2) denotes the velocity of the wave
packets (group velocity)

λ = 6σkω +
ω2 −ω4 − 9σ2k4

kω
≡ ∂ω

∂k
. (19)

The coefficient of eiΘ for the third-mode (m = 3) gives the compatibility condition and
the solution of this condition leads to the following NLSE [32–35]

i
∂Φ
∂T

+ P
∂2Φ
∂X2 + Q|Φ|2Φ = 0. (20)

Here, Φ ≡ φ
(1)
1 and the coefficients of the nonlinearity and dispersion terms are,

respectively, given by {
P = A2

A1
≡ 1

2
∂2ω
∂k2 ,

Q = A3
A1

,
(21)
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with

A1 = −2k2ω

Z2 ,

A2 = 1 +
(λk−ω)

Z3

(
3λσk3 − 9ωσk2 + 3λω2k−ω3

)
,

A3 = −2α2S4 − 2α2C4 − 3α3 +
k6ω2

Z4 +
12σC2k5

ωZ2 +
k2(C1 − S1)

Z

− k2

Z2

[
C1

(
3σk2 − 2ω2

)
+ k2(σC3 + 2C4)− 2ωkS2 + 3σk2(S1 − S3)

]
, (22)

where

C1 =
k2

2Z3

(
−3k2

(
k2σ + ω2

)
+ 2Z2C4

)
,

C2 =
kω

2Z3

(
−k2

(
9k2σ + ω2

)
+ 2Z2C4

)
,

C3 =
3k2

2Z3

(
k2
(

3k2σ− 5ω2
)
+ 2Z2C4

)
,

C4 =
1

2Z2

(
2α2Z3 − 3k2(k2σ + ω2)

α1Z + k2(4Z + 1)

)
,

and

S1 =
1

Z2λ(λ2 − 3σ)

[
k2
{
−Zλph + ω

(
kλ2 + 6kσ + λω

)}
− Z2λS4

]
,

S2 =
1

Z2(λ2 − 3σ)

[
k2
{
−Zλ + ω

(
−kλ2 + 12kσ + λω

)}
− Z2λS4

]
,

S3 =
3

Z2(λ2 − 3σ)

[
k2{−Z + ω(3kλ + ω)} − Z2S4

]
,

S4 =
1

Z2λ2(−1 + α1(λ− 3σ))

(
k3ω

(
λ2 + 6kσ

)
+ k2λ

(
−Z + ω2)

−2Z2α2λ
(
λ2 − 3σ

) )
,

Z =
(

3k2σ−ω2
)

.

Equation (20) is completely integrable and supports many nonlinear modulated
structures. The sign of the product PQ gives the necessary and sufficient criteria for
determining the stable and unstable regions of the envelope structures. Therefore, for
PQ < 0, the modulated stable structures, such as dark solitons, exist. However, for PQ > 0,
the nonlinear structures turn out to be unstable and the bright soliton, Peregrine soliton
(first-order RWs), super RWs (higher-order RWs), breather structure (Kuznetsov–Ma (KM)
soliton, Akhmediev breathers (ABs)), cnoidal waves (CWs), etc., can be generated. To
restrict the regions of (in)stability for the modulated EAWs and their dependence on
various physical parameters, we will draw the relationship between the critical wave
number kc (which is the wave number that separates both stable and unstable regions, and
the product PQ = 0 at kc) and the relevant physical parameters in Figure 6. It is shown
from Figure 6a,b that increasing the concentration of the hot electrons µ would reduce the
instability region and shift it to the higher values of k. On the contrary, the instability region
expands and shifts to smaller values of the wave number with the increasing values of the
temperature ratio, σ, of the electrons, as illustrated in Figure 6c,d. Furthermore, the plots
illustrate that the wave number shifts to slightly lower values by increasing the values of
both the flatness parameter r and the tail parameter q. The limiting cases of kappa and
Maxwellian distributions have been plotted in Figure 6e,f. Thus, for the kappa distribution
function (r = 0 and q→ κ + 1), the unstable region shifts to higher values of k and expands
tremendously with increasing kappa values. Moreover, for the Maxwellian limit (r = 0 and
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q −→ ∞), the unstable region expands for lower values of the ratio of the concentration
of electrons µ and shifts to lower values of the wave number as compared to the kappa
distribution.
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Figure 6. Regions of stable (white color) and unstable (yellow color) modulated EAWs for different values of the physical
parameters. The product PQ is plotted: (a) in the plane (k, q) for (µ, σ, r) = (0.3, 0.1, 1), (b) in the plane (k, q) for (µ, σ, r) =
(0.5, 0.1, 1), (c) in the plane (k, r) for (µ, σ, q) = (0.3, 0.05, 3), (d) in the plane (k, r) for (µ, σ, q) = (0.3, 0.1, 3), (e) for
(µ, σ) = (0.3, 0.1) of kappa distribution and (f) for σ = 0.1 of Maxwellian distribution.

6. Electron Acoustic RWs and Breathers

In this section, the modulated structures that can exist and propagate in the unstable
regions (PQ > 0), such as RWs and breathers [45], can be investigated. The physical reason
behind development of these structures is the nonlinear growth of resultant instability that
causes the accumulation of a large amount energy into a small temporal–spatial region.
The compact analytical formula for first-order RW solution and breathers solution to
Equation (20) reads [42]:

Φ =

√
2P
Q

[
1 +

2(1− 2ρ) cosh
(

f1T̃
)
+ i f1 sinh

(
f1T̃
)√

2ρ cos( f2X)− cosh
(

f1T̃
) ]

exp
(
iT̃
)
, (23)

where, Φ ≡ Φ(X, T̃), T̃ = 2PT, and ρ is the control switch responsible for determining the

type of wave solution according to the two quantities f1 =
√

2ρ f 2
2 and f2 =

√
4(1− 2ρ).

If 0 < ρ < 1/2, the solution (23) becomes the ABs solution ΦABs with period 2π/ f2 as
shown in Figure 7a, while the KM soliton solution ΦKM will be generated if ρ > 1/2 as
shown in Figure 7b, and finally, the solution (23) can become the first-order RW solution
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at lim Φ(ρ→ 1/2) = ΦRW1 as illustrated in Figure 7c. Figure 7 shows that the ABs are
localized in the time domain, but periodic in the space domain, while the KM solitons have
an opposite behavior, i.e., they are localized in the space domain, but periodic in the time
domain. Peregrine solitons are the limiting case of both ABs and KM solitons, as they are
localized structures along both spatial and temporal scales. Furthermore, the super RW
solutions are given by

Φj =

√
2P
Q

[
(−1)j +

Gj + iT̃Hj

Dj

]
e(iT̃), (24)

where j expresses the jth-order of the RW solutions. The function Gj, Hj, and Dj 6= 0
represent the polynomials in terms of slow independent variables X and T̃ and their values
could be found in many Reference [41]. It is important to mention here that the super
RWs are also localized in both spatial and temporal domains. The super RWs (here we
take the second- and third-order as examples) have the same qualitative behavior as the
first-order RWs, but they differ in the quantitative behavior, so that the super RWs are
more spiky (narrow width and large amplitude) than the first-order RWs, as is evident in
Figure 8. In this figure, the comparison between the first three-orders of solution (24) is
considered. The amplification of first-order RWs reads Φ1 max

(
X = 0, T̃ = 0

)
= 3
√

2P/Q.
In general, the amplifications of all orders RWs could be written in the following form:
Φj max

(
X = 0, T̃ = 0

)
=
√

2P/Q(2j + 1). The dependence of first-order RWs on the con-
centration of hot electrons µ, the electron temperature ratio σ, the wave number k, and
the nonthermal parameters (r, q) is explained in Figure 9. It is clear that with increasing µ,
both the amplitude and the width of RWs increase as shown in Figure 9a. On the contrary,
the impact of the temperature ratio σ on the RWs profile show the opposite behavior, i.e.,
both amplitude and width decay with increasing σ as elucidated in Figure 9b. Moreover,
an increase in nonthermal parameters (r, q) and the the wavenumber k lead to reduction
of both the amplitude and width of the RWs as shown in Figure 9c–f. The Maxwellian
and kappa distributions have also been investigated in Figure 9d,e, which show that the
amplitude of RWs is higher for Maxwellian distribution in comparison with kappa dis-
tributed electrons. However, it should be noted that when we draw a comparison between
different electron distribution functions for the electron acoustic RWs, the graphs for kappa
distribution are plotted for different values of µ as the unstable regime of RWs is different
for different electron velocity distribution functions. The reason being that no common
region with the same values of plasma parameters is defined for Maxwellian and kappa
distributions as can be seen from Figure 6e,f. Furthermore, Figure 9d shows that amplitude
is higher for generalized (r, q) distributed electrons with less flat top (lower values of r) and
non-Maxwellian tail (low q value) by comparison with the Maxwellian case (q→ ∞, r = 0).
Physically, enhancement of the amplitude of RWs with a physical parameter determines
the increase of the transfer of energy from the surrounding medium to the system, while
mitigation of the amplitude means a decrease of the energy transfer from the surrounding
waves to the system and increase of the energy dissipation to the surrounding medium.
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Figure 7. The profile of (a) Akhmediev breathers (ABs) |ΦABs|, (b) Kuznetsov–Ma (KM) soliton (KM) |ΦKM|, (c) Rogue
waves (RWs) |ΦRWs| is plotted in the plane (X, T) for (µ, σ, q, r, k) = (0.3, 0.1, 4, 1, 0.8).
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Figure 8. A comparison between different orders of RW solution. (a) The first-order RWs |Φ1|, (b) the second-order RWs
|Φ2|, (c) the third-order RWs |Φ3|, and (d) the first three-orders of RWs |Φ1,2,3|. Here, (µ, σ, q, r, k) = (0.3, 0.2, 6, 1.2, 0.99).
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Figure 9. The profile of first-order RWs |Φ1| is plotted for (a) (σ, q, r, k) = (0.1, 3, 1.6, 0.99) with varying µ, (b) (µ, q, r, k) =
(0.3, 3, 1.6, 0.98) with varying σ, (c) (µ, σ, q, k) = (0.3, 0.1, 3, 0.98) with varying r, (d) (µ, σ, r, k) = (0.3, 0.1, 0.6, 0.98) with
varying q for solid and dashed curves, (µ, σ, k) = (0.3, 0.1, 0.98) for dotted-dashed curve (Maxwellian distribution r = 0,
q→ ∞) (e) (µ, σ, k) = (1.2, 0.1, 0.98) for kappa distribution, r = 0, q→ κ + 1, κ = 3 and (f) (µ, σ, q, r) = (0.3, 0.1, 3, 1.6) with
varying k.

7. Conclusions

The propagation of electrostatic electron-acoustic (un)modulated waves in a non-
Maxwellian plasma consisting of two-temperature electrons (hot electrons following (r, q)
distribution and cold inertial electrons) and stationary positive ions were investigated.
The Sagdeev potential approach was used to reduce the governing fluid equations to the
energy equation for studying the unmodulated arbitrary amplitude solitary waves. It
was shown that changing the plasma parameters and the indices (r, q) of the hot electron
distribution function alters the existence domains of the formation of electron-acoustic
solitary structures. The limiting cases of kappa and Maxwellian distributions show that
solitons in kappa distribution are permitted only for smaller values of Mach numbers.
The profile of unmodulated arbitrary amplitude solitary waves is strongly dependent on
the plasma parameters and the electron distribution function. It has been found that the
Sagdeev potential corresponding to kappa distribution is deepest and widest, intermediate
for Maxwellian, whereas it is least from flat-topped distribution with Maxwellian tail. It
was also shown that enhancing the number of electrons in both the low and high regions of
phase space density by increasing the spectral indices r and q enervate the amplitude of the
EASWs by comparison with their Maxwellian counterparts. Furthermore, the derivative
expansion method were employed to obtain the nonlinear Schrödinger equation (NLSE)
for investigating the modulated structures, including rogue waves, super rogue waves,
and breathers. Employing the criteria of modulational instability, the existence domain
of RWs and breathers were determined precisely. The effect of the relevant physical
parameters on the profile of the RWs was reported, where the Maxwellian and kappa
distributions were also investigated. It was shown that the amplitude of the rogue waves
is highest for Maxwellian distributed electrons and intermediate for generalized (r, q)
distributed electrons, whereas it is minimum for kappa distributed electrons. Moreover,
it was observed that the impact of all physical plasma parameters on the super (second-
and third-order) RWs have the same qualitative behavior, but the super RWs become more
spiky (large amplitude and narrower width) than the first-order RWs. The results obtained
here may help us to understand the mechanism of the propagation of nonlinear electrostatic
(un)modulated structures in laboratory and space plasmas.
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