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Abstract: This paper proposes a new methodology to solve multiobjective optimization problems by
invoking genetic algorithms and the concept of the Shapley values of cooperative games. It is well
known that the Pareto-optimal solutions of multiobjective optimization problems can be obtained
by solving the corresponding weighting problems that are formulated by assigning some suitable
weights to the objective functions. In this paper, we formulated a cooperative game from the original
multiobjective optimization problem by regarding the objective functions as the corresponding
players. The payoff function of this formulated cooperative game involves the symmetric concept,
which means that the payoff function only depends on the number of players in a coalition and
is independent of the role of players in this coalition. In this case, we can reasonably set up the
weights as the corresponding Shapley values of this formulated cooperative game. Under these
settings, we can obtain the so-called Shapley–Pareto-optimal solution. In order to choose the best
Shapley–Pareto-optimal solution, we used genetic algorithms by setting a reasonable fitness function.

Keywords: cooperative games; genetic algorithms; Pareto-optimal solutions; Shapley values;
weighting problems

1. Introduction

The purpose of an optimization problem is to search for a minimum or a maximum of
a real-valued function that is also called an objective function. When the objective function
is a vector-valued function instead of a real-valued function, the optimization problem
turns into the so-called multiobjective optimization problem. The variables of objective
functions are also called decision variables, which are usually assumed to be nonnegative
variables, that is the values of the variables are assumed to be nonnegative real numbers.
When the decision variables are assumed to be in a predefined search space, we have a
particular kind of optimization called the constrained optimization problem.

As we mentioned above, multiobjective optimization problems consider the vector-
valued objective functions, which can also be regarded as considering several conflicting
objectives. The solution concepts of multiobjective optimization problems are usually based
on partial orderings in which the Pareto-optimal solution is usually taken into account. In
this case, the set of all Pareto-optimal solutions is frequently large in the sense that it is
always an uncountable set. Solving multiobjective optimization problems usually requires
the decision-makers to provide some preference relations among the set of all Pareto-
optimal solutions. When several decision-makers participate, the aspect of negotiation and
consensus striving among the decision-makers should be considered.

The monographs of Chankong and Haimes [1], Cohon [2], Hwang et al. [3–5], Mi-
ettinen [6], Sawaragi et al. [7], Steuer [8], and Yu [9] provided a penetrating overview
of multiobjective optimization. Vincke [10] dealt with multiattribute decision analysis.
Ringuest [11] considered the behavioral aspects of multiobjective optimization. Jahn [12]
and Luc [13] presented the theoretical aspects of the multiobjective optimization problem.
The other interesting monographs on the topic are those of Rietveld [14] and Zeleny [15,16].
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The pioneering work by von Neumann and Morgenstern [17] initiated game theory in
economics, which mainly deals with the behavior of players whose decisions affect each
other. The topic of cooperative games is a kind of game considering coalitions. The cooper-
ation means that players have complete freedom of communication and comprehensive
information to form the different coalitions. Nash [18] studied a general two-person coop-
erative game. On the other hand, the monotonicity of cooperative games means that, when
a game is changed such that the contributions of some player compared to all coalitions
increases or stays the same, the allocation of those players should not decrease. Young [19]
studied the monotonic solutions of cooperative games. The well-known Shapley value that
is a unique symmetric solution is also monotonic. We may also refer to the monographs
of Barron [20], Branzei et al. [21], Curiel [22], González-Díaz et al. [23], and Owen [24] for
more details on the topic of game theory.

The fusion of multiobjective optimization problems and game theory has been studied
by many researchers. These approaches formulated the original multiobjective optimization
problems as a noncooperative or cooperative game in which the objectives were treated as
the corresponding players, and the solutions of this formulated game were taken to be the
solutions of the original multiobjective optimization problems. In this paper, we propose
a different approach by transforming the original multiobjective optimization problems
into a weighting problem in which the weights are taken to be the Shapley value of this
formulated cooperative game, which can be the first attempt for solving multiobjective
optimization problems.

Jing et al. [25] considered a bi-objective optimization problem in which the multibenefit
allocation constraints were modeled and inspired by cooperative game theory. The ε-
constraint approach was used to convert the bi-objective optimization problem into a single-
objective optimization problem. Lokeshgupta and Sivasubramani [26] also considered a
bi-objective optimization problem in which the two objective functions were treated as two
players by incorporating the cooperative game. In order to generate the best compromise
solution of the proposed bi-objective problem, the form of the so-called super-criterion
was considered, and a mixed-integer nonlinear programming was applied to maximize the
super-criterion.

Lee [27] considered a bi-objective optimization problem in which two objectives were
treated as two players and suggested a noncooperative game corresponding to this bi-
objective optimization problem. The Nash equilibrium was obtained from this two-player
noncooperative game without using the heuristic algorithms. Li et al. [28] considered a
three-objective optimization problem that was formulated as a three-player game. The best
solution was obtained by using the genetic algorithm and Tabu search among the Nash
equilibrium solutions. Chai et al. [29] considered a four-objective optimization problem,
and Cao et al. [30] considered a bi-objective optimization problem that were solved by
using the genetic algorithm. Since the selection process in the genetic algorithm is usually
comparative and competitive, they adopted the noncooperative game theory to design the
selection process and directly obtained the Pareto-optimal solutions without converting
the four-objective optimization problem into a single-objective optimization.

Yu et al. [31] and Zhang et al. [32] considered a three-objective optimization problem
in which three objectives were treated as three players and the Nash equilibrium among
these three players were taken into account. Zhang et al. [32] considered the subgame
perfect Nash equilibrium to be the solutions of the models, and Yu et al. [31] incorpo-
rated the genetic algorithm to obtain the solutions without converting the three-objective
optimization problem into a single-objective optimization problem. Meng and Xie [33]
considered a bi-objective optimization problem in which a competitive–cooperative game
method was proposed to obtain the optimal preference solutions.

The approach proposed in this paper is completely different from the above ap-
proaches, where the original multiobjective optimization problem is converted into a
single-objective optimization using the weighting approach in which the corresponding
weights are inspired by the Shapely value of cooperative games. It is well-known that
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the Pareto-optimal solutions of multiobjective optimization problems can be obtained by
solving the corresponding weighting problems that are formulated by assigning some
suitable weights to the objective functions. There is no usual way to determine the weights
for establishing the weighting problems. In this paper, we formulated a cooperative game
from a multiobjective optimization problem in which the ith objective is treated as player i.
The payoff function of this formulated cooperative game involves the symmetric concept,
which means that the payoff function only depends on the number of players in a coalition
and is independent of the role of the players in this coalition. According to the Shapley
values of this formulated cooperative game, we can reasonably set up the weights for
the corresponding weighting problems. Under these settings, we can obtain the so-called
Shapley–Pareto-optimal solutions. Usually, the family of all Shapley–Pareto-optimal solu-
tion is large. In order to choose the best Shapley–Pareto-optimal solution, we used genetic
algorithms by setting a reasonable fitness function.

Using genetic algorithms to solve the multiobjective optimization problems has
been studied for a long time by referring to the monographs of Deb [34], Osyczka [35],
Sakawa [36], and Tan et al. [37]. However, this paper did not intend to invoke genetic
algorithms to directly solve the multiobjective optimization problems. Instead, we used
genetic algorithms to obtain the best Shapley–Pareto-optimal solution from the family of
all Shapley–Pareto-optimal solutions, where the so-called best Shapley–Pareto-optimal
solution is based on a reasonable fitness function.

In Section 2, the concept of Shapley values and the basic properties of multiobjective
optimization problems are presented. In Section 3, a multiobjective optimization is for-
mulated as a cooperative game by considering objective functions as the corresponding
players in which the payoff function involving the symmetric concept is taken into account.
In Section 4, the Shapley values of the formulated cooperative game are taken to define the
so-called Shapley–Pareto-optimal solution. In Section 5, a genetic algorithm is designed to
find the best Shapley–Pareto-optimal solution. A numerical example is also provided to
demonstrate the usefulness of the proposed methodology.

2. Formulation of the Cooperative Game

Consider the following multiobjective optimization problem:

(MOP) max f(x) = ( f1(x), f2(x), · · · , fn(x))
subject to x ∈ F ⊆ Rp

where F is a feasible region of problem (MOP) and each fi is a real-valued function defined
on Rp for i = 1, · · · , n. A decision vector x∗ ∈ F is called a Pareto-optimal solution of
the problem (MOP) when there does not exist another decision vector x ∈ F satisfying
fi(x) ≥ fi(x∗) for all i = 1, · · · , p and f j(x) > f j(x∗) for at least one index j.

The weighting method is usually used to obtain the Pareto-optimal solution. The
weighting problem for a multiobjective optimization problem assigns weights to each
objective in which the weights represent the importance of objective functions. Therefore,
we can consider the following weighting problem:

(WP) max
n

∑
i=1

wi · fi(x)

subject to x ∈ F ⊆ Rp

where wi ≥ 0 for all i = 1, · · · , n and:

w1 + w2 + · · ·+ wn = 1.

Then, we have the following well-known results.

• If wi > 0 for all i = 1, · · · , n, then the optimal solution of the WP is a Pareto-optimal
solution of the MOP;
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• The unique optimal solution of the WP is a Pareto-optimal solution of the MOP;
• Suppose that the problem (MOP) is convex. If x∗ is a Pareto-optimal solution, then

there exist nonnegative weights wi ≥ 0 for i = 1, · · · , n such that x∗ is an optimal
solution of the WP.

In order to obtain the Pareto-optimal solution, it suffices to solve the corresponding
weighting problem. Therefore, we have many Pareto-optimal solutions according to
different weighting problems.

The determination of the weights for establishing the weighting problem depends on
the viewpoint of the decision-makers. This means that there is no usual way to set up the
weighting problems. This paper used the Shapley value to determine the weights. The
main reason is that the ith objective function fi can be regarded as the payoff of player i. In
this case, we can formulate a cooperative game such that its Shapley values are taken to be
the weights for creating the corresponding weighting problem.

Consider the MOP with n objective functions fi for i = 1, · · · , n and feasible set F. We
first maximize each objective function fi on the feasible set F and let:

z∗i = sup
x∈F

fi(x) for i = 1, · · · , n.

We may call the vector z∗ = (z∗1 , z∗2 , · · · , z∗n) the ideal objective value of the MOP.
We associated the vector-valued objective function f with a cooperative game. The

ith objective value fi is regarded as the payoff of player i. The payoff function v can be
predetermined by the decision-makers. Since z∗i is the ideal payoff of player i, it follows
that the payoff of player i must satisfy v({i}) ≤ z∗i .

Let N = {1, · · · , n} be the set of all players, and let S be a subset of N, which is
regarded as a coalition. Under this coalition, S = {i1, i2, · · · , is} with s = |S|, where |S|
denotes the number of players of coalition S, the payoff of this coalition S will be greater
than the total payoffs of players in S. In other words, we must have:

v(S) ≥ v({i1}) + v({i2}) + · · ·+ v({is}).

On the other hand, the payoff of coalition S cannot be greater than the total ideal
payoffs on S. More precisely, we have:

v({i1}) + v({i2}) + · · ·+ v({is}) ≤ v(S) ≤ z∗i1 + z∗i2 · · ·+ z∗is . (1)

We define a payoff function on the family of all subsets of N (i.e., on all coalitions) via
the symmetric concept. Given any coalition S with |S| ≥ 2, we define:

v(S) =
s

∑
m=1

v({im}) + bs,

where bs is an extra payoff that benefits from the coalition via the symmetric concept, which
means that it only depends on the number of players in a coalition without taking into
account the roles of the players in a coalition. For example, the extra benefit can be taken as:

bs = κs

s

∑
m=1

v({im})

which is a discount of the original payoff ∑s
m=1 v({im}) by a discount factor κs, where

the discount factor κs can be regarded as a symmetric constant that is independent of the
players in the coalition S with |S| = s and is dependent on the number s of the players
in the coalition S. In other words, the symmetric constant κs will be the same for |S| = s
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regardless of the players in the coalition S. In this paper, the symmetric constant κs is taken
as κs = cs/s. Therefore, the payoff of coalition S is given by:

v(S) =
s

∑
m=1

v({im}) +
cs

s

s

∑
m=1

v({im}), (2)

where cs is a nonnegative constant and is independent of the players in the coalition S with
|S| = s, which says that, under the coalition S, the extra payoff can be obtained by taking
cs multiplying the average of individual payoffs.

Since the upper bound of v(S) is given in (1), the constant cs should satisfy:

s

∑
m=1

v({im}) +
cs

s

s

∑
m=1

v({im}) ≤
s

∑
m=1

z∗im ,

which says that

0 ≤ cs ≤
s ·

s

∑
m=1

(
z∗im − v({im})

)
s

∑
m=1

v({im})
=

s ·
s

∑
m=1

z∗im
s

∑
m=1

v({im})
− s ≡ Us(S)

for s = 2, · · · , n, where Us(S) is dependent on coalition S with |S| = s. Now, we define:

Us = min{Us(S) : S ⊆ N with |S| = s}, (3)

Then, we have:
0 ≤ cs ≤ Us (4)

for s = 2, · · · , n. For convenience, we also define c1 = 0.

3. Shapley Values

Let N = {1, · · · , n} be a set of all players. Any nonempty subset S ⊆ N is called a
coalition. A cooperative game is an ordered pair (N, v), where the characteristic function v
is a function from the family of all subsets of N into R satisfying v(∅) = 0. The number
v(S) can be regarded as the worth of coalition S in the game (N, v).

The carrier of cooperative game (N, v) is a coalition T satisfying v(S) = v(S ∩ T) for
any coalition S ⊆ N. This definition states that the player i 6∈ T is a dummy player, that is
to say, the player i has nothing to contribute to any coalitions.

Let π be a permutation of N, i.e., a one-to-one function π : N → N. Given a coalition
S ⊆ N with |S| = s, i.e., S = {i1, i2, · · · , is}, we write π(S) = {π(i1), π(i2), · · · , π(is)}.
Then, we can define a cooperative game (N, vπ) by vπ(π(S)) = v(S), i.e., vπ(S) =
v(π−1(S)).

Given a cooperative game (N, v), we considered a corresponding vector φ(v) =
(φ1(v), · · · , φn(v)) in which the ith component φi(v) is interpreted as the payoffs received
by player i under an agreement. This correspondence φ is taken to satisfy the following
Shapley axioms:

• (S1) If S is any carrier of the game (N, v), then ∑i∈S φi(v) = v(S);
• (S2) For any permutation π of N and i ∈ N, we have φπ(i)(vπ) = φi(v);
• (S3) If (N, v1) and (N, v2) are any cooperative games, then we have φi(u + v) =

φi(u) + φi(v) for all i ∈ N.

The function φ from the family of all cooperative games into the n-dimensional
Euclidean space Rn defines a vector φ(v), which is called the Shapley value of cooperative
game (N, v).
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It is well known that there exists a unique function φ defined on the family of all
cooperative games and satisfying Axioms (S1), (S2), and (S3). More precisely, for i ∈ N,
we have:

φi(v) = ∑
{S:i∈S⊆N}

(|S| − 1)!(|N| − |S|)!
|N|! · (v(S)− v(S \ {i})) (5)

Let (N, v) be a cooperative game formulated from the MOP with the characteristic
function given in (2). In order to use the weighting method to solve the problem (MOP),
the weights are determined by the vector w(v) = (w1(v), · · · , wn(v)) in which the ith
component wi(v) is interpreted as the fair payoffs received by player i under an agreement.
We see that the weights w depend on the cooperative game (N, v), where the weights w
satisfy the following agreement that is set by the Shapley axioms:

• If S is any carrier of the game (N, v), then ∑i∈S wi(v) = v(S);
• For any permutation π of N and i ∈ N, we have wπ(i)(vπ) = wi(v);
• If (N, v1) and (N, v2) are any cooperative games, then we have wi(v1 + v2) = wi(v1) +

wi(v2) for all i ∈ N.

The function w by (N, v) 7→ w(v) defines a vector w(v), which is the Shapley value
of cooperative game (N, v). Therefore, given a corresponding cooperative game (N, v), we
can solve the WP by using the Shapley value w(v) = (w1(v), · · · , wn(v)) as the weights.
More precisely, the weights are given by the following formula:

wi(v) = ∑
{S:i∈S⊆N}

(|S| − 1)!(|N| − |S|)!
|N|! · (v(S)− v(S \ {i})). (6)

From (2), we see that:

v(S)− v(S \ {i}) = v({i}) +
(

cs

s
− cs−1

s− 1

)
· ∑

j∈S\{i}
v({j}) + cs

s
· v({i}), (7)

where s = |S|.
For the subsequent discussion, we also assumed that the following conditions are

satisfied:

• For all i = 1, · · · , n, we assumed z∗i > 0 and 0 ≤ v({i}) < z∗i . In particular, we can
define v({i}) = ki · z∗i for some constant 0 < ki < 1. Under this assumption, from (4),
we see that cs > 0 for all s = 2, · · · , n, which also says that v(S) ≥ 0 for all S ⊆ N;

• Recall that c1 = 0 for convenience. For s = 2, · · · , n, we assumed:

cs

s
≥ cs−1

s− 1
. (8)

Under this assumption, it is clear to see wi(v) ≥ 0 for all i = 1, · · · , n by referring
to (6) and (7).

Now we consider the normalized weights as follows

w̄i(v) =
wi(v)

n

∑
k=1

wk(v)
for i = 1, · · · , n, (9)

which says that 0 < w̄i(v) < 1 for all i = 1, · · · , n.
The weighting problem for a multiobjective programming problem assigns weights to

each objective in which the weights represent the importance of the objective functions.
Since we treated the multiobjective programming problem as a cooperative game, the
payoffs of players correspond to the importance of the objective functions. In other words,
the reasonable importance can be taken as the fair payoffs of the players. Here, we take the
Shapley value w(v) to represent the importance.
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Since the optimal solutions of the WP are Pareto-optimal solutions of the problem
(MOP), when the weights are taken to be normalized Shapley values given in (9), the
optimal solution of the weighting problem is then called a Shapley–Pareto-optimal solution.

From (2), we see that the cooperative game (N, v) depends on the nonnegative con-
stants ci for i = 1, · · · , n, that is the payoff function v depends on the vector c = (c1, · · · , cn).
From (6) and (7), we also see that the weights and normalized weights depend on c. There-
fore, we write wi(v) ≡ wi(c) and w̄i(v) ≡ w̄i(c) for i = 1, · · · , n. The purpose is to obtain
the Shapley–Pareto-optimal solution by solving the following weighting problem:

(WP) max
n

∑
i=1

w̄i(c) · fi(x)

subject to x ∈ F ⊆ Rp

The Shapley–Pareto-optimal solution is denoted by x∗(c), which depends on the
vector c. Let X be the set of all Shapley–Pareto-optimal solutions, i.e.,

X = {x∗(c) : 0 ≤ cs ≤ Us for s = 1, · · · , n},

where Us can refer to (3). In the sequel, we use the genetic algorithm to obtain the best
Shapley–Pareto-optimal solution in X by evolving vectors c.

4. Designing the Genetic Algorithm

The main purpose of this paper was to find a best Shapley–Pareto-optimal solution
from X by maximizing the following objective function:

η(c) =
n

∑
i=1

w̄i(c) · fi(x∗(c)). (10)

The Shapley–Pareto-optimal solution x∗(c) depends on the vector c. We say that x∗(c∗)
is the best Shapley–Pareto-optimal solution when η(c∗) ≥ η(c). Obtaining the best Shapley–
Pareto-optimal solution is a hard problem. Therefore, we used the genetic algorithm to
obtain the approximated best Shapley–Pareto-optimal solution. The chromosome was
taken to be the vector c of real codes in Rn. The purpose was to find the best chromosome
according to the fitness function given in (10).

In the sequel, we present a recursive procedure to generate the nonnegative constants
cs for s = 2, · · · , n such that the inequalities (4) and (8) are satisfied, that is the nonnegative
constants cs must satisfy c1 = 0,

0 ≤ cs ≤ Us and
cs

s
≥ cs−1

s− 1
(11)

for s = 2, · · · , n. In other words, the chromosome c has the form of c = (0, c2, · · · , cn),
where cs satisfies the inequalities (11) for s = 2, · · · , n.

Proposition 1. Suppose that each cn is initially generated as a random number in the closed
interval [0, Un], that is cn is a uniform distribution ranging over [0, Un], where Un is given
in (3). Let:

Vs = min
{

Us,
(

1− 1
s + 1

)
· cs+1

}
for s = 2, · · · , n− 1.

For s = n− 1, n− 2, · · · , 2, we generated each cs as a random number in the closed interval
[0, Vs], that is cs is a uniform distribution ranging over [0, Vs] for s = 2, · · · , n− 1. Then, we have:

0 ≤ cs ≤ Us and
cs

s
≥ cs−1

s− 1

for s = 2, · · · , n.
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Proof. Since 0 ≤ cs ≤ Vs for s = 2, · · · , n− 1, we have cs ≤ Us for s = 2, · · · , n and:

cs−1 ≤
(

1− 1
s

)
· cs for s = 3, · · · , n,

which also implies:
cs

s
≥ cs−1

s− 1
for s = 3, · · · , n. (12)

Since c1 = 0, the proof is complete.

Remark 1. According to Proposition 1, the nonnegative constants cs can be randomly and sequen-
tially generated as follows for s = 2, · · · , n. We first generated cn as a random number in the closed
interval [0, Un]. Then, we generated cn−1 as a random number in the closed interval:

[0, Vn−1] =

[
0, min

{
Un−1,

(
1− 1

n

)
· cn

}]
.

In this case, we have:

0 ≤ cn−1 ≤ Un−1 and
cn

n
≥ cn−1

n− 1
.

Similarly, we generated cn−2 as a random number in the closed interval:

[0, Vn−2] =

[
0, min

{
Un−2,

(
1− 1

n− 1

)
· cn−1

}]
.

In this case, we have:

0 ≤ cn−2 ≤ Un−2 and
cn−1

n− 1
≥ cn−2

n− 2
.

Recursively, we can generate the nonnegative constants cs satisfying:

0 ≤ cs ≤ Us and
cs

s
≥ cs−1

s− 1

for s = 2, · · · , n.

The next result is used for the crossover operation.

Proposition 2. Suppose that ĉ = (0, ĉ2, · · · , ĉn) and c̄ = (0, c̄2, · · · , c̄n) are two vectors sat-
isfying the inequalities (11). Given any λ ∈ (0, 1), we considered the crossover operation
c = λĉ + (1 − λ)c̄ with the components given by c1 = 0 and cs = λĉs + (1 − λ)c̄s for
s = 2, · · · , n. Then, c also satisfies the inequalities (11).

Proof. It is clear to see that 0 ≤ cs ≤ Us for s = 2, · · · , n. Now, for s = 2, · · · , n, we have:

cs

s
=

1
s
(λĉs + (1− λ)c̄s)

= λ · ĉs

s
+ (1− λ) · c̄s

s

≥ λ · ĉs−1

s− 1
+ (1− λ) · c̄s−1

s− 1

=
1

s− 1
(λĉs−1 + (1− λ)c̄s−1)

=
cs−1

s− 1

This completes the proof.



Symmetry 2021, 13, 2021 9 of 18

Proposition 2 says that the crossover operation regarding the chromosomes ĉ =
(0, ĉ2, · · · , ĉn) and c̄ = (0, c̄2, · · · , c̄n) is taken to be the convex combination of ĉ and c̄,
where ĉs and c̄s are real numbers satisfying the inequalities (11) for s = 2, · · · , n. The
convex combination of ĉs and c̄s is given by cs = λĉs + (1− λ)c̄s for some λ ∈ (0, 1). In
this paper, the parameter λ was taken to be a random number in (0, 1). Proposition 2
shows that this new chromosome c = (0, c2, · · · , cn) also satisfies the inequalities (11) for
s = 2, · · · , n. More precisely, the new chromosome is given by:

c = (0, λĉ2 + (1− λ)c̄2, · · · , λĉn + (1− λ)c̄n). (13)

For example, when the random number λ is 0.43215, the new chromosome is given by:

c = (0, (0.43215)ĉ2 + (0.56785)c̄2, · · · , (0.43215)ĉn + (0.56785)c̄n).

Given a vector c̄ = (0, c̄2, · · · , c̄n), we considered the mutation c of c̄ with the compo-
nents given by c1 = 0 and cs that are obtained as follows for s = 2, · · · , n:

• Generate a random Gaussian number with mean zero and standard deviation σn (i.e.,
a normal distribution N(0, σ2

n)), and assign:

ĉn = c̄n + N(0, σ2
n) = c̄n + σn · N(0, 1).

In this paper, the standard deviation σn was taken to be the following form:

σn = β · η(c̄) + zn,

where β is a constant of proportionality to scale η(c̄) and zn represents an offset. The
new mutated individual cn is defined by:

cn =


ĉn if ĉn ∈ [0, Un]
Un if ĉn > Un
0 if ĉn < 0

where Un is given in (3). Then, cn ∈ [0, Un];
• Let:

Vn−1 = min
{

Un−1,
(

1− 1
n

)
· cn

}
.

Generate a random Gaussian number with mean zero and standard deviation σn−1,
and assign:

ĉn−1 = c̄n−1 + N(0, σ2
n−1) = c̄n−1 + σn−1 · N(0, 1),

where the standard deviation σn−1 is taken to be the following form:

σn−1 = β · η(c̄) + zn−1.

The new mutated individual cn−1 is defined by:

cn−1 =


ĉn−1 if ĉn−1 ∈ [0, Vn−1]
Vn−1 if ĉn−1 > Vn−1
0 if ĉn−1 < 0.

Then, cn−1 ∈ [0, Vn−1];
• Let

Vn−2 = min
{

Un−2,
(

1− 1
n− 1

)
· cn−1

}
.
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Generate a random Gaussian number with mean zero and standard deviation σn−2,
and assign:

ĉn−2 = c̄n−2 + N(0, σ2
n−2) = c̄n−2 + σn−2 · N(0, 1),

where the standard deviation σn−2 is taken to be the following form:

σn−2 = β · η(c̄) + zn−2.

The new mutated individual cn−2 is defined by:

cn−2 =


ĉn−2 if ĉn−2 ∈ [0, Vn−2]
Vn−2 if ĉn−2 > Vn−2
0 if ĉn−2 < 0.

Then, cn−1 ∈ [0, Vn−1];
• Recursively, for s = n− 3, n− 4, · · · , 2, we can define:

Vs = min
{

Us,
(

1− 1
s + 1

)
· cs+1

}
.

Generate a random Gaussian number with mean zero and standard deviation σs, and
assign:

ĉs = c̄s + N(0, σ2
s ) = c̄s + σs · N(0, 1),

where the standard deviation σs is taken to be the following form

σs = β · η(c̄) + zs.

The new mutated individual cs is defined by:

cs =


ĉs if ĉs ∈ [0, Vs]
Vs if ĉs > Vs
0 if ĉs < 0.

(14)

Then, cs ∈ [0, Vs].

Proposition 3. Given a vector c̄ = (0, c̄2, · · · , c̄n) satisfying the inequalities (11), we considered
the mutation c of c̄ obtained in the way of (14). Then, c satisfies the inequalities (11).

Proof. Since cn ∈ [0, Un] and cs ∈ [0, Vs] for s = 2, · · · , n− 1, the argument in the proof of
Proposition 1 is still valid. This completes the proof.

Proposition 3 says that if the chromosome c̄ = (0, c̄2, · · · , c̄n) satisfies the inequalities (11),
then its mutation c = (0, c2, · · · , cn) satisfies the inequalities (11) to keep the feasibility,
where cs is given by:

cs =


c̄s + (β · η(c̄) + zs) · N(0, 1) if 0 ≤ c̄s + (β · η(c̄) + zs) · N(0, 1) ≤ Vs
Vs if c̄s + (β · η(c̄) + zs) · N(0, 1) > Vs
0 if c̄s + (β · η(c̄) + zs) · N(0, 1) < 0

(15)

for s = 2, · · · , n. Therefore, the mutation c of c̄ can be obtained by randomly generating a
standard normal distribution N(0, 1).

4.1. Computational Procedure

Initially, the population size was assumed to be m. Therefore, we have m chromosomes
c(j) for j = 1, · · · , m. Each chromosome c(j) is generated according to Proposition 1 and
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Remark 1. More precisely, each chromosome c(j) has the form of c(j) = (0, c(j)
2 , · · · , c(j)

n ) for

j = 1 · · · , m, where c(j)
s satisfies the inequalities (11) given by:

0 ≤ c(j)
s ≤ Us and

c(j)
s
s
≥

c(j)
s−1

s− 1

for s = 2, · · · , n. Each chromosome c(j) is assigned a fitness value η(c(j)) for j = 1, · · · , m.
The m chromosomes c(j) for j = 1, · · · , m are ranked in descending order of their corre-
sponding fitness values η(c(j)) for j = 1, · · · , m, where the first one is saved to be the
(initial) best fitness values, named η̄0.

The mutation is based on Proposition 3. Each chromosome c(j) = (0, c(j)
2 , · · · , c(j)

n ) is

mutated and assigned to c(j+m) = (0, c(j+m)
2 , · · · , c(j+m)

n ) in the way of (15) for j = 1, · · · , m.
After this mutation step, we can obtain 2m chromosomes. Now, we generated a standard
normal distribution N(0, 1) and set:

σs = β · η(c(j)) + zs.

From (14) or (15), the mutated chromosome is given by:

c(j+m)
s =


c(j)

s + σs · N(0, 1) if 0 ≤ c(j)
s + σs · N(0, 1) ≤ Vs

Vs if c(j)
s + σs · N(0, 1) > Vs

0 if c(j)
s + σs · N(0, 1) < 0

for s = 2, · · · , n and j = 1, · · · , m.
After the mutation step, we have 2m chromosomes c(j) for j = 1, · · · , 2m. Then, the

crossover operation is based on Proposition 2. Randomly select two chromosomes c(j)

and c(k) for j, k ∈ {1, · · · , 2m} with j 6= k. In order to calculate their convex combination
according to (13), we generated a random number λ ∈ (0, 1); the new chromosome is given
by c(2m+1) = λc(j) + (1− λ)c(k). More precisely, we have:

c(2m+1) =
(

0, c(2m+1)
2 , · · · , c(2m+1)

n

)
=
(

0, λc(j)
2 + (1− λ)c(k)2 , · · · , λc(j)

n + (1− λ)c(k)n

)
,

i.e., c(2m+1)
s = λc(j)

s + (1− λ)c(k)s for s = 2, · · · , n. After this crossover step, we have 2m + 1
chromosomes c(j) for j = 1, · · · , 2m + 1.

Now, we have m old chromosomes c(j) for j = 1, · · · , m and m + 1 new chromosomes
c(m+j) for j = 1, · · · , m + 1 that were generated from the mutation and crossover steps.
Therefore, we can calculate the m + 1 new fitness values η(c(j+m)) for j = 1, · · · , m + 1.
In this case, we have in total 2m + 1 fitness values that can be used to select the m best
chromosomes to be the next generation. The 2m+ 1 chromosomes are ranked in descending
order of their corresponding fitness values, and the first m chromosomes are treated as the
m best chromosomes and saved to be the next generation. The computational procedure is
presented below:

• Step 1 (initialization). The population size is assumed to be m. The initial population

is determined by setting c(j) = (c(j)
1 , · · · , c(j)

n ) such that c(j)
1 = 0, c(j)

n is a random

number in [0, Un] for all j = 1, · · · , m, and c(j)
s are random numbers in [0, Vs] for all

s = 2, · · · , n− 1 and j = 1, · · · , m, where Vs is given in Remark 1. Then, c(j) satisfies
the inequalities (11) for j = 1, · · · , m. Given each c(j), calculate the normalized
Shapley value w̄i(c(j)) according to (6) and (9) for i = 1, · · · , n and j = 1, · · · , m. Each
c(j) is assigned a fitness value given by:

η(c(j)) =
n

∑
i=1

w̄i(c(j)) · fi(x∗(c(j)))
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for j = 1, · · · , m. The m chromosomes c(j) for j = 1, · · · , m are ranked in descending
order of their corresponding fitness values η(c(j)) for j = 1, · · · , m, where the first
one is saved to be the (initial) best fitness values, named η̄0. Save c(j) as an old
elite c(∗j) given by c(∗j)

s ← c(j)
s for s = 1, · · · , n and j = 1, · · · , m. Regarding the

stopping criterion, set the tolerance ε, and set the maximum times of iterations as
m∗ for satisfying the tolerance ε. Set k = 0, which means the initial generation, and
k∗ = 1, which means the first time for satisfying the tolerance ε;

• Step 2 (mutation). Set k← k + 1, which means the kth generation. Each c(j) is mutated
and assigned to c(j+m) in the way of (14). Generate a random Gaussian number with
mean zero and standard deviation σs. In this paper, the standard deviation σs was
taken to be the following form:

σs = β · η(c(j)) + zs,

where β is a constant of proportionality to scale η(c(j)) and zs represents an offset.
Therefore, we obtain the mutated chromosome c(j+m)

1 = 0 and c(j+m)
s ∈ [0, Vs] for

s = 2, · · · , n. After this step, we have 2m chromosomes c(j) for j = 1, · · · , 2m;
• Step 3 (crossover). Randomly select c(j) and c(k) for j, k ∈ {1, · · · , 2m} with j 6= k.

Generate a random number λ ∈ (0, 1); the new chromosome is given by c(2m+1) =

λc(j) + (1− λ)c(k) with components c(2m+1)
s = λc(j)

s + (1− λ)c(k)s ∈ [0, Us] for s =
1, · · · , n. After this step, we have 2m + 1 chromosomes c(j) for j = 1, · · · , 2m + 1.
Proposition 2 says that c(2m+1) satisfies the inequalities (11);

• Step 4 (calculate new fitness). For each c(j+m), calculate the normalized Shapley value
w̄i(c(j+m)) according to (6) and (9) for i = 1, · · · , n and j = 1, · · · , m + 1. Each c(j+m)

is assigned a fitness value given by:

η(c(j+m)) =
n

∑
i=1

w̄i(c(j+m)) · fi(x∗(c(j+m)))

for j = 1, · · · , m + 1;
• Step 5 (selection). The m + 1 new chromosomes c(j+m) for j = 1, · · · , m + 1 obtained

from Steps 2 and 3 and m old elites c(∗j) for j = 1, · · · , m are ranked in descending
order of their corresponding fitness values η(c(j+m)) and η(c(∗j)). The first m chromo-
somes are saved to be the new elites c(∗j) for j = 1, · · · , m, and the first one is saved to
be the best fitness value named as η̄k for the kth generation;

• Step 6 (stopping criterion). It may happen that η̄k = η̄k−1. In order not to be trapped
in the local optimum, we proceeded with more iterations for m∗ times even though
η̄k − η̄k−1 < ε. If 0 ≤ η̄k − η̄k−1 < ε and reach the times of iterations m∗, then the
algorithm is halted and returns the Shapley–Pareto-optimal solution. Otherwise,
the new elites c(∗j) for j = 1, · · · , m are copied to be the next generation c(j) for
j = 1, · · · , m. Set k∗ ← k∗ + 1, and the algorithm proceeds to Step 2.

The genetic algorithm is a randomized algorithm. The final results for different runs
may be different. However, in the long run, the final results will converge to a desired
result. On the other hand, it can happen that the genetic algorithm can be trapped in the
local optimum. In order to avoid this difficulty, we may try many runs to make sure the
results are almost the same. The above Step 6 also provides a criterion to avoid being
trapped in the local optimum.
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4.2. Numerical Example

Consider the following multiobjective linear programming problem:

max 11x2 + 11x3 + 12x4 + 9x5 + 9x6 − 9x7

max 11x1 + 11x3 + 9x4 + 12x5 + 9x6 − 9x7

max 11x1 + 11x2 + 9x4 + 9x5 + 12x6 + 12x7

subject to x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1

xi ≥ 0 for i = 1, · · · , 7.

Three objective functions are given by:

f1(x) = 11x2 + 11x3 + 12x4 + 9x5 + 9x6 − 9x7

f2(x) = 11x1 + 11x3 + 9x4 + 12x5 + 9x6 − 9x7

f3(x) = 11x1 + 11x2 + 9x4 + 9x5 + 12x6 + 12x7

with the feasible set

F = {x : x1 + x2 + x3 + x4 + x5 + x6 + x7 = 1 and xi ≥ 0 for i = 1, · · · , 7}.

We first calculated the ideal objective value z∗ = (z∗1 , z∗2 , z∗3) given by:

z∗1 = sup
x∈F

f1(x) = z∗2 = sup
x∈F

f2(x) = z∗3 = sup
x∈F

f3(x) = 12

with the corresponding optimal solutions given by:

x(∗1) = (0, 0, 0, 1, 0, 0, 0, 0), x(∗2) = (0, 0, 0, 0, 0, 1, 0, 0) and x(∗3) = (0, 0, 0, 0, 0, 0, 0, 1).

According to the above settings, we have N = {1, 2, 3} representing three players.
Now, we take:

v({1}) = 0.5 · z∗1 , v({2}) = 0.6 · z∗2 and v({3}) = 0.7 · z∗3 .

For s = |S| ≥ 2, according to (2), we have:

v(S) =
s

∑
m=1

v({im}) +
cs

s

s

∑
m=1

v({im}).

More precisely, we obtain:

v({1, 2}) =
(

1 +
c2

2

)
(v({1}) + v({2})) =

(
1 +

c2

2

)
(0.5 · z∗1 + 0.6 · z∗2)

v({1, 3}) =
(

1 +
c2

2

)
(v({1}) + v({3})) =

(
1 +

c2

2

)
(0.5 · z∗1 + 0.7 · z∗3)

v({2, 3}) =
(

1 +
c2

2

)
(v({2}) + v({3})) =

(
1 +

c2

2

)
(0.6 · z∗2 + 0.7 · z∗3)

v({1, 2, 3}) =
(

1 +
c3

3

)
(v({1}) + v({2}) + +v({3})) =

(
1 +

c3

3

)
(0.5 · z∗1 + 0.6 · z∗2 + 0.7 · z∗3).
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By referring to (3), we have:

U2({1, 2}) =
2 ·
(
z∗1 + z∗2

)
v({1}) + v({2}) − 2 =

2 ·
(
z∗1 + z∗2

)
0.5 · z∗1 + 0.6 · z∗2

− 2 =
4

1.1
− 2

U2({1, 3}) =
2 ·
(
z∗1 + z∗3

)
v({1}) + v({3}) − 2 =

2 ·
(
z∗1 + z∗3

)
0.5 · z∗1 + 0.7 · z∗3

− 2 =
4

1.2
− 2

U2({2, 3}) =
2 · (z∗2 + z∗3)

v({2}) + v({3}) − 2 =
2 · (z∗2 + z∗3)

0.6 · z∗2 + 0.7 · z∗3
− 2 =

4
1.3
− 2.

Therefore, we obtain:

U2 = min{U2({1, 2}), U2({1, 3}), U2({2, 3})} = 4
1.3
− 2 =

14
13

.

We also have:

U3 = U3({1, 2, 3}) =
3 ·
(
z∗1 + z∗2 + z∗3

)
v({1}) + v({2}) + v({3}) − 3

=
3 ·
(
z∗1 + z∗2 + z∗3

)
0.5 · z∗1 + 0.6 · z∗2 + 0.7 · z∗3

− 3 =
9

1.8
− 3 = 2.

The detailed computational procedure is presented below:

• Step 1 (initialization). The population size is assumed to be m = 20. The initial

population is determined by setting c(j) = (c(j)
1 , c(j)

2 , c(j)
3 ) such that c(j)

1 = 0 , c(j)
3 is a

random number in [0, U3] = [0, 2] for all j = 1, · · · , 20, and c(j)
2 are random numbers

in [0, V2] for all j = 1, · · · , 20, where V2 refers to Remark 1 and is given by:

V2 = min
{

U2,
(

1− 1
3

)
· c(j)

3

}
= min

{
14
13

,
2 · c(j)

3
3

}
.

Then, c(j) satisfies the inequalities (11) for j = 1, · · · , m. Given each c(j), according
to (6), we calculate:

wi(c(j)) ≡ wi(v) = ∑
{S:i∈S⊆N}

(|S| − 1)!(|N| − |S|)!
|N|! · (v(S)− v(S \ {i})).

More precisely, we have:

w1(c(j)) = ∑
{S:S={1},{1,2},{1,3},{1,2,3}}

(|S| − 1)!(|N| − |S|)!
|N|! · (v(S)− v(S \ {1}))

=
0!2!
3!
· (v({1})− v(∅)) +

1!1!
3!
· (v({1, 2})− v({2}))

+
1!1!
3!
· (v({1, 3})− v({3})) + 2!0!

3!
· (v({1, 2, 3})− v({2, 3}))

w2(c(j)) = ∑
{S:S={2},{1,2},{2,3},{1,2,3}}

(|S| − 1)!(|N| − |S|)!
|N|! · (v(S)− v(S \ {2}))

=
0!2!
3!
· (v({2})− v(∅)) +

1!1!
3!
· (v({1, 2})− v({1}))

+
1!1!
3!
· (v({2, 3})− v({3})) + 2!0!

3!
· (v({1, 2, 3})− v({1, 3}))
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w3(c(j)) = ∑
{S:S={3},{1,3},{2,3},{1,2,3}}

(|S| − 1)!(|N| − |S|)!
|N|! · (v(S)− v(S \ {3}))

=
0!2!
3!
· (v({3})− v(∅)) +

1!1!
3!
· (v({1, 3})− v({1}))

+
1!1!
3!
· (v({2, 3})− v({2})) + 2!0!

3!
· (v({1, 2, 3})− v({1, 2}))

Then, according to (9), we also calculate the normalized Shapley value:

w̄i(c(j)) =
wi(c(j))

w1(c(j)) + w2(c(j)) + w3(c(j))

for i = 1, 2, 3 and j = 1, · · · , m. Each c(j) is assigned a fitness value given by:

η(c(j)) = w̄1(c(j)) · f1(x∗(c(j))) + w̄2(c(j)) · f2(x∗(c(j))) + w̄3(c(j)) · f3(x∗(c(j)))

for j = 1, · · · , m. The m individuals c(j) for j = 1, · · · , m are ranked in descending
order of their corresponding fitness values η(c(j)) for j = 1, · · · , m, where the first
one is saved to be the (initial) best fitness values, named η̄0. Set k = 0, m∗ = 20,
k∗ = 1, and the tolerance ε = 10−6. Save c(j) as an elite c(∗j) given by c(∗j)

s ← c(j)
s for

s = 1, · · · , n and j = 1, · · · , m;
• Step 2 (mutation). Set k ← k + 1, which means the kth generation. Each c(j) =

(0, c(j)
2 , c(j)

3 ) is mutated and assigned to c(j+m) = (0, c(j+m)
2 , c(j+m)

3 ) in the way of (14).
Generate a random Gaussian number with mean zero and standard deviation σ3, and
assign:

ĉ(j+m)
3 = c(j+m)

3 + N(0, σ2
3 ) = c(j+m)

3 + σ3 · N(0, 1).

The new mutated individual c(j+m)
3 is defined by:

c(j+m)
3 =


ĉ(j+m)

3 if ĉ(j+m)
3 ∈ [0, U3] = [0, 2]

U3 = 2 if ĉ(j+m)
3 > U3 = 2

0 if ĉ(j+m)
3 < 0.

Then, c(j+m)
3 ∈ [0, U3] = [0, 2]. Let:

V2 = min
{

U2,
(

1− 1
3

)
· c(j+m)

3

}
.

Generate a random Gaussian number with mean zero and standard deviation σ2, and
assign:

ĉ(j+m)
2 = c(j+m)

2 + N(0, σ2
2 ) = c(j+m)

2 + σ2 · N(0, 1).

The new mutated individual c(j+m)
2 is defined by:

c(j+m)
2 =


ĉ(j+m)

2 if ĉ(j+m)
2 ∈ [0, V2]

V2 if ĉ(j+m)
2 > V2

0 if ĉ(j+m)
2 < 0.

Then, c(j+m)
2 ∈ [0, V2]. For s = 2, 3, the standard deviation σs is taken to be the

following form:
σs = β · η(c(j)) + zs,

where β is a constant of proportionality to scale η(c(j)) and zs represents an offset.
After this step, we have 2m individuals c(j) for j = 1, · · · , 2m;
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• Step 3 (crossover). Randomly select:

c(j) = (0, c(j)
2 , c(j)

3 ) and c(k) = (0, c(k)2 , c(k)3 )

for j, k ∈ {1, · · · , 2m} with j 6= k. Generate a random number λ ∈ (0, 1); the new
individual is given by c(2m+1) = λc(j) + (1 − λ)c(k) with components c(2m+1)

s =

λc(j)
s + (1− λ)c(k)s for s = 2, 3. After this step, we have 2m + 1 individuals c(j) for

j = 1, · · · , 2m + 1;
• Step 4 (calculate new fitness). For each c(j+m) = (0, c(j+m)

2 , c(j+m)
3 ), we calculate

the normalized Shapley value w̄i(c(j+m)) according to (6) and (9) for i = 1, 2, 3 and
j = 1, · · · , m + 1. Each c(j+m) is assigned a fitness value given by:

η(c(j+m)) = w̄1(c(j+m)) · f1(x∗(c(j+m))) + w̄2(c(j+m)) · f2(x∗(c(j+m)))

+ w̄3(c(j+m)) · f3(x∗(c(j+m)))

for j = 1, · · · , m + 1;
• Step 5 (selection). The m + 1 new individuals c(j+m) = (0, c(j+m)

2 , c(j+m)
3 ) for j =

1, · · · , m + 1 obtained from Steps 2 and 3 and m old elites c(∗j) = (0, c(∗j)
2 , c(∗j)

3 ) for
j = 1, · · · , m are ranked in descending order of their corresponding fitness values
η(c(j+m)) and η(c(∗j)). The first m individuals are saved to be the new elites c(∗j) =

(0, c(∗j)
2 , c(∗j)

3 ) for j = 1, · · · , m, and the first one is saved to be the best fitness value
named as η̄k for the kth generation;

• Step 6 (stopping criterion). If 0 ≤ η̄k − η̄k−1 < ε and reach the times of iterations
m∗, then the algorithm is halted and returns the Shapley–Pareto-optimal solution.
Otherwise, the new elites c(∗j) = (0, c(∗j)

2 , c(∗j)
3 ) for j = 1, · · · , m are copied to be the

next generation c(j) = (0, c(j)
2 , c(j)

3 ) for j = 1, · · · , m. Set k∗ ← k∗+ 1, and the algorithm
proceeds to Step 2.

The computer code was implemented using Microsoft Excel VBA in which a built-in
optimization tool can be used. Since this is a randomized algorithm, we tried many runs in
order to obtain the convergent results. Therefore, after many runs, the best fitness value
was around 10.16666411, and the best Shapley–Pareto-optimal solution was:

(x1, x2, x3, x4, x5, x6, x7) = (0, 0, 0, 0, 0, 1, 0).

We also remark that this simple numerical example can also be solved by using the
other heuristic algorithms such as ant colony optimization, artificial immune systems,
particle swarm optimization, simulated annealing, Tabu search etc. The purpose of this
paper was not to provide a new genetic algorithm to compare the efficiency among the
different heuristic algorithms. The genetic algorithm adopted in this paper was the standard
one. Therefore, its efficiency can be realized from the existing article. The main purpose
of this paper was to propose a new methodology to solve the multiobjective optimization
problems by incorporating the Shapley value of a formulated cooperative game and solving
its corresponding single-objective weighting problem by using the well-known numerical
techniques of optimization for the single-objective function to collect a family of so-called
Shapley–Pareto-optimal solutions. The intention of the genetic algorithms adopted in
this paper was to obtain the best Shapley–Pareto-optimal solution from the large set of
Shapley–Pareto-optimal solutions. In other words, other kinds of heuristic algorithms can
also be used to obtain the best Shapley–Pareto-optimal solution.

5. Conclusions

A new methodology by applying the Shapley values of cooperative games was pro-
posed to solve the multiobjective optimization problems. There are many ways that have
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been proposed to solve the multiobjective optimization problems in the literature. One
efficient way is to convert a multiobjective optimization problem into a single-objective
optimization problem by summing all the objective functions as a single objective with
some suitable weights. Usually, those weights are determined by decision-makers by
intuition. In this paper, we adopted the Shapley value of a formulated cooperative game
to be the weights of this weighting problem, which can avoid the biased assignment of
weights directly determined by the decision-makers.

We can solve the single-objective weighting problem to obtain the so-called Shapley–
Pareto-optimal solution by using the well-known numerical techniques of optimization
for the single-objective function. For example, in the linear case, this single-objective
weight problem will be a linear programming problem that can be solved by using the
simplex method. Since the payoff function of this formulated cooperative game depends
on the symmetric constant κs = cs/s for s = 1, · · · , n, as shown in (2), this means that the
different symmetric constants will determine the different payoff functions, which also
obtain the different Shapley values. In other words, the Shapley–Pareto-optimal solution
will depend on the vector c = (c1, · · · , cn) of nonnegative constants, which also means
that we may obtain a large set of Shapley–Pareto-optimal solutions. In order to obtain the
best Shapley–Pareto-optimal solution from the set of Shapley–Pareto-optimal solutions,
a genetic algorithm was adopted in this paper by evolving the nonnegative vector c of
constants.

It is well known that genetic algorithms can converge to the desired solution with
probability one. In other words, we can obtain the approximated optimal solutions in the
long run. The numerical example presented in this paper considered a three-objective
linear programming problem with one constraint and seven decision variables. Although
only one constraint was considered, this does not mean that this numerical example is too
simple to demonstrate the methodology proposed in this paper. The reason is that seven
decision variables were taken into account in this numerical example. The difficulty of
optimization problems always depends on the number of decision variables rather than
the number of constraints.

Although the genetic algorithm was adopted in this paper to obtain the best Shapley–
Pareto-optimal solution from the set of Shapley–Pareto-optimal solutions, the other heuris-
tic algorithms such as ant colony optimization, artificial immune systems, particle swarm
optimization, simulated annealing, tabu search, etc., can also be used to obtain the best
Shapley–Pareto-optimal solutions. The purpose of this paper was not to provide a new
genetic algorithm to compare the efficiency among the different heuristic algorithms. The
main purpose of this paper was to propose a new methodology to solve the multiobjective
optimization problems by incorporating the Shapley value of a formulated cooperative
game to obtain the best Shapley–Pareto-optimal solution using the genetic algorithm. The
main issue of the proposed genetic algorithm in this paper was to provide a recursive
procedure to generate the vector c = (c1, · · · , cn) of nonnegative constants, as shown in
Proposition 1, such that they were feasible to be used in the proposed genetic algorithms.
The genetic algorithm adopted in this paper was the standard one. Its efficiency compared
with the existing heuristic algorithms can be realized from the literature. In the future
research, we may design a new genetic algorithm and compare its efficiency with the
existing heuristic algorithms using statistical analysis.

This paper considered the Shapley values of cooperative games. There are many other
solution concepts of cooperative games that can also be used to set up the weights of the
single-objective weighting problem, which can be the future research. On the other hand,
the theory of noncooperative games is another research topic of game theory, which can
also be used to set up the weighting problems in the future research.
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