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Abstract: The aim of this paper is to establish a theorem associated with the product of the Aleph-
function, the multivariable Aleph-function, and the general class of polynomials. The results of this
theorem are unified in nature and provide a very large number of analogous results (new or known)
involving simpler special functions and polynomials (of one or several variables) as special cases.
The derived results lead to significant applications in physics and engineering sciences.

Keywords: Aleph-function; multivariable Aleph-function; general class of multivariable polynomials;
hypergeometric function

1. Introduction

Calculus of fractional orders is a field of mathematics study that grows out of the
traditional definitions of calculus with integer orders of integral and derivative operators
in much the same way that fractional exponents can do as an outgrowth of exponents
with integer value. During the last three decades, from the development in computations
by mathematical software, fractional calculus has been applied to almost every field
of science, in particular mathematics, physics, and engineering. Many applications of
fractional calculus can be found in plasma physics and controlled thermonuclear fusion,
nonlinear control theory, turbulence and fluid dynamics, stochastic dynamical systems,
image processing, nonlinear biological systems, astrophysics, and mathematical biology.
The computations of fractional integrals and fractional derivatives involving transcendental
functions of one and several variables are important because of the usefulness of their
results, e.g., for evaluating differential and integral equations. Motivated by these and
other applications, several mathematicians and physicians have made use of the calculus
fractional orders in the theory of special functions of one and more variables.

Definition 1. (Mellin–Barnes integral) Let L be a contour in the complex plane starting at c− ι∞
and ending at c + ι∞ with <(s) = c > 0. We call the Mellin–Barnes integral to any integral in
the complex plane whose integrand contemplates at least one gamma function, given by:

I(z) =
1

2πι

∫
L

f (s)z−sds (1)

where the density function, f (s), in general, the solution of a differential equation with polynomial
coefficients, is given by a quotient of products of gamma functions depending on parameters.
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A newly found special function is called the Aleph-function, which occurs as an
extension of the I-function, itself a generalization of the well-known and familiar G- and
H-functions in one variable. A special case of the Aleph-function has appeared in the
investigation of fractional driftless Fokker–Planck equations with power law diffusion
coefficients. The Aleph-function was introduced by Südland et al. [1], who named it after
the symbol used for its representation. The notation and complete definition in terms of
the Mellin–Barnes-type integrals along with the conditions of convergence were presented
by Saxena and Pogáany [2]. Later on, several studies were performed that established
relationships between Aleph-functions with various fractional integral operators [3–6].
In addition, the multivariable Aleph-function is a generalization of the multivariable
I-function defined by Sharma and Ahmad [7], which is itself a generalization of the
multivariable H-function defined by Srivastava and Panda [8,9]. The multivariable Aleph-
function ℵ(z1, . . . , zr) of complex arguments z1, . . . , zr writes:

ℵ(z1, · · · , zr) = ℵ0,n:m1,n1,··· ,mr ,nr
pi ,qi ,τi ;R:p

i(1)
,q

i(1)
,τ

i(1)
;R(1);··· ;p

i(r)
,q

i(r)
;τ

i(r)
;R(r)


z1
.
.

zr

∣∣∣∣∣∣∣
(

aj; α
(1)
j , · · · , α

(r)
j

)
1,n

,

· · · ,[
τi

(
aji; α

(1)
ji , · · · , α

(r)
ji

)]
n+1,pi

:
(

c(1)j , γ
(1)
j

)
1,n1

,

[
τi

(
bji; β

(1)
ji , · · · , β

(r)
ji

)]
1,qi

:
(

d(1)j , δ
(1)
j

)
1,m1

,[
τi(1)

(
c(1)

ji(1)
, γ

(1)
ji(1)

)]
n1+1,p(1)i

; · · · ;
(

c(r)j , γ
(r)
j

)
1,nr

,
[
τi(r)

(
c(r)

ji(r)
, γ

(r)
ji(r)

)]
nr+1,p(r)i[

τi(1)

(
d(1)

ji(1)
, δ

(1)
ji(1)

)]
m1+1,q(1)i

; · · · ;
(

d(r)j , δ
(r)
j

)
1,mr

,
[
τi(r)

(
d(r)

ji(r)
, δ

(r)
ji(r)

)]
mr+1,q(r)i


=

1
(2πω)r

∫
L1

· · ·
∫

Lr
ψ(s1, · · · , sr)

r

∏
k=1

θk(sk) zsk
k ds1 · · ·dsr, (2)

with ω =
√
−1; it is defined by means of the multiple contour integral, given by:

ℵ(z1, . . . , zr) :=
1

(2πω)r

∫
L1

· · ·
∫

Lr
ψ(s1, . . . , sr)

r

∏
k=1

θk(sk)z
sk
k ds1 · · ·dsr. (3)

Here,

ψ(s1, . . . , sr) :=
∏n

j=1 Γ
(

1− aj + ∑r
k=1 α

(k)
j sk

)
∑R

i=1 τi

{
∏

pi
j=n+1 Γ

(
aji −∑r

k=1 α
(k)
ji sk

)
∏

qi
j=1 Γ

(
1− bji + ∑r

k=1 β
(k)
ji sk

)} (4a)

and:

θk(sk) :=
∏mk

j=1 Γ
(

d(k)j − δ
(k)
j sk

)
∏nk

j=1 Γ
(

1− c(k)j + γ
(k)
j sk

)
∑R(k)

i(k)=1 τi(k)
{

∏
q

i(k)

j=mk+1 Γ
(

1− d(k)ji(k) + δ
(k)
ji(k) sk

)
∏

p
i(k)

j=nk+1 Γ
(

c(k)ji(k) − γ
(k)
ji(k) sk

)} . (4b)

Suppose, as usual, that the parameters aj (j = 1, · · · , p); bj (j = 1, · · · , q); c(k)j (j =

1, · · · , nk); c(k)
ji(k)
(

j = nk + 1, · · · , pi(k)
)
; d(k)j (j = 1, · · · , mk); d(k)

ji(k)
(

j = mk + 1, · · · , qi(k)
)

are

complex numbers, with k = 1, · · · , r, i = 1, · · · , R, i(k) = 1, · · · , R(k) , and the α′s, β′s, γ′s,
and δ′s are assumed to be positive real numbers for standardization purpose such that:
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U(k)
i =

n

∑
j=1

α
(k)
j + τi

pi

∑
j=n+1

α
(k)
ji +

nk

∑
j=1

γ
(k)
j + τi(k)

p
i(k)

∑
j=nk+1

γ
(k)
ji(k)
− τi

qi

∑
j=1

β
(k)
ji −

mk

∑
j=1

δ
(k)
j

− τi(k)

q
i(k)

∑
j=mk+1

δ
(k)
ji(k)
≤ 0. (5)

The reals numbers τi are positives for i = 1, · · · , R; τi(k) are positives for i(k) =

1, · · · , R(k). The contour Lk is in the sk-plane and runs from σ− i∞ to σ + i∞ where σ is
a real number with a loop, if necessary, to ensure that the poles of Γ

(
d(k)j − δ

(k)
j sk

)
with

j = 1, · · · , mk are separated from those of Γ
(

1− aj + ∑r
i=1 α

(k)
j sk

)
with j = 1, · · · , n and

Γ
(

1− c(k)j + γ
(k)
j sk

)
with j = 1, · · · , nk to the left of contour Lk.

For more details, the reader may refer to the recent works of Ayant [10] and Suthar [6],
in particular, as concerns the criteria for the absolute convergence of the above multiple
Mellin–Barnes contour integral. They can be obtained by extending the corresponding
conditions fulfilled by the multivariable H-function and are given by the conditions:

| arg zk| <
1
2

A(k)
i π (for k = 1, 2, . . . r),

in which:

A(k)
i :=

n

∑
j=1

α
(k)
j − τi

pi

∑
j=n+1

α
(k)
ji − τi

qi

∑
j=1

β
(k)
ji +

nk

∑
j=1

γ
(k)
j − τi(k)

p
i(k)

∑
j=nk+1

γ
(k)
ji(k)

+
mk

∑
j=1

δ
(k)
j − τi(k)

q
i(k)

∑
j=mk+1

δ
(k)
ji(k)

> 0 (6)

with k = 1 . . . r, i = 1, . . . , R, and i(k) = 1, . . . , R(k). The complex numbers zi are not zero.
In the remainder of the paper, we assume that the existence and absolute convergence
conditions of the multivariable Aleph-function are satisfied according to the above criteria.

Remark 1. Its asymptotic behavior when variables become small or large (resp.) is expressed in the
following basic forms:

ℵ(z1, . . . , zr) = O(|z1|α1 , . . . , |zr|αr ), when max(|z1|, . . . , |zr|)→ 0.

ℵ(z1, . . . , zr) = O
(
|z1|β1 , . . . , |zr|βr

)
, when min(|z1|, . . . , |zr|)→ ∞,

where, for k = 1, . . . , r,

αk = min
(
<
(

d(k)j /δ
(k)
j

))
, j = 1, . . . , mk (7a)

and

βk = max
(
<
((

c(k)j − 1
)

/γ
(k)
j

))
, j = 1, . . . , nk. (7b)

For the sake of simplicity, we use the following notations in what follows,

V := m1, n1; . . . ; mr, nr and (8a)

W := pi(1) , qi(1) , τi(1) ; R(1); . . . ; pi(r) , qi(r) , τi(r) ; R(r), (8b)

and also,
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A :=
(

aj; α
(1)
j , . . . , α

(r)
j

)
1,n

,
[
τi

(
aji; α

(1)
ji , . . . , α

(r)
ji

)]
n+1,pi

:
(

c(1)j , γ
(1)
j

)
1,n1

,[
τi(1)

(
c(1)

ji(1)
, γ

(1)
ji(1)

)]
n1+1,p

i(1)

; · · · ;
(

c(r)j , γ
(r)
j

)
1,nr

,
[
τi(r)

(
c(r)

ji(r)
, γ

(r)
ji(r)

)]
nr+1,p

i(r)

(9a)

B :=
[
τi

(
bji; β

(1)
ji , . . . , β

(r)
ji

)]
1,qi

:
(

d(1)j , δ
(1)
j

)
1,m1

,
[
τi(1)

(
d(1)

ji(1)
, δ

(1)
ji(1)

)]
m1+1,q

i(1)

; · · · ;
(

d(r)j , δ
(r)
j

)
1,mr

,
[
τi(r)

(
d(r)

ji(r)
, δ

(r)
ji(r)

)]
mr+1,q

i(r)

. (9b)

In other words, the contracted form of the multivariable Aleph-function can be writ-
ten as:

ℵ(z1, . . . , zr) := ℵ0,n:V
pi ,qi ,τi ;R;W

 z1
...

zr

∣∣∣∣∣∣∣
A
...
B

. (10)

Multivariable H-function: If we set τi = τi(1) = · · · = τi(k) = 1 and R = R(1) = · · · =
R(k) = 1 with k = 1, · · · , r in (2), then the multivariable Aleph-function reduces to the
multivariable H-function, defined by:

H(z1, · · · , zr)

= H0,n:m1,n1;··· ;mr ,nr
p,q:p1,q1;··· ;pr ,qr


z1

.

.
zr

∣∣∣∣∣∣∣∣∣

(
aj; α

(1)
j , · · · , α

(r)
j

)
1,n

:
(

c(1)j , γ
(1)
1

)
1,n1

, · · · ,
(

c(r)j , γ
(r)
j

)
1,nr(

bj; β
(1)
j , · · · , β

(r)
j

)
1,q

:
(

d(1)j , δ
(1)
j

)
1,q1

, · · · ,
(

d(r)j , δ
(r)
j

)
1,qr


=

1

(2πω)r+1

∫
L1

· · ·
∫

Lr+1

φ(s1, · · · , sr)
r

∏
i=1

θi(si) zti
i ds1 · · ·dsr, (11)

where φ(s1, · · · , sr), θi(si) (i = 1, · · · , r + 1) are given by:

φ(s1, · · · , sr) =
∏n

j=1 Γ
(

1− aj + ∑r
i=1 α

(j)
j sj

)
∏

p
j=n+1 Γ

(
aj −∑r

i=1 α
(i)
j si

)
∏

q
j=1 Γ

(
1− bj + ∑r

i=1 β
(i)
j si

) , (12)

and:

θi(si) =
∏mi

j=1 Γ
(

d(i)j − δ
(i)
j si

)
∏ni

j=1 Γ
(

1− c(i)j + γ
(i)
j si

)
∏

pi
j=ni+1 Γ

(
c(i)j − γ

(i)
j si

)
∏

qi
j=mi+1 Γ

(
1− d(i)j + δ

(i)
j si

) . (13)

Aleph-function of one variable: The Aleph-function was first introduced by Südland
et al. [1] by means of a Mellin–Barnes-type integral in the following manner for z 6= 0 (see,
also, [2–5]):

ℵ(z) = ℵM,N
Pi ,Qi ,ci ; r′

(
z

∣∣∣∣∣(aj ,Aj)1,N ,..., [cj(aji ,Aji)]N+1,Pi ;r′

(bj ,Bj)1,M ,..., [ci(bji ,Bji)]M+1,Qi ;r′

)
:=

1
2πi

∫
L

ΩM,N
Pi ,Qi ,ci ;r′

(s) z−s ds, (14)

where:

ΩM,N
Pi ,Qi ,ci ; r′(s) :=

∏M
j=1 Γ

(
bj + Bjs

)
∏N

j=1 Γ
(
1− aj − Ajs

)
∑r′

i=1 ci

{
∏Qi

j=M+1 Γ
(
1− bji − Bjis

)
∏Pi

j=N+1 Γ
(
aji + Ajis

)} . (15)

Here and throughout, let Z,C,R,R+, and N be the sets of integers, complex numbers,
real numbers, positive real numbers, and positive integers, respectively, and let N0 :=
N∪ {0}.

The L = Lωγ∞, (γ ∈ R) is a suitable contour of the Mellin–Barnes-type, which runs
from γ− ω∞ to γ + ω∞. The poles of Γ

(
1− aj − Ajs

)
, j ∈ {1, · · · , N} are distinct from
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the poles of Γ
(
bj + Bjs

)
, j ∈ {1, · · · , M}. The parameters Aj, Bj, Aji, Bji are positive real

numbers, and aj, bj, aji, bji are complex numbers. The parameters Pi, Qi are nonnegative
integers satisfying the conditions 0 ≤ N ≤ Pi, 1 ≤ M ≤ Qi, ci > 0 for i ∈ {1, · · · , r′} and
M, N ∈ Z. As usual, the empty product in (15) is interpreted as unity.

The conditions of the existence of the contour integral defined in (14) are given below
for ` = 1, 2, . . . , r′ by:

| arg(z)| < π

2
ϕ` when ϕ` > 0 (16a)

and:

| arg(z)| < π

2
ϕ` and <(ζ`) + 1 < 0 when ϕ` ≥ 0, (16b)

where, for ` = 1, 2, . . . , r′,

ϕ` :=
N

∑
j=1

Aj +
M

∑
j=1

Bj − c`

(
P`

∑
j=N+1

Aj` +
Q`

∑
j=M+1

Bj`

)
and (17a)

ζ` :=
M

∑
j=1

bj −
N

∑
j=1

aj + c`

(
Q`

∑
j=M+1

bj` −
P`

∑
j=N+1

aj`

)
+

1
2
(

P` −Q`

)
. (17b)

I-function of one variable: If we set ci = 1 for i ∈ {1, · · · , r′} in (14), then the
Aleph-function coincides with the I-function, given as:

I M,N
Pi ,Qi ;r′

[z] = ℵ M,N
Pi ,Qi ,1;r′

[
z

∣∣∣∣∣
(
aj, Aj

)
1,N , . . . ,

(
aj, Aj

)
N+1,Pi(

bj, Bj
)

1,M, . . . ,
(
bj, Bj

)
M+1,Qi

]
= 1

2πι

∫
L Ω M,N

Pi ,Qi ,1;r′(s)z
−s ds, (18)

which holds under the conditions (16a)–(17b) (for ci = 1).

H-function of one variable: By taking ci → 1 and r′ = 1 in (14), then the Aleph-
function reduces to Fox’s H-function [11] as follows:

HM,N
P,Q [z] = ℵ M,N

P,Q,1;1

[
z

∣∣∣∣∣
(
aj, Aj

)
1,P(

bj, Bj
)

1,Q

]
=

1
2πι

∫
L

Ω M,N
P,Q (s)z−s ds, (19)

where the kernel Ω M,N
P,Q (s) is given by:

ΩM,N
P,Q (s) =

∏M
j=1 Γ

(
bj + Bjs

)
∏N

j=1 Γ
(
1− aj − Ajs

)
∏P

j=N+1 Γ
(
aj + Ajs

)
∏Q

j=M+1 Γ
(
1− bj − Bjs

) . (20)

Furthermore, the series representation of the Aleph-function was given by Chaurasia
and Singh [12] in the form:

ℵM,N
Pi ,Qi ,ci ;r′

(z) =
M

∑
G=1

∞

∑
g=0

(−1)g ΩM,N
Pi ,Qi ,ci ; r′(ηG,g)

BGg!
z−ηG,g , (21)

with s = ηG,g = BG+g
BG

, Pi ≤ Qi, |z| < 1, as well as ΩM,N
Pi ,Qi ,ci ; r′ as defined in relation (15).

These preliminaries ultimately come to an end with the definition of Srivastava’s
generalized polynomials, which was given as follows in [13],
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SM1,...,Ms
N1,...,Ns

[y1, . . . , ys] :=
[N1/M1]

∑
K1=0

· · ·
[Ns/Ms ]

∑
Ks=0

(−N1)M1K1

K1!
· · · (−Ns)MsKs

Ks!

× A(N1, K1; · · · ; Ns, Ks) yK1
1 · · · y

Ks
s . (22)

Here, M1, . . . , Ms are arbitrary positive integers and the coefficients A[N1, K1; · · · ; Ns, Ks]
are arbitrary (real or complex) constants. By suitably specializing these coefficients, the
general polynomials SM1,...,Ms

N1,...,Ns
(y1, . . . , ys) provide a number of known polynomials that

arise as their special cases—these include the Hermite polynomials, the Jacobi polynomials,
and the Laguerre polynomials, among others.

Orthogonal polynomials: We consider the class of polynomials Sm
n (z) = ∑

[n/m]
k=0

(−n)mk
k!

An,k zk for n = 0, 1, 2, 3, · · · (for more details, see, Srivastava and Singh [14]). If m = 2,

An,k = (−1)k, then S2
n(x)→ xn/2Hn

[
1

2
√

x

]
(Hermite polynomials). If m = 1, An,k = (n+α

n )
1

(α+1)k
, then we have the Laguerre polynomials defined by S1

n(x) = Lα
n(x). If m = 1,

An,k = (n+α
n )

(α+β+n+1)k
(α+1)k

, then S1
n(x) = P(α,β)

n (1− 2x) (Jacobi polynomial).

2. Main Results

Lemma 1. Let α, β, γ ∈ R; the following formulas hold true (see, Slater [15], p. 75).

If (1− x)α+β−γ− 1
2 2F1[2α, 2β; 2γ; x] =

∞

∑
u=0

βuxu, then:

2F1[α, β; γ; x] 2F1

[
γ− α +

1
2

, γ− β +
1
2

; γ; x
]
=

∞

∑
u=0

(
γ + 1

2

)
u

(γ + 1)u
βuxu. (23)

Theorem 1. Let α, β, γ, ρ, ui, ρi, hj, `j ∈ R with i = 1, . . . , s, j = 1, . . . , r. If:

(1− x)α+β−γ− 1
2 2F1[2α, 2β; 2γ; x] =

∞

∑
u=0

βu xu,

then the formula holds:∫ 1

0
xλ
(

xk + c
)−ρ

2F1[α, β; γ; x]2F1

[
γ− α +

1
2

, γ− β +
1
2

; γ; x
]

× SM1,...,Ms
N1,...,Ns


c1xu1

(
xk + c

)−ρ1

. . .

. . .

csxus
(

xk + c
)−ρs

 ℵM,N
Pi ,Qi ,ci ;r′

(
zxh
(

xk + c
)−ψ

)
ℵ


z1xh1

(
xk + c

)−`1

. . .

. . .

zrxhr
(

xk + c
)−`r

dx

=
[N1/M1]

∑
K1=0

· · ·
[Ns/Ms ]

∑
Ks=0

M

∑
G=1

∞

∑
g=0

∞

∑
u=0

(−N1)M1K1

K1!
· · ·

(−Ns)MsKs

Ks!
A[N1, K1; · · · ; Ns, Ks] cK1

1 · · · c
Ks
s

×
(−1)g ΩM,N

Pi ,Qi ,ci ,r′

(
ηG,g

)
BGg!

zηG,g

(
γ + 1

2

)
u

(γ + 1)u
βu c−(ρ−ψηG,g+∑s

i=1 Ki ρi)
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× ℵ0,n+2:V;1,0
pi+2,qi+2,τi ;R:W;0,1


c`1 z1

...
c`r zr

xk

c

∣∣∣∣∣∣∣∣∣∣

(
1− ρ + ψηG,g −∑s

i=1 Kiρi : `1, . . . , `r, 1
)

,

. . .

. . .(
1− ρ + ψηG,g −∑s

i=1 Kiρi : `1, . . . , `r, 0
)

,(
−λ− u + hηG,g −∑s

i=1 Kiui : h1, . . . , hr, 0
)

, A1

. . .

. . .(
−1− λ− u + hηG,g −∑s

i=1 Kiui : h1, . . . , hr, 0
)

, B1

, (24)

where:

A1 :=
(

aj; α
(1)
j , . . . , α

(r)
j , 0

)
1,n

,
[
τi

(
aji; α

(1)
ji , . . . , α

(r)
ji , 0

)]
n+1,pi

:
(

c(1)j , γ
(1)
j

)
1,n1

,[
τi(1)
(

c(1)ji(1) , γ
(1)
ji(1)

)]
n1+1,p

i(1)

; · · · ;
(

c(r)j , γ
(r)
j

)
1,nr

,
[
τi(r)
(

c(r)ji(r) , γ
(r)
ji(r)

)]
nr+1,p

i(r)

. (25a)

B1 :=
[
τi

(
bji; β

(1)
ji , . . . , β

(r)
ji , 0

)]
1,qi

:
(

d(1)j , δ
(1)
j

)
1,m1

,
[
τi(1)
(

d(1)ji(1) , δ
(1)
ji(1)

)]
m1+1,q

i(1)

; · · · ;
(

d(r)j , δ
(r)
j

)
1,mr

,
[
τi(r)
(

d(r)ji(r) , δ
(r)
ji(r)

)]
mr+1,q

i(r)

; (0, 1). (25b)

This is provided that the following constraints are satisfied:

min
{

ρi, ui, Ki, `j, hj
}
> 0 for i = 1, . . . , s, j = 1, . . . , r,

h > 0, ψ > 0, |γ− α− β| < 1
2

,

<
(

ρ− hηG,g +
s

∑
i=1

Kisi

)
+

r

∑
i=1

hi min
1≤j≤mi

<

d(i)j

δ
(i)
j

 > 0,

and in addition,

| arg zk| < 1
2 A(k)

i π, for k = 1, . . . , r, where A(k)
i is defined in Equation (6);

| arg z| < 1
2 πΩ with:

Ω :=
N

∑
j=1

Aj +
M

∑
j=1

Bj − ci

(
Qi

∑
j=M+1

Bji +
Pi

∑
j=N+1

Aji

)
.

Proof. Using Slater’s Lemma 1, we can multiply both sides of Equation (23) by:

xλ
(

xk + c
)−ρ

SM1,...,Ms
N1,...,Ns


c1 xu1

(
xk + c

)−ρ1

. . .

. . .

cs xus
(

xk + c
)−ρs

 ℵM,N
Pi ,Qi ,ci ;r′

(
z xh

(
xk + c

)−ψ
)

× ℵ


z1 xh1

(
xk + c

)−`1

. . .

. . .

zr xhr
(

xk + c
)−`r

, (26)

Now, integrating with respect to x between zero and one leads to the equation:
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∫ 1

0
xλ
(

xk + c
)−ρ

2F1[α, β; γ; x] 2F1

[
γ− α +

1
2

, γ− β +
1
2

; γ; x
]

× SM1,...,Ms
N1,...,Ns


c1 xu1

(
xk + c

)−ρ1

. . .

. . .

cs xus
(

xk + c
)−ρs

 ℵM,N
Pi ,Qi ,ci ;r′

(
z xh

(
xk + c

)−ψ
)

× ℵ


z1 xh1

(
xk + c

)−`1

. . .

. . .

zr xhr
(

xk + c
)−`r

dx

=
∫ 1

0
xλ
(

xk + c
)−ρ ∞

∑
u=0

(
γ + 1

2

)
u

(γ + 1)u
βu xu SM1,...,Ms

N1,...,Ns


c1 xu1

(
xk + c

)−ρ1

. . .

. . .

cs xus
(

xk + c
)−ρs



×ℵM,N
Pi ,Qi ,ci ;r′

(
zxh
(

xk + c
)−ψ

)
ℵ


z1xh1

(
xk + c

)−`1

. . .

. . .

zrxhr
(

xk + c
)−`r

dx. (27)

Finally, interchanging the order of integration and summations (which is permissible
under the conditions stated in Equation (24)) and after a few simplifications, we obtain the
final result (denoted here by I):

I =
∞

∑
u=0

(
γ + 1

2

)
u

(γ + 1)u
βu

∫ 1

0
xλ+u

(
xk + c

)−ρ
SM1,...,Ms

N1,...,Ns


c1 xu1

(
xk + c

)−ρ1

. . .

. . .

cs xus
(

xk + c
)−ρs



× ℵM,N
Pi ,Qi ,ci ;r′

(
zxh
(

xk + c
)−ψ

)
ℵ


z1xh1

(
xk + c

)−`1

. . .

. . .

zr xhr
(

xk + c
)−`r

dx. (28)

From the definitions of the general class of multivariable polynomials defined in (22)
formulated in terms of the series representation of the Aleph-function of one variable
given in Equation (21) extended to the multivariable Aleph-function in the Mellin–Barnes
multiple contour integral defined in Equation (3), the proof proceeds in the following lines.

The quantity: (
xk + c

)−(ρ−hηG,g+∑s
i=1 Kiρi+∑r

j=1 `jξ j

)

can be expressed as a contour integral by use of the result of Srivastava et al. in [16] and,
next, by interchanging the order of summation and integration (which is permissible under
the conditions of the theorem). Interpreting the resulting Mellin–Barnes contour integral as
an Aleph-function of r + 1 variables, the desired result is obtained.
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3. Particular Cases

Due to the quite general nature of the multivariable Aleph-function and of the class
of multivariable polynomials, several integrals involving simpler functions can be readily
evaluated as special cases of the main theorem.

Corollary 1. If we set γ = α in Theorem 1, then the value of βu in Equation (23) is equal to
(β+ 1

2 )u
u! and the result in Equation (24) yields the following interesting integral.

∫ 1

0
xλ
(

xk + c
)−ρ

2F1

[
α +

1
2

, β +
1
2

; α + 1; x
]

SM1,...,Ms
N1,...,Ns


c1xu1

(
xk + c

)−ρ1

. . .

. . .

csxus
(

xk + c
)−ρs



× ℵM,N
Pi ,Qi ,ci ;r′

(
zxh
(

xk + c
)−ψ

)
ℵ


z1xh1

(
xk + c

)−`1

. . .

. . .

zrxhr
(

xk + c
)−`r

dx

=
[N1/M1]

∑
K1=0

· · ·
[Ns/Ms ]

∑
Ks=0

M

∑
G=1

∞

∑
g=0

∞

∑
u=0

(−N1)M1K1

K1!
· · ·

(−Ns)MsKs

Ks!
A[N1, K1; · · · ; Ns, Ks] cK1

1 . . . cKs
s

×
(−1)gΩM,N

Pi ,Qi ,ci ,r′

(
ηG,g

)
BGg!

zηG,g

(
γ + 1

2

)
u

(γ + 1)u

(
β + 1

2

)
u

u!
c−(ρ−ψηG,g+∑s

i=1 Ki ρi)

× ℵ0,n+2:V;1,0
pi+2,qi+2,τi ;R:W;0,1


c`1 z1

...
c`r zr

xk

c

∣∣∣∣∣∣∣∣∣∣

(
1− ρ + ψηG,g −∑s

i=1 Kiρi : `1, . . . , `r, 1
)

,

. . .

. . .(
1− ρ + ψηG,g −∑s

i=1 Kiρi : `1, . . . , `r, 0
)

,(
−λ− u + hηG,g −∑s

i=1 Kiui : h1, . . . , hr, 0
)

, A1

. . .

. . .(
−1− λ− u + hηG,g −∑s

i=1 Kiui : h1, . . . , hr, 0
)

, B1

, (29)

where A1 and B1 are given by Equations (25a) and (25b), respectively. The above relation satisfies
the same conditions of validity that are stated for the multiple Aleph-function in Theorem 1 for
Equation (24).

Corollary 2. If we set β = α + 1
2 and −ν = α + 1

2 (where ν is a nonnegative integer) in (29),
we obtain:

∫ 1

0
xλ
(

xk + c
)−ρ

(1− x)ν SM1,...,Ms
N1,...,Ns


c1xu1

(
xk + c

)−ρ1

. . .

. . .

csxus
(

xk + c
)−ρs

 ℵM,N
Pi ,Qi ,ci ;r′

(
)zxh

(
xk + c

)−ψ
)

× ℵ


z1xh1

(
xk + c

)−`1

. . .

. . .
zrxhr (xk + c)−`r

dx

=
[N1/M1]

∑
K1=0

· · ·
[Ns/Ms ]

∑
Ks=0

M

∑
G=1

∞

∑
g=0

∞

∑
u=0

(−N1)M1K1

K1!
· · ·

(−Ns)MsKs

Ks!
A[N1, K1; · · · ; Ns, Ks] cK1

1 · · · c
Ks
s
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×
(−1)gΩM,N

Pi ,Qi ,ci ,r′

(
ηG,g

)
BGg!

zηG,g
(−ν)u

u!
c−(ρ−ψηG,g+∑s

i=1 Ki ρi)

× ℵ0,n+2:V;1,0
pi+2,qi+2,τi ;R:W;0,1


c`1 z1

...
c`r zr

xk

c

∣∣∣∣∣∣∣∣∣∣

(
1− ρ + ψηG,g −∑s

i=1 Kiρi : `1, . . . , `r, 1
)

,

. . .

. . .(
1− ρ + ψηG,g −∑s

i=1 Kiρi : `1, . . . , `r, 0
)

,(
−λ− u + hηG,g −∑s

i=1 Kiui : h1, . . . , hr, 0
)

, A1

. . .

. . .(
−1− λ− u + hηG,g −∑s

i=1 Kiui : h1, . . . , hr, 0
)

, B1

, (30)

where (as in Corollary (2)) A1 and B1 are both defined in Equations (25a) and (25b), respectively,
and satisfy the same conditions of validity that are stated for Formula (24) (see Theorem 1).

Remark 2. If the Aleph-function and the multivariable Aleph-function reduce to the Fox H-
function [16] (see Equation (19)) and to the multivariable H-function (11), respectively [8,9], then
the recent results of Ghiya et al. [17] follow as a consequence.

4. Concluding Remarks

In this paper, we studied and presented results associated with the product of Aleph-
functions, multivariable Aleph-functions, and the general class of polynomials defined
in (22). The one-variable and multivariable Aleph-functions expressed herein are relatively
basic and quite general in nature. Therefore, some suitable adjustments of the parameters
of multivariable Aleph-functions and the general class of polynomials make it possible to
obtain various other special functions (such as the I-function, the Fox H-function, Meijer’s
G-function, etc.; see, e.g., [6]) involving a large variety of polynomials. Some of the issues
of the main theorem have been already discussed here as special cases in the form of
corollaries; they lead to significant applications in physics and engineering sciences.

Author Contributions: Conceptualization, D.K., F.A., S.A. and J.T.; methodology, D.K., F.A., S.A.
and J.T.; formal analysis, D.K., F.A., S.A. and J.T.; funding acquisition, J.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by King Mongkut’s University of Technology North Bangkok,
Contract No. KMUTNB-GRAD-59-02.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Südland, D.L.; Habenom, H.; Tadesse, H. Open problem: Who knows about the Aleph-functions? Fract. Calc. Appl. Anal. 1998, 1,

401–402.
2. Saxena, R.K.; Pogány, T.K. On fractional integration formula for Aleph-functions. Appl. Math. Comput. 2011, 218, 985–990.
3. Choi, J.; Kumar, D. Certain unified fractional integrals and derivatives for a product of Aleph-function and a general class of

multivariable polynomials. J. Inequal. Appl. 2014, 2014, 15. [CrossRef]
4. Kumar, D.; Ram, J.; Choi, J. Certain generalized integral formulas involving Chebyshev Hermite polynomials, generalized

M-Series and Aleph-function, and their application in heat conduction. Int. J. Math. Anal. 2015, 9, 1795–1803. [CrossRef]
5. Saxena, R.K.; Kumar, D. Generalized fractional calculus of the Aleph-function involving a general class of polynomials. Acta

Math. Sci. 2015, 35, 1095–1110. [CrossRef]
6. Suthar, N.; Baumann, B.; Nonnenmacher, T.F. Integrals involving Aleph-functions and Wright’s generalized hypergeometric

function. Int. J. Adv. Res. Math. 2017, 5, 20–26. [CrossRef]
7. Sharma, C.K.; Ahmad, S.S. On the multivariable I-function. Acta Cienc. Indica Math. 1994, 20, 113–116.

http://doi.org/10.1186/1029-242X-2014-499
http://dx.doi.org/10.12988/ijma.2015.53131
http://dx.doi.org/10.1016/S0252-9602(15)30042-4
http://dx.doi.org/10.18052/www.scipress.com/IJARM.10.20


Symmetry 2021, 13, 2013 11 of 11

8. Srivastava, H.M.; Panda, R. Some expansion theorems and generating relations for the H-function of several complex variables.
Comment. Math. Univ. St. Paul. 1975, 24, 119–137.

9. Srivastava, H.M.; Panda, R. Some bilateral generating function for a class of generalized hypergeometric polynomials. J. Reine
Angew. Math. 1976, 283–284, 265–274.

10. Ayant, F.Y. An integral associated with the Aleph-functions of several variables. Int. J. Math. Trends Technol. 2016, 31, 142–154.
[CrossRef]

11. Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2010.
12. Chaurasia, V.B.L.; Singh, Y. New generalization of integral equations of fredholm type using Aleph-function. Int. J. Mod. Math.

Sci. 2014, 9, 208–220.
13. Srivastava, H.M. A multilinear generating function for the Konhauser set of biorthogonal polynomials suggested by Laguerre

polynomial. Pac. J. Math. 1985, 177, 183–191. [CrossRef]
14. Srivastava, H.M.; Singh, N.P. The integration of certain products of the multivariable H-function with a general class of

polynomials. Rend. Circ. Mat. Palermo 1983, 32, 157–187. [CrossRef]
15. Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966.
16. Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-Function of One and Two Variables with Applications; South Asian Publishers: New

Delhi, India, 1982.
17. Ghiya, N.; Shivakumar, N.; Patil, V. Theorem pertaining to some product of special functions. Int. J. Math. Phys. Sci. Res. 2016, 3,

33–36.

http://dx.doi.org/10.14445/22315373/IJMTT-V31P522
http://dx.doi.org/10.2140/pjm.1985.117.183
http://dx.doi.org/10.1007/BF02844828

	Introduction 
	Main Results
	Particular Cases
	Concluding Remarks
	References

