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Abstract: Wheat is a very important food crop for mankind. Many new varieties are bred every
year. The accurate judgment of wheat varieties can promote the development of the wheat industry
and the protection of breeding property rights. Although gene analysis technology can be used to
accurately determine wheat varieties, it is costly, time-consuming, and inconvenient. Traditional
machine learning methods can significantly reduce the cost and time of wheat cultivars identification,
but the accuracy is not high. In recent years, the relatively popular deep learning methods have
further improved the accuracy on the basis of traditional machine learning, whereas it is quite
difficult to continue to improve the identification accuracy after the convergence of the deep learning
model. Based on the ResNet and SENet models, this paper draws on the idea of the bagging-based
ensemble estimator algorithm, and proposes a deep learning model for wheat classification, CMPNet,
which is coupled with the tillering period, flowering period, and seed image. This convolutional
neural network (CNN) model has a symmetrical structure along the direction of the tensor flow.
The model uses collected images of different types of wheat in multiple growth periods. First, it
uses the transfer learning method of the ResNet-50, SE-ResNet, and SE-ResNeXt models, and then
trains the collected images of 30 kinds of wheat in different growth periods. It then uses the concat
layer to connect the output layers of the three models, and finally obtains the wheat classification
results through the softmax function. The accuracy of wheat variety identification increased from
92.07% at the seed stage, 95.16% at the tillering stage, and 97.38% at the flowering stage to 99.51%.
The model’s single inference time was only 0.0212 s. The model not only significantly improves the
classification accuracy of wheat varieties, but also achieves low cost and high efficiency, which makes
it a novel and important technology reference for wheat producers, managers, and law enforcement
supervisors in the practice of wheat production.

Keywords: wheat; deep learning; convolutional neural networks; bagging-based ensemble estimator
algorithm; cultivars identification; multiple growth periods

1. Introduction

Wheat is a monocotyledonous gramineous plant, which has parallel veins and leaves
with a symmetrical shape. The domestication of wheat was one of the most important
factors in the birth of human civilization. The domestication of wheat can be traced back to
the Middle East more than 10,000 years ago [1]. According to data from the Organization for
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Economic Co-operation and Development (OECD) database from 2010 to 2019 [2], wheat is
the world’s most widely distributed food crop, along with having the largest planting area.
To meet the food needs of all parts of the world, people have cultivated about 30,000 wheat
varieties, but mainly hexaploid bread wheat (Triticum aestivum), which accounts for about
95% of the world’s wheat production [3]. The implementation of modern wheat breeding
programs has accelerated the selection and breeding of new wheat varieties [4]. While they
have improved the efficiency of the wheat industry, these programs have also resulted
in the frequent mixing of wheat varieties. At present, the efficient, simple, and accurate
identification of wheat varieties is an important issue. In-depth research on this subject can
promote the protection of the property rights of wheat varieties and is of great significance
to the selection and promotion of high-quality wheat varieties.

Although the gene classification technology based on high-throughput sequencing is
highly accurate, it still has a few drawbacks, such as high cost and long gene sequencing
time. In addition, the single nucleotide polymorphism (SNP) loci of crop varieties are not
clear at present. Therefore, further analysis by scientific researchers is needed [5], which
is time-consuming and high-cost work on account of the diversity of crop varieties. With
the application of digital image processing technology and computer vision technology
in agriculture, scientists have proposed quite a lot of low-cost, high-precision, and rel-
atively simple machine learning methods that use plant images to classify plants. One
traditional machine learning classification algorithm is the support vector machines (SVM)
model, which was used by Priya et al. [6] to classify plant leaf images processed by data
enhancement algorithms such as grayscale transformation and boundary enhancement;
they used the Flavia public dataset and a dataset collected in the natural environment to
test the model. Their results showed that, compared with the k-nearest neighbor (KNN)
algorithm, this method had a higher accuracy and was less time-consuming. After intro-
ducing convolutional neural networks into image recognition tasks, the field of image
recognition has developed significantly. Convolutional neural networks can extract fea-
tures that can distinguish image attributes by learning image data continuously, as in the
delicate symmetry of a human brain learning. Wang et al. [7] proposed a new method of
plant identification based on a pulse-coupled neural network (PCNN) and SVMs, which
uses a PCNN to extract key features and uses SVMs as the classifier. The experimental
results showed that this method could effectively complete the plant recognition task and
had a good recognition rate. Liu et al. [8] constructed a deep convolutional neural network
(DCNN) for a dataset of 12,435 images composed of the leaves of 14 apple varieties, and its
classification accuracy reached 97.11%. Sabadin et al. [9] provided the scientific community
with a highly accurate and well-trained CNN model that can classify haploid maize seeds
through the differential phenotypic expression of R1-nj gene markers. This model can
classify haploid and diploid corn seeds. In their study, the average accuracy of the image
classification of 3000 corn seeds hybridized with inhibition-induced corn seeds was 94.39%.
Although the classification and recognition accuracy of ordinary CNNs for plant images
has greatly improved compared with traditional machine learning algorithms, it is now
more difficult to further improve their classification accuracy.

Plants generally have multiple growth periods. At present, the classification of plant
images mainly focuses on the use of pictures from a single growth period of a plant. If
the characteristics of different growth periods of the same plant can be extracted and
combined, and then classified, the classification accuracy of the model can be improved.
Ahmed et al. [10] built a deep learning model that combines image data and text data.
It used image data and text data, such as the house size and the number of rooms, of
535 sample houses in California, USA, to predict their housing prices through regression.
The experiments showed that, compared with plain text features, adding image features
increased the R value by 3 times, while this reduced the mean square error (MSE) by an
order of magnitude. Although this research was not based on the classification of plant
images, it has served as a source of inspiration. Their idea of improving model performance
is similar to the bagging-based ensemble estimator algorithm used in traditional machine
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learning [11]. The core idea of this algorithm is to build multiple independent estimators,
and then to use the average or majority voting method to determine the results of the
comprehensive estimators for the reasoning result of each estimator. The strong learner
represented by the comprehensive estimator algorithm of the bagging method, such as the
random forest [12], displays a strong learning ability in practical use.

Therefore, this article mainly conducts research from two directions. The first involves
tracking the complete growth cycle of wheat, collecting its tillering, flowering, and seed
stage images, and organizing all these images into a complete multi-growth period in a
wheat image dataset. The second involves selecting deep learning models for the images
in different growth periods, combining the output features of a single model, and sending
the combined features to the fully connected layer. The model classifies wheat varieties
as its output, thereby constructing a CNN model that can couple images of wheat multi-
growth periods. The coupling model can realize the high-precision identification of wheat
varieties and provides a novel and important technology reference for the classification of
wheat varieties.

2. Materials and Methods
2.1. Wheat Images Data Analysis

The wheat image data of this paper were collected at the Tianshui Comprehensive
Experimental Station of the National Wheat Industry Technology System in Qingshui
County, Tianshui City, Gansu Province, China (latitude: 35◦44′ N; longitude: 106◦08′ E;
average altitude: 1413 m; annual average rainfall: 570 mm; annual average sunshine:
2012 h). The collected wheat varieties are all mainstream varieties promoted in Gansu [13].
For capturing images in outdoor natural light, we used the automatic mode of the Nikon
COOLPIX B700 digital camera, for which the highest ISO limit was 1600, the lowest shutter
speed for shooting was 1/30 s, and the pictures were saved in JPG format. The image data
collection time for the wheat tillering period was from 5–14 April 2021, there were 3 sunny
days, 3 cloudy days, 2 days of light rain, and 2 cloudy days. The image data collection
time for the flowering period of the wheat was from 15–20 May 2021; there was 1 sunny
day, 3 cloudy days, and light rain for 1 day. The wheat seed image data collection time
was from 15–20 July 2021; there were 3 sunny days, 1 cloudy day, and light rain for 1 day.
The moisture content of all seeds at the time of shooting was between 7.5–10%. Parts of
the tillering stage, flowering stage, and seed images are shown in Figure 1. In the shooting
process, various weather conditions and natural lighting conditions were included, which
increased the diversity of the captured images.

Figure 1. Wheat multi-growth period samples: (a) the tillering period of wheat, (b) the flowering
period, and (c) the seed period.

The 30 selected wheat varieties are all mainstream winter wheat varieties in Gansu
Province, such as Jimai19, Lantian15, Zhoumai19, and so on. Approximately 30 plants
were selected for each variety, and images were taken from multiple angles and aspects,
such as top, side, distance, height, whole, and part. A total of 29,681 images were collected
at the tillering stage, about 1000 for each variety; 14,482 pictures at the flowering stage,
about 500 for each variety; and 4540 pictures of seeds, about 150 for each variety. The name
information of each wheat variety is shown in Table 1.
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Table 1. The 30 wheat varieties used in this paper, divided into three cultivars (lines): Lantian, Jimai,
and Zhoumai.

Cultivar (Lines) Variety

Lantian

Lantian15 Lantian36 Lantian45
Lantian19 Lantian37 Lantian48
Lantian26 Lantian39 Lantian53
Lantian33 Lantian40 Lantian54
Lantian34 Lantian42 Lantian55
Lantian35 Lantian43 Lantian56
Lantian58

Jimai
Jimai19 Jimai21 Jimai44
Jimai20 Jimai22 Jimai47

Zhoumai
Zhoumai19 Zhoumai21 Zhoumai23
Zhoumai20 Zhoumai22

Note. Among them, Lantian has 19 varieties, Jimai has 6 varieties, and Zhoumai has 5 varieties.

The size of the pictures was mainly 1600 × 1200 pixels, and the naming method was
“wheat variety abbreviation” + “-” + “plant number” + “-” + “camera view number”. For
example, “LT54-34-1” represents the 34th plant of the wheat variety lantian54, a first-view
photo. Taking the tillering stage as an example, part of the angle diagram is shown in
Figure 2.

Figure 2. Partial angle pictures of the tillering period. The names of the pictures from (a–e) are
LT54-34-1.jpg, LT54-34-5.jpg, LT54-34-10.jpg, LT54-34-15.jpg, and LT54-34-20.jpg.

2.2. Wheat Images Deep Learning Model

Convolutional neural networks are an important part of image recognition in deep
learning [14]. The convolutional layer is the core of a convolutional neural network that
extracts image features [15]. A convolutional layer with superior performance can greatly
improve the effect of a model. In theory, more features can be extracted by increasing the
number of convolutional layers in a model. However, in practice, as the network depth
increases, issues such as the vanishing gradient, exploding gradient, and degradation
problems will occur [16]. A residual neural network, or ResNet, can effectively reduce
the negative impact of these problems. ResNet is a stable and effective DCNN model.
The residual structure it introduces can deepen the number of network layers while ef-
fectively reducing the impact of problems such as the vanishing gradient and enhance
the relationship between the feature maps generated by different convolutional layers,
thereby improving the recognition rate of a model. Figure 3 features the residual structure
diagram of ResNet-50, which is mainly composed of two 1× 1 convolutional layers used to
adjust the number of feature map channels and a 3 × 3 convolutional layer used to extract
features, as well as a shortcut structure and one feature map additive structure. These
parts extract the characteristics of the input data, and at the same time make the input data
propagate forward faster through a shortcut structure.
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Figure 3. Residual structure diagram of ResNet-50. Two 1 × 1 convolutional layers are used to adjust
the number of channels of the feature map; the features in the feature map are extracted from the
3 × 3 convolutional layer.

ResNet was proposed by He et al. [17]. Although the network performance is im-
proved by increasing the number of network layers, the connection between different
channels of the same feature map is ignored. The SE-Net model [18] is the champion of the
image classification task in the ImageNet [19] Large-Scale Visual Recognition Challenge
(ILSVRC). This network model introduces the attention mechanism into convolutional
neural networks. A feature map usually consist of multiple feature channels. The model
calculates the weight of each channel by learning the relationship between each feature
channel, and then suppresses the noise in the feature map, so that the model can extract
more useful information [20]. Figure 4 shows the residual structure diagram of SE-ResNet-
50, which is mainly composed of squeeze, excitation, and scale. These three parts complete
the self-adaptive calibration of the characteristic channel. The bypass includes a global
average pooling layer, two fully connected layers, and ReLU and sigmoid activation func-
tions. When the feature map passes this bypass, the weight of each channel will be learned
and the residual output feature map and weight will be weighted to highlight the useful
information in the feature map, suppress noise, and enhance the expressive ability of
the model.

Fsq(Uc) =
1

H ∗W ∑H
i=1 ∑W

j=1 Uc(i, j) (1)

Figure 4. Residual structure diagram of SE-ResNet-50. On the basis of the residual structure, the SE module is added to make
the model obtain the attention mechanism, which focuses on extracting the features of the channel with a higher weight.

In the squeeze operation, the global average pooling layer is used to compress each
characteristic channel into a real number in order to describe the channel. This real number
contains the global receptive field of the channel. The calculation formula is shown in
Formula (1), where Fsq(Uc) represents the squeeze operation on the one channel of feature
map Uc, H is the height of the feature matrix, and W is the width of the feature matrix.



Symmetry 2021, 13, 2012 6 of 16

Then, through a fully connected layer, the feature dimension is reduced, and after the
ReLU activation function [21] is processed, the feature dimension is restored through a
fully connected layer. In order to make the model have a stronger non-linear expression
ability, and thereby better fit the complex correlation between the channels while reducing
the model parameters and the amount of calculation, the excitation operation is used. The
normalized weight of the output of the previous layer is obtained through the sigmoid
activation function [22], and then the normalized weight is weighted to each channel
through the scale operation. The squeeze and excitation (SE) operations provide a new
method for reducing the complexity of the network, and introduce the attention mechanism
into CNNs, making these better than other networks in obtaining the global receptive field.

ResNeXt [23] draws on the idea of the inception structure in GoogLeNet [24], extracts
the information of different scales of the image through multiple convolution kernels, and
fuses this information to obtain a better feature map representation, enhance the feature ex-
pression ability of the model, and improve the performance of the model. ResNeXt replaces
traditional convolution with group convolution. Each group uses different convolution
kernels for feature extraction. To reduce the complexity of the model structure, each group
of convolutional layers adopts a similar structure. The number of groups can be controlled
by setting hyperparameters. As shown in Figure 5, the SE-ResNeXt-50 residual structure
uses 32 groups of convolution structures. ResNeXt broadens the network through group
convolution, learns data features in a more structured way, and has stronger characteriza-
tion capabilities. Figure 5 features the residual structure diagram of SE-ResNeXt-50. To
obtain the residual structure of SE-ResNetXt-50, the convolutional layer in the bottleneck
in the residual structure of SE-ResNet-50 is replaced with a group convolutional structure
with a group number of 32.

Figure 5. Residual structure diagram of SE-ResNeXt-50. It uses 32 groups of group convolution to replace the 3 × 3
convolutional layer in SE-ResNet in order to obtain the residual structure diagram of SE-ResNeXt.

2.3. Network Structure Design

Based on transfer learning, this paper combines the ResNet-50, SE-ResNet-50, and SE-
ResNeXt-50 models, and proposes a CMPNet model to improve the accuracy of the model’s
identification of wheat varieties. The number of the parameters of these four models are as
follows: CMPNet has 75.4 M parameters, SE-ResNeXt-50 has 25.6 M parameters, ResNet-
50 has 23.6 M parameters, and SE-ResNet-50 has 26.2 M parameters. This model has a
symmetrical structure along the horizontal direction. The CMPNet model draws on the
ideas of random forest algorithms, a strong learner, turning the model into a coupled
network composed of three independent networks. Figure 6 shows the structure of the
CMPNet model. The model has three input terminals: pictures of the wheat tillering
stage, pictures of the wheat flowering stage, and pictures of the wheat seeds. Since the
wheat seeds were small, 30 wheat seeds were placed on a blue-purple background in a
5 × 6 format. Since the color of most wheat seeds is complementary to blue-violet [25], the
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color contrast was at its greatest, and the separation was strong, which is conducive to the
model’s feature extraction of seeds, so blue-violet was selected as the background.

Figure 6. CMPNet network structure. Images of different growth periods of the same varieties were input from the input
layer of the model at the same time, and after the backbone performed parallel feature extraction of data based on transfer
learning, three tensors, each with a length of 30 dimensions, were obtained, which were spliced by the Concat function and
combined with one 30-dimensional layer. After the fully connected layers of the 30 dimensions were connected, the softmax
function was used to obtain the classification result.

Through continuous experiments, which comprehensively assessed the model train-
ing time, model recognition accuracy, and model parameters, different network models
were used to extract image features of different wheat growth periods. The tillering stages
of different varieties of wheat were relatively similar, especially the seed pictures; the char-
acteristics were difficult to extract. Therefore, the SE-ResNeXt-50 and SE-ResNet-50 models
with the SE module and the group convolution module and only the SE module were
used, respectively. Although these two models have slightly more trainable parameters
compared to the ResNet model, and occupy more system resources, the SE module can
adaptively correct the attention of the features, the calculation amount and scale are rela-
tively small, the group convolution for different groups in the module can learn more and
different feature representations, and, compared with ordinary convolution, the number
of trainable parameters is slightly reduced; through these attributes, the model gained
stronger characterization capabilities. Based on the theoretical analysis and experimental
results, the SE-ResNeXt-50 and SE-ResNet-50 models were finally selected to extract the
features of the wheat tillering stage and seed image data. The characteristics of different
varieties of wheat are the most obvious in the flowering period, so the ResNet-50 model,
with a low parameter quantity and low system resource occupation, was selected as the
backbone. Before the model started training, the parameters obtained after each sub-model
training process on the ImageNet dataset were reloaded into each sub-model, and the
1000-dimensional, fully connected layer and its softmax function were replaced [26] so that
each sub-model finally passed with a 30-dimensional, fully connected layer. After each
fully connected layer, the concat layer was used [27] to connect the three 30-dimensional
fully connected layers end-to-end to obtain a 90-dimensional tensor, and then a layer of
30-dimensional, fully connected layers was connected. Finally, the softmax function was
used to perform classification and to obtain the final classification result.

The concat layer structure featured in Figure 7 shows the end-to-end connection
process of two two-dimensional tensors. In order to connect the two-dimensional tensors
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of the two input ends with the fully connected layer of the latter layer, the two-dimensional
tensors of the two inputs were connected through the concat layer in the direction of the
spliced four-dimensional layer. The tensor was connected to the four-dimensional, fully
connected layer of the latter layer, and the activation function was not used in the process
of splicing and connecting with the fully connected layer. In this way, the outputs of the
three sub-models were spliced together to prepare for the final classification result.

Figure 7. Concat layer structure. By concatenating two tensors from the input layer at the end, they
are combined into one tensor.

Figure 8 shows the softmax function of the last fully connected layer of the model,
through which the model classification results can be output in a probabilistic manner. The
softmax function is used for multi-classification tasks. It can map the output of multiple
neurons in the model to the 0 to 1 interval, and assign a probability value to the result of
each output classification, indicating the possibility of it belonging to each category, thereby
completing the multi-classification task. Formula (2) is the expression of the softmax
function, where zi is the output value of the i-th node, and n is the number of output nodes.
After calculation by the softmax function, the output of the model can be transformed into
a probability distribution, and the probabilities of all nodes will add up to 1.

So f tmax(zi) =
ezi

∑n
j=1 ezj

(2)

2.4. Data Preprocessing and Enhancement

To ensure the stability of the model during operation, reduce the model’s dependence
on some irrelevant features, and improve the generalization ability of the model, data
processing was required. In the original image, the storage space of a single image at
either the tillering or flowering stages of wheat was about 600 KB, and the storage space
of a single seed image was about 4 MB. Enhancing the image while ensuring the data
feature information is retained can also increase the amount of training data. Figure 9
illustrates several data enhancement methods. The image was flipped horizontally and
vertically through horizontal and vertical flip operations. Cropping was conducted to cut
an image arbitrarily according to the ratio of 0.8–1.0 of the original image, and the size of
the original image was upsampled. Among them, the image horizontal flip, vertical flip,
0.8–1.0 crop ratio selection, and image crop position all adopted the random mode triggered
by probability. Finally, the image was scaled to the specified size for network loading.
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Figure 8. Softmax layer structure. The exponent with e as the base of the input tensor was calculated, and the result was the
numerator. The numerator was added and the denominator was obtained, and the probability output was then attained
after the division operation.

Figure 9. Data enhancement strategy: (a) the original image, (b) the horizontal flip image, (c) the
vertical flip image, and (d) the cropped image.

3. Results and Discussion
3.1. Result Analysis

According to the ratio of 8:2, the training dataset and the test dataset were randomly
selected, and the image data of the wheat was enhanced by the data enhancement method
shown in Figure 9. PiecewiseDecay [28] was used to set the learning rate of the model in
segments. The specific values are shown in Table 2. The epoch was set to 12, the batch size
was 64, the L2 regularization coefficient [29] was 0.2, and the cross-entropy loss function
and the adaptive moment estimation optimization algorithm were used. This study used
the Python3 language, the Ubuntu Linux system, a 4-core processor, 32 GB RAM, 100 GB
of disk capacity, and a Nvidia Tesla V100 graphics card to accelerate the model training.
The display storage capacity was 32 GB. The training configuration is shown in Table 3.

Table 2. PiecewiseDecay superparametrics. The learning rate was divided into four segments, in the
order of 0.0005, 0.0001, 0.00002, and 0.00001.

Learning Rate Step Interval

0.0005 [1, 5]
0.0001 (5, 10]

0.00002 (10, 15]
0.00001 (15, 4452]

Note. The learning rate decreased continuously from 0.0005 to 0.00001 as the number of model training steps
increased. The initial learning rate was large, which can improve the convergence speed of the model, and the
later learning rate was small, which can stabilize the training results of the model and reduce the possibility of the
model missing the optimal solution.
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Table 3. Training configuration information.

Configuration Information

OS Ubuntu Linux
CPU 4 Cores
RAM 32 GB
Disk 100 GB
GPU Tesla V100

Video Memory 32 GB
Note. Tesla V100 is a graphics card with a large number of high-performance floating-point computing units.

Figure 10 shows the loss and accuracy of the model training process as the number of
training iterations increased. As the number of training iterations increased, the training
loss rate showed a downward trend. Although the loss rate in part of the training phase did
not decrease but rather increased, the overall loss rate was in a declining state and quickly
converged, and finally oscillated at around 0.08 without decreasing. Furthermore, as the
number of training iterations increased, the training accuracy rate also increased. When
the number of iterations reached about 1100, the model was very close to the local optimal
solution in the solution space, and the training accuracy also tended to converge. Since
the PiecewiseDecay learning rate was used, each piecewise learning rate could allow the
optimization to proceed to a state where the weight vector distribution was relatively stable,
in order to obtain a better local minimum. It can be seen from Figure 10 that the training
accuracy curve dropped several times during the rising process, but the model finally deep-
ened the learning of the data, overcame the trap of local optimization, further improved
the wheat identification accuracy, and finally stabilized. It can be seen that the model
continuously adjusted the parameters, and the learning effect was continuously improved.

Figure 10. Curves of training loss and training accuracy. The vertical axis on the left (blue) is the
training accuracy, the vertical axis on the right (red) is the training loss, and the horizontal axis is the
number of training iteration steps.

Table 4 shows the accuracy of the model on the training dataset and test dataset. After
a long period of training, the top-1 accuracy of the training dataset reached 100%. At this
time, the top-1 accuracy of the test dataset reached 99.51%, and the top-2 accuracy of the
training dataset and test dataset reached 100% and 99.83%, respectively. The performance
of the CMPNet model proposed in this paper was good, and the recognition accuracy on
the test dataset was excellent.
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Table 4. CMPNet model accuracy.

Training Dataset Accuracy (%) Test Dataset Accuracy (%)

Top-1 Accuracy 100 99.51
Top-2 Accuracy 100 99.83

Note. Top-1 accuracy refers to the accuracy rate of the first category in line with the actual results, while top-2
accuracy refers to the accuracy rate of the top two categories containing the actual results.

To further verify the model, the generalization ability and robustness of the model
was tested. The test dataset was used to test the trained model, and a confusion matrix [30]
was used to visualize the model test results. Figure 11 shows the classification confusion
matrix for the 30 wheat varieties. In the confusion matrix, the horizontal axis represents
the prediction results of the model, the vertical axis represents the true category of wheat
varieties, the elements on the main diagonal represent the percentage of correct model
recognition, and the remaining positions represent the percentage of model recognition
errors. It can be seen from the figure that the recognition rates of Lantian58, Jimai47,
Jimai19, Lantian43, and Lantian42 were all lower than the overall level. Among them,
the recognition accuracy of Lantian43 was the worst, only 91.9192%. By analyzing the
confusion matrix, we knew that Lantian43 was most likely to be misclassified as Lantian37.
In the testing process of the remaining 25 varieties, the model successfully predicted almost
all test samples, with an accuracy rate of about 100%, for Lantian45, Jimai20, ZhouMai21,
and so on.

Figure 11. Confusion matrix for classification. The values range from 0 to 1. The closer to 1, the
darker the color of the grid. Due to the image size limitation, only two decimal places are displayed.

As shown in Table 5, the model classification evaluation index was used to further
analyze the model performance. Precision (P) means the prediction result was the propor-
tion of the true label in the positive sample that was positive; recall (R) means the true
label was the proportion of positive examples in the sample whose prediction results were
positive; and F1-score means the result was the harmonic average of the precision and
recall, reflecting the robustness of the model.
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Table 5. The formula of the evaluation index of model classification.

Model Index Formula

Precision P = TP
TP+FP

Recall R = TP
TP+FN

F1-score Fβ =
PR(1+β2)

β2P+R , β = 1

Note. True positive (TP) means that the prediction was correct, the true value was a positive example, and the
model predicted a positive example; true negative (TN) means that the true value was a negative example, and
that the model predicted a negative example; false positive (FP) means the true value was a negative example,
and the model predicted a positive example; false negative (FN) means the true value was a positive example,
and the model predicted a negative example.

As shown in Figure 12, combining the above confusion matrix and the model clas-
sification evaluation indicators, the precision, recall, and F1-score of the model on the
test dataset can be calculated, respectively. When only considering the precision rate, the
model had the worst recognition ability for Lantian43, followed by Jimai19; Lantian45,
Jimai20, and Zhoumai21 had the best recognition results. If the precision rate and the recall
rate are considered comprehensively, and the precision rate and the recall rate are equally
important, (β = 1); that is, in the case of the F1-score, the model’s ability to recognize
Lantian43 was also the worst. The second worst was Lantian37, indicating that the model
needs to improve the extraction of Lantian43 features.

Figure 12. Evaluation index of CMPNet model classification. The horizontal axis is the 30 wheat
varieties, the vertical axis is the value of the model evaluation index, and the value range is 0–1.

At the same time, the optimal relationship between the model performance and
calculation time during the model design was weighed. After the system loaded the model,
by calculating the reasoning speed of the model on the test dataset, it was concluded that
the model predicted that a single set of pictures only needed about 0.0212 s, which can
meet the actual project requirements. Comparing the sub-models, although the time was
slightly higher, the accuracy was better.

3.2. Comparison with Single Models

The corresponding wheat image test dataset was input into the sub-model, and the
classification results were statistically analyzed to obtain the average accuracy rate of
the wheat classification and recognition of each sub-model, as shown in Figure 13. The
average accuracy of each model was above 92%, indicating that the deep learning model
performed excellently in the classification and recognition of wheat varieties. At the same
time, CMPNet achieved an average accuracy of 99.51% on the test dataset, which was 4.35%,
2.13%, and 7.44% higher than that of the SE-ResNeXt-50, ResNet-50, and SE-ResNet-50
models, respectively. The test dataset of SE-ResNeXt-50 was a picture of wheat at the
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tillering period, the test dataset of ResNet-50 was a picture of a wheat at the flowering
period, and the test dataset of SE-ResNet-50 was a picture of wheat seeds.

Figure 13. Comparison of the average recognition accuracies of the model. The horizontal axis
features the models that participated in the test. The vertical axis features the top-1 accuracy of the
model on the respective test dataset, and the accuracy value range is 0–100%.

Each model was tested on the wheat image test dataset, and the accuracy rate of the
30 wheat varieties was obtained. Figure 14 shows the test results of each model on the
30 wheat varieties; there are 30 wheat varieties on the circle, and the length of the radius is
the precision. The accuracy of the model for each wheat variety is expressed in the form of
polar coordinates. Each point on the polar coordinates is connected to the drawn convex
hull in turn. The closer it was to a circle with a radius of 100%, the stronger the overall
recognition ability of the model. The accuracy of the model on each wheat variety was
used to draw the convex hull. When the drawn convex hull was closer to a circle with a
radius of 100%, the model had a better overall recognition accuracy for each wheat variety.
It can be seen from the figure that CMPNet had a stronger generalization ability than the
other models, and the recognition accuracy was also greatly improved. In addition to
the relatively poor recognition ability of Lantian43, the recognition ability for the other
varieties was also greatly improved, such as for Lantian35, Zhoumai21, etc.; some varieties,
such as Jimai47, performed well in the recognition process of each model. To summarize,
the results showed that the CMPNet model mainly corrected the errors of each sub-model
in the classification and recognition processes.

Figure 14. Cont.
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Figure 14. Comparison of the identification accuracies of the different varieties in each model.
(a) CMPNet: the input data is wheat tillering period, flowering period, and seed image data; (b) SE-
ResNeXt-50: the input data is wheat tillering period image data; (c) ResNet-50: the input data is
wheat flowering period image data; and (d) SE-ResNet-50: the input data is seed image data.

4. Conclusions

This paper proposes a variety classification recognition model based on deep learning
combined with images of multiple growth periods of wheat. CMPNet was used, which
realized high-precision classification and recognition of the wheat varieties and improved
the accuracy of wheat classification. Taking the image data as the core, based on the
transfer learning method of the SE-ResNeXt-50, ResNet-50, and SE-ResNet-50 models,
image recognition models for the wheat tillering stage, wheat flowering stage and wheat
seeds were constructed, respectively, then the models were combined to improve the
accuracy and generalization ability of the model. The method uses migration learning,
and some local optimal solutions stored in the pre-training parameters do not need to be
retrained, reducing the model training time and cost. The training dataset contained images
of different growth periods of wheat, which solved the problem of the single characteristics
of wheat and ensured the reliability of the model. Through comparative experiments with
each sub-model, it was found that the coupled model mainly corrected the errors of each
sub-model in the classification and recognition processes and ensured the generalization
ability of the model. The SE-ResNeXt-50, ResNet-50, and SE-ResNet-50 models were used
to extract the image features of each growth stage of wheat, and the softmax layer of the
model was retrained to obtain a wheat image classification model. The test dataset was
used to test the generalization ability of the model, and the final test accuracy rates were
95.16%, 97.38%, and 92.07%, respectively. The sub-models were coupled with each other
to make full use of the characteristics of the different growth periods of wheat. The final
coupling recognition rate was 99.51%, which was higher than the recognition rate of each
sub-model, indicating that the coupling model had a stronger accuracy and robustness.

Our future work will mainly be divided based on four considerations: (i) the in-
teraction of biological genes and environment means the same crop variety may present
different forms in different production environments. Consequently, the precondition of the
model’s localized application is the model training must use the data in the corresponding
production environment. Our team’s cross-regional morphological recognition experiment
of the same species has not been carried out yet. At present, it is possible to reduce the
adverse effects of this problem on the model performance by continuously adding images
of the same variety of wheat across regions to the training data set. (ii) In order to give
full play to the model’s advantages in classification speed and accuracy, we will deploy
the model to portable electronic terminals like mobile phones to realize rapid and timely
classification of the photos we take in the future, with which the model’s superiority will
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be fully displayed. (iii) In view of the generally poor recognition rate of wheat seeds, our
follow-up research will collect more data and improve the model algorithm according to
the various characteristics of wheat. (iv) By studying other deep neural network models,
such as Swin Transformer [31], HRNet [32], BotNet [33], etc., the recognition accuracy for a
single growth period of wheat should be improved, and we will consider transplanting
the model to the variety recognition of other crops. Lastly, we provide the source code of
CMPNet, which can be accessed at https://github.com/GaoJiameng/CMPNet (accessed
on 1 September 2021).
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