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Abstract: In this work, by using the comparison method and Riccati transformation, we obtain some
oscillation criteria of solutions of delay differential equations of fourth-order in canonical form. These
criteria complement those results in the literature. We give two examples to illustrate the main results.
Symmetry plays an essential role in determining the correct methods for solutions to differential
equations.

Keywords: differential equations; damped delay; fourth-order; oscillation

1. Introduction

Delay differential equations appear in many problems and applications especially
in applications of physics, medicine, engineering, aviation and biology. Moreover, they
are used in heartbeats and vibrational motion in bridges. Also, symmetrical properties
contribute in Euler equation in some variational problems. In other words, it contributes to
determining the appropriate method for finding the correct solution to this equation, see
[1,2].

Nowadays, the oscillatory properties of differential equations has been the subject
of intensive study, especially their oscillations and asymptotic, see Agarwal et al. [3] and
Saker [4].

Baculikova [5], Dzurina and Jadlovska [6], and Bohner et al. [7] developed some
techniques that can be used in second-order differential equations to test the qualitative
and oscillatory behavior of this type of equation. Xing et al. [8] and Moaaz et al. [9]
contributed to the development of the theory of oscillation by obtaining some new criteria
for the oscillation of solutions of differential equations of even order. Despite the great
interest by many researchers to obtain qualitative and oscillatory properties of different
types of equations such as fractional order differential equations, the oscillation criteria
for delay differential equations have received some few studies, although such equations
are of usefulness and importance in some fields of science for its appearance in many
applications. Many researchers have discussed the qualitative and oscillatory behavior of
differential equations with neutral and damped terms, see [10–21].

Symmetry 2021, 13, 2015. https://doi.org/10.3390/sym13112015 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/ 0000-0002-7251-9608
https://doi.org/10.3390/sym13112015
https://doi.org/10.3390/sym13112015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112015
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112015?type=check_update&version=1


Symmetry 2021, 13, 2015 2 of 11

For even-order differential equations, Park et al. [22] were interested in studying the
oscillation conditions of the equations(

α(ı)
(

y(n−1)(ı)
)κ)′

+ ϑ(ı)y`(φ(ı)) = 0, (1)

(or some of its special cases) where κ and ` are ratios of odd positive integers, ` ≤ κ and
they only focused on studying the oscillation of (1) in the canonical case, that is,∫ ∞

ı0
α−1/κ(s)ds = ∞.

In [23], Zhang et al. examined the qualitative properties of (1) in the noncanonical
case, that is, ∫ ∞

ı0
α−1/κ(s)ds < ∞. (2)

Baculikova et al. [24] presented oscillation results for Emden–Fowler equation[
α(ı)

(
y(n−1)(ı)

)κ]′
+ ϑ(ı) f (y(φ(ı))) = 0

and used the Riccati method to obtain some oscillation theorems. Moreover, by introducing
a generalized Riccati substitution, Moaaz and Muhib [25] extended the technique used
in [26] to study the oscillation of (1).

Zhang et al. [27] discussed some oscillation theorems for (3) where κ = ` and con-
tributed to improving the oscillatory properties for this equation.

In case n = 4, Zhang et al. [28] investigated some oscillation theorems of equation[
α(ı)

(
y′′′(ı)

)κ
]′
+ ϑ(ı) f (y(φ(ı))) = 0,

where κ and ` are the ratio of odd natural numbers.
Bazighifan [29] investigated the oscillation of equation[

α(ı)
(
y′′′(ı)

)κ
]′
+ ϑ(ı)y`(φ(ı)) = 0.

The authors in [30] considered that Equation (4) where κ = ` = 1 is oscillatory if

∫ ∞

ı0

(
ς(s)ϑ(s)

r
2

φ2(s)− 1
4ς(s)α(s)

[
ς′(s)
ς(s)

− β(s)
α(s)

]2
)

ds = ∞,

for some r ∈ (0, 1), and

∫ ∞

ı0

[
θ(s)

∫ ∞

s

[
1

α(υ)

∫ ∞

υ
ϑ(s)

(
φ2(s)

s2

)
ds
]

dυ− (θ′(s))2

4θ(s)

]
ds = ∞

and under the condition (6).
Based on the above results of previous scholars, in this work, we are concerned with

the following differential equations with delay term of the form

(
α(ı)

(
y′′′(ı)

)κ
)′

+
m

∑
j=1

ϑj(ı)y`
(
φj(ı)

)
= 0 (3)

and (
α(ı)

(
y′′′(ı)

)κ
)′

+ β(ı)
(
y′′′(ı)

)κ
+

m

∑
j=1

ϑj(ı)y`
(
φj(ı)

)
= 0. (4)
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where κ and ` are quotient of odd positive integers and under the conditions:

(H1) α, β, ϑ ∈ C([ı0, ∞), [0, ∞)), φj(ı) ∈ C([ı0, ∞),R),
(H2) α′(ı) + β(ı) ≥ 0, α(ı) > 0, ϑj(ı) > 0, φj(ı) ≤ ı, limı→∞ φj(ı) = ∞, j = 1, 2, ..., r.

Throughout this article, we study (3) under the hypothesis∫ ∞

ı0

1
α1/κ(s)

ds = ∞ (5)

and (4) under the condition

∫ ∞

ı0

[
1

α(s)
exp

(
−
∫ s

ı0

β(w)

α(w)
dw
)]1/κ

ds = ∞. (6)

Definition 1. A nontrivial solution y of (3) and (4) is called oscillatory or nonoscillatory according
if it contains does or does not have infinitely many zeros.

Definition 2. Equations (3) and (4) are called oscillatory if each of their solutions is oscillatory.

The motivation for this article is to continue the previous works [23,30], which dis-
cussed the oscillatory properties of equations in a canonical form.

The authors in [23,30] used the comparison method that differs from the one we used
in this work. So, the technique used gives more accurate criteria. Moreover, these criteria
complement those results in the literature.

The main idea of our method in this article is to make a comparison with a first-order
differential equation whose oscillatory behavior has been known before, also we use the
Riccati transformation to reduce the order of the studied equation. Thus, we claim that the
obtained results are new and complement those results in the literature.

To obtain our results, we shall need the following lemmas:

Lemma 1 ([31]). If y(m)(ı) > 0, m = 0, 1, . . . , r, and y(r+1)(ı) < 0, then

y(ı)
ır/r!

≥ y′(ı)
ır−1/(r− 1)!

.

Lemma 2 ([32]). Let w ∈ Cr([ı0, ∞), (0, ∞)) and w(r)(ı) is of a fixed sign, on [ı0, ∞) such that,
for all ı ≥ ı1,

w(r−1)(ı)w(r)(ı) ≤ 0.

If we have limı→∞ w(ı) 6= 0, then there exists ıλ ≥ ı0 such that

w(ı) ≥ λ

(r− 1)!
ır−1

∣∣∣w(r−1)(ı)
∣∣∣,

for every λ ∈ (0, 1) and ı ≥ ıλ.

Lemma 3 ([33]). Let F > 0. Then

Eu− Fu(ν+1)/ν ≤ νν

(ν + 1)ν+1 Eν+1F−ν. (7)

For convenience, we denote:

R(ı) :=
∫ ∞

ı

(
1

α(x)

∫ ∞

x

m

∑
j=1

ϑj(s)ds

)1/κ

dx,
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R̃(ı) := µ`/κ
2

∫ ∞

ı

(
1

α(x)

∫ ∞

x

m

∑
j=1

ϑj(s)
(

φj(s)
s

)`

ds

)1/κ

dx,

ζı0(ı) := exp
(∫ ı

ı0

β(x)
α(x)

dx
)

and

R̂(ı) := µ`/κ
2

∫ ∞

ı

(
1

α(x)ζı0(ı)

∫ ∞

x
ζı0(ı)

m

∑
j=1

ϑj(s)
(

φj(s)
s

)`

ds

)1/κ

dx,

where µ2 ∈ (0, 1).

2. Oscillation Criteria for (3)

Lemma 4. Let (5) holds and y is an eventually positive solution of (3), then y′ > 0 and y′′′ > 0.

Proof. The proof is clear and easy and thus it has been deleted.

Theorem 1. If

x′(ı) +
λ`

6`
∑m

j=1 ϑj(ı)φ3`
j (ı)

α`/κ
(
φj(ı)

) x`/κ
(
φj(ı)

)
= 0, λ ∈ (0, 1), (8)

is oscillatory, then (3) is oscillatory.

Proof. Let (3) has a nonoscillatory solution in [ı0, ∞). Then y(ı) > 0 and y
(
φj(ı)

)
> 0 for

ı ≥ ı1. Let
x(ı) := α(ı)

(
y′′′(ı)

)κ
> 0 [from Lemma 4],

which with (3) gives

x′(ı) +
m

∑
j=1

ϑj(ı)y`
(
φj(ı)

)
= 0. (9)

Since limı→∞ y(ı) 6= 0. Thus, by Lemma 2, we obtain

y`
(
φj(ı)

)
≥ λ`

6`
φ3`

j (ı)
(
y′′′
(
φj(ı)

))`, (10)

for all λ ∈ (0, 1). By (9) and (10), we see that

x′(ı) +
λ`

6`
m

∑
j=1

ϑj(ı)φ3`
j (ı)

(
y′′′
(
φj(ı)

))` ≤ 0.

So, we obtain x(ı) > 0 and

x′(ı) +
λ`

6`
∑m

j=1 ϑj(ı)φ3`
j (ı)

α`/κ
(
φj(ı)

) x`/κ
(
φj(ı)

)
≤ 0.

When using ([13], Theorem 1), we notice that (8) is nonoscillatory, which is an obvious
contradiction, so the proof of this theorem is complete.

Corollary 1. Let κ = ` and

lim inf
ı→∞

∫ ı

φ(ı)

λ`

6`
∑m

j=1 ϑj(s)φ3`
j (s)

α`/κ
(
φj(s)

) ds >
1
e

, (11)
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then (3) is oscillatory.

Lemma 5. If

∫ ∞

ı0

(
M`−κς(ı)

m

∑
j=1

ϑj(ı)
φ3κ

j (ı)

ı3κ
− 2κ

(κ + 1)κ+1
α(ı)(ς′(ı))κ+1

µκ ı2κςκ(ı)

)
ds = ∞, (12)

for some µ ∈ (0, 1), then y′′ < 0.

Proof. If y′′(ı) > 0. When using Lemmas 2 and 1, we obtain

y
(
φj(ı)

)
y(ı)

≥
φ3

j (ı)

ı3
(13)

and
y′(ı) ≥ µ

2
ı2y′′′(ı). (14)

Let

ψ(ı) := ς(ı)
α(ı)(y′′′(ı))κ

yκ(ı)
> 0. (15)

From (13)–(15), we find

ψ′(ı) ≤ ς′(ı)
ς(ı)

η(ı)− ς(ı)
m

∑
j=1

ϑj(ı)
φ3κ

j (ı)

ı3κ
y`−κ

(
φj(ı)

)
− κµ

2
ı2

ς1/κ(ı)α1/κ(ı)
ψ1+1/κ(ı). (16)

Since y′(ı) > 0. From Lemmas 3 with E = ς′/ς, F = κµı2/
(

2α1/κ(ı)ς1/κ(ı)
)

and
u = ψ, we see that

ψ′(ı) ≤ −M`−κς(ı)
m

∑
j=1

ϑj(ı)
φ3κ

j (ı)

ı3κ
+

2κ

(κ + 1)κ+1
α(ı)(ς′(ı))κ+1

µκ ı2κςκ(ı)
.

This implies that

∫ ı

ı1

(
M`−κς(ı)

m

∑
j=1

ϑj(ı)
φ3κ

j (ı)

ı3κ
− 2κ

(κ + 1)κ+1
α(ı)(ς′(ı))κ+1

µκ ı2κςκ(ı)

)
ds ≤ ψ(ı1),

which contradicts (12). The proof is complete.

Theorem 2. If
u′′(ı) + M`−κ R̃(ı)u(ı) = 0 (17)

is oscillatory, then (3) is oscillatory.

Proof. Proceeding as in the proof of Theorem 1. By Lemmas 2 and 4, we have

y′(ı) > 0, y′′(ı) < 0 and y′′′(ı) > 0. (18)

Now, integrating (3) from ı to b, we have

α(b)
(
y′′′(b)

)κ
= α(ı)

(
y′′′(ı)

)κ −
∫ b

ı

m

∑
j=1

ϑj(s)y`
(
φj(s)

)
ds. (19)
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By Lemma 3 in [33] with (18), we get

y
(
φj(ı)

)
y(ı)

≥ λ
φj(ı)

ı
,

which with (19) gives

α(b)
(
y′′′(b)

)κ − α(ı)
(
y′′′(ı)

)κ
+ λ`

∫ b

ı

m

∑
j=1

ϑj(s)
(

φj(s)
s

)`

y`(s)ds ≤ 0.

By y′ > 0, we find

α(b)
(
y′′′(b)

)κ − α(ı)
(
y′′′(ı)

)κ
+ λ`y`(ı)

∫ b

ı

m

∑
j=1

ϑj(s)
(

φj(s)
s

)`

ds ≤ 0. (20)

Taking b→ ∞, we obtain

−α(ı)
(
y′′′(ı)

)κ
+ λ`y`(ı)

∫ ∞

ı

m

∑
j=1

ϑj(s)
(

φj(s)
s

)`

ds ≤ 0,

that is

y′′′(ı) ≥ λ`/κ

α1/κ(ı)
y`/κ(ı)

(∫ ∞

ı

m

∑
j=1

ϑj(s)
(

φj(s)
s

)`

ds

)1/κ

.

Integrating from ı to ∞, we get

−y′′(ı) ≥ λ`/κy`/κ(ı)
∫ ∞

ı

(
1

α(x)

∫ ∞

x

m

∑
j=1

ϑj(s)
(

φj(s)
s

)`

ds

)1/κ

dx,

hence
y′′(ı) ≤ −R̃(ı)y`/κ(ı). (21)

Now, if we define η by

η(ı) =
y′(ı)
y(ı)

,

then η(ı) > 0 for ı ≥ ı1, and

η′(ı) =
y′′(ı)
y(ı)

−
(

y′(ı)
y(ı)

)2

.

From (21), we find

η′(ı) ≤ −R̃(ı)
y`/κ(ı)

y(ı)
− η2(ı). (22)

Since y′(ı) > 0. Thus, (22) becomes

η′(ı) + η2(ı) + M`−κ R̃(ı) ≤ 0, (23)

From [17], we obtain (17) is nonoscillatory, which contradicts, so the proof of this
theorem is complete.

Theorem 3. If ` ≥ κ and (
1

φ′j(ı)
u′(ı)

)′
+ M`/κ−1R(ı)u(ı) = 0 (24)
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is oscillatory, then (3) is oscillatory.

Proof. Let (12) and (19) hold. So, we note from φ′j(ı) ≥ 0 and y′(ı) ≥ 0

α(b)
(
y′′′(b)

)κ − α(ı)
(
y′′′(ı)

)κ
+ y`

(
φj(ı)

) ∫ b

ı

m

∑
j=1

ϑj(s)ds ≤ 0. (25)

Thus, (18) becomes

y′′(ı) ≤ −R(ı)y`/κ
(
φj(ı)

)
. (26)

Let

v(ı) =
y′(ı)

y
(
φj(ı)

) , (27)

then v(ı) > 0 for ı ≥ ı1, and

v′(ı) =
y′′(ı)

y
(
φj(ı)

) − y′(ı)
y2
(
φj(ı)

)y′
(
φj(ı)

)
φ′j(ı)

≤ y′′(ı)
y
(
φj(ı)

) − φ′j(ı)

(
y′(ı)

y
(
φj(ı)

))2

From (26) and (27), we find

v′(ı) + M`/κ−1R(ı) + φ′j(ı)v
2(ı) ≤ 0. (28)

From [17], we find (24) is nonoscillatory, which is a contradiction, thus the proof of
the theorem is completed.

Corollary 2. If ` = κ and

lim
ı→∞

1
G(ı, ı0)

∫ ı

ı0

(
G(ı, s)R̃(s)− 1

4
h2(ı, s)

)
ds = ∞

or
lim inf

ı→∞

∫ ∞

ı
R̃(s)ds >

1
4

, (29)

then (3) is oscillatory.

Corollary 3. Let ` = κ and (12) hold. If

ı2R̃(s) ≥ ε

and

lim sup
ı→∞

(
ıε−1

∫ ı

ı0
s2−εR̃(s)ds + ı1−ε̃

∫ ∞

ı
sε̃R̃(s)ds

)
> 1,

where ε̃ = 1
2
(
1−
√

1− 4ε
)

and ε ∈ (0, 1/4], then (3) is oscillatory.
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3. Oscillation Results for Equation (4)

In this section, we shall get oscillation conditions for (4) by converting to (3), easily,
we find

1
ζı0(ı)

d
dı

(
µ(ı)α(ı)

(
y′′′(ı)

)κ
)

=
1

ζı0(ı)

[
ζı0(ı)

(
α(ı)

(
y′′′(ı)

)κ
)′

+ ζ ′ı0(ı)α(ı)
(
y′′′(ı)

)κ
]

=
(

α(ı)
(
y′′′(ı)

)κ
)′

+
ζ ′ı0(ı)
ζı0(ı)

α(ı)
(
y′′′(ı)

)κ ,

=
(

α(ı)
(
y′′′(ı)

)κ
)′

+ β(ı)
(
y′′′(ı)

)κ ,

which with (4) gives

(
ζı0(ı)α(ı)

(
y′′′(ı)

)κ
)′

+ ζı0(ı)
m

∑
j=1

ϑj(ı)y`
(
φj(ı)

)
= 0.

Corollary 4. Assume that κ = `, λ ∈ (0, 1), (6) holds. If

lim inf
ı→∞

∫ ı

φ(ı)

λ`

6`
ζı0(s)∑m

j=1 ϑj(s)φ3`
j (s)

ζ`/κ
ı0
(
φj(s)

)
α`/κ

(
φj(s)

)ds >
1
e

,

then (4) is oscillatory.

Corollary 5. Let ` = κ, (6) and

∫ ∞

ı0

(
M`−κς(ı)ζı0(ı)

m

∑
j=1

ϑj(ı)
φ3κ

j (ı)

ı3κ
− 2κ

(κ + 1)κ+1
α(ı)ζı0(ı)(ς

′(ı))κ+1

µκ ı2κςκ(ı)

)
ds = ∞. (30)

If

lim
ı→∞

1
G(ı, ı0)

∫ ı

ı0

(
G(ı, x)R̂(x)− 1

4
h2(ı, x)

)
dx = ∞

or
lim inf

ı→∞

∫ ∞

ı
R̂(x)dx >

1
4

,

then (4) is oscillatory.

Corollary 6. Let ` = κ and (30) hold. If

ı2R̂(s) ≥ ε

and

lim sup
ı→∞

(
ıε−1

∫ ı

ı0
s2−εR̂(s)ds + ı1−ε̃

∫ ∞

ı
sε̃R̂(s)ds

)
> 1,

then (4) is oscillatory.

Example 1. Let the equation: (
ı3
(
y′′′(ı)

)3
)′

+
ϑ0

ı7
y3(γı) = 0, (31)

where ı ≥ 1, γ ∈ (0, 1] and ϑ0 > 0. We note that κ = ` = 3, φj(ı) = γı, α(ı) = ı3, and
ϑ(ı) = ϑ0/ı7. So, we obtain

R̃(ı) = λ

(
ϑ0

6

)1/3
γ

1
2ı2

.
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By Corollarys 1 and 2, we find that Equation (31) is oscillatory if

ϑ0 >
63

e
(

ln 1
γ

)
γ6

,

ϑ0 >

(
34

2

)
1

γ9

and

ϑ0 > 6
(

1
4γ

)3
.

So, Equation (31) is oscillatory if

ϑ0 > max

{(
34

2

)
1

γ9 , 6
(

1
4γ

)3
}

=

(
34

2

)
1

γ9 . (32)

Example 2. Let the equation

y(4)(ı) +
1
ı

y(3)(ı) +
θ0

ı4
y
( ı

2

)
= 0, (33)

where ı ≥ 1, and θ0 > 0 is a constant. Let κ = ` = 1, n = 4, α(ı) = 1, φj(ı) = ı/2, β(ı) = 1/ı
and ϑ(ı) = θ0/ı4. Then

ζı0(ı) = ı, ζı0
(
φj(ı)

)
= ı/2.

So, we see that

lim inf
ı→∞

∫ ı

φ(ı)

λ`

6`
ζı0(s)∑m

j=1 ϑj(s)φ3`
j (s)

ζ`/κ
ı0
(
φj(s)

)
α`/κ

(
φj(s)

)ds

= lim inf
ı→∞

∫ ı

ı/2

λ

3
θ0

ı4

(
ı3

8

)
ds =

λθ0

24
ln 2.

The condition become
θ0 >

24
λe ln2

. (34)

Using Corollary 4, all solution of (33) is oscillatory if θ0 > 24
λe ln2 for all λ ∈ (0, 1).

4. Conclusions

In this work, a large amount of attention has been focused on the oscillation problem
of Equations (3) and (4). By Riccati transformation and comparison technique, we establish
some new oscillatory properties. These criteria complement those results in the literature.
For future consideration, it will be of a great importance to study the qualitative properties
of p-Laplacian differential equations[

α(ı)
∣∣∣(y(n−1)(ı)

)∣∣∣p−2
y(n−1)(ı)

]′
+

m

∑
j=1

ϑj(ı)y`
(
φj(ı)

)
= 0,

under the assumption that ∫ ∞

ı0

1
α1/p−1(s)

ds < ∞,

where p > 1 is a constant.
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