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Abstract: Yager recently introduced the q-rung orthopair fuzzy set to accommodate uncertainty in
decision-making problems. A binary relation over dual universes has a vital role in mathematics and
information sciences. During this work, we defined upper approximations and lower approximations
of q-rung orthopair fuzzy sets using crisp binary relations with regard to the aftersets and foresets.
We used an accuracy measure of a q-rung orthopair fuzzy set to search out the accuracy of a q-rung
orthopair fuzzy set, and we defined two types of q-rung orthopair fuzzy topologies induced by
reflexive relations. The novel concept of a rough q-rung orthopair fuzzy set over dual universes
is more flexible when debating the symmetry between two or more objects that are better than
the prevailing notion of a rough Pythagorean fuzzy set, as well as rough intuitionistic fuzzy sets.
Furthermore, using the score function of q-rung orthopair fuzzy sets, a practical approach was
introduced to research the symmetry of the optimal decision and, therefore, the ranking of feasible
alternatives. Multiple criteria decision making (MCDM) methods for q-rung orthopair fuzzy sets
cannot solve problems when an individual is faced with the symmetry of a two-sided matching
MCDM problem. This new approach solves the matter more accurately. The devised approach is
new within the literature. In this method, the main focus is on ranking and selecting the alternative
from a collection of feasible alternatives, reckoning for the symmetry of the two-sided matching of
alternatives, and providing a solution based on the ranking of alternatives for an issue containing
conflicting criteria, to assist the decision-maker in a final decision.

Keywords: q-rung orthopair fuzzy set; q-rung orthopair fuzzy topologies; accuracy measure; similar-
ity relations; decision-making; emergency preparedness

1. Introduction

The concept of rough sets (RS) was proposed by Pawlak [1] as a mathematical way
to handle vagueness, uncertainty, and imprecision in data. To date, RS theory has been
successfully utilized in solving a spread of problems [2], especially within multi-criteria
higher cognitive processes and group higher cognitive processes.

In [3], fuzzy set (FzS) proposed by Zadeh could be applied in various fields. Numerous
researchers have worked in fuzzy theory. In [4], Zhang et al. provided a method that
involved two-sided matching, decided with a FzPR (fuzzy preference relation)-supported
logarithmic statistical procedure, and proposed two algorithms. In [3,5], Zhang et al.
provided methods to pander to two-sided matching (TSM) under multi-granular hesitant
fuzzy linguistic term sets (MGHFzLSs), as well as the consensus approach, in the context
of social network group decision-making (GDM).

While solving decision-making problems (DMPs), different evaluation results are pro-
duced by different experts. The non-membership degree (NMD) is needed with the mem-
bership degree (MD) in FzS in a number of real-life issues. To solve this issue, Atanassov [6]
presented the concept of an intuitionistic fuzzy set (IFzS). In an intuitionistic fuzzy set,
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the connection between YA(m) (MD) and Yc
A(m) (NMD) of object m in universal set M is

YA(m) + Yc
A(m) ≤ 1. Because of its novelty, researchers have been working in IFzS theory.

Khatibi and Montazer [7] applied IFzS in pattern recognition.
Similar to those of probability in statistics and MD in FzS, RS has an advantage that

it does not require any extra information about data in data analysis. In [8], Dubois and
Prade joined the of RS theory, and the FzS theory supported Pawlak approximation space.
The combination of RS and FzS has made it easy to explain RS with an attribute set. Clearly,
IFzS generalizes both FzS and vague pure mathematics [9–11]. In practice, however, by
combining IFzS and RS, we hit a brand new hybrid mathematical structure that solved
data related problems, such as [12–15].

The relation YA(m) + Yc
A(m) ≤ 1 is satisfied by the pairs (x, y) on or below the line

x + y = 1 that lies in the first quadrant, so that an IFzS fails when YA(m) + Yc
A(m) > 1,

provided YA(m), Yc
A(m) ∈ [0, 1]. This restriction confines the choice of YA(m) and Yc

A(m)
to create a triangular region. Yager [16] initiated the thought of the Pythagorean fuzzy
set (PFzS) within which YA(m) (MD) and Yc

A(m) (NMD) satisfy the relation YA
2(m) +

Yc
A

2(m) ≤ 1. Yager [17] presented the concept of q-rung orthopair fuzzy sets (q-ROFzS),
considered an efficient method to explain the vagueness of multi-criteria decision-making
(MCDM) problems. The q-ROFzSs are characterized by a pair of degrees—membership
degree (MD) and non-membership degree (NMD)—where the MD and NMD satisfy the
relation YA

q(m) + Yc
A

q(m) ≤ 1, for q ≥ 1. As an example, (0.5, 0.4) is an intuitionistic
membership degree (IMD) since 0.5 + 0.4 ≤ 1. If NMD is 0.6, then due to 0.5 + 0.6 ≥ 1;
that is, (0.5, 0.6) is not an IMD, but may be a Pythagorean membership degree (PMD).
However, if the NMD is 0.9, then this situation cannot be described by using neither IFzS
nor PFzS. Since 0.5 + 0.9 > 1 and 0.52 + 0.92 > 1, so (0.5, 0.9) could be a q-rung orthopair
membership degree (q-ROMD) (q ≥ 3) and, thus, it is suitable to use the q-ROFzS to resolve
DMPs. It is clear that, for q = 1, it is an IMD, and it is a PMD if q = 2, thus, q-ROFzSs
generalize the IFzSs and PFzSs. It is worth noting that q-ROFzSs express a wider range of
handling the information. Therefore, we can still adjust the parameter q to work out the
knowledge expression range, and so the q-ROFzSs are more suitable and flexible for the
uncertain environment.

Liu and Wang [18] presented q-ROFz aggregation operators for aggregating the evalu-
ation information. Yager and Alajlan [19] presented approximate reasoning with q-ROFzSs
by giving the ideas of possibility and certainty. Moreover, Liu et al. [20–22] developed new
operators for q-ROFzSs, supported by the Bonferroni mean and power Maclaurin sym-
metric mean for aggregating the DM information. Ali [23] presented two new approaches
for viewing q-ROFzSs. Wei et al. [24] presented some q-ROFz Heronian mean operators
in the MCDM environment. Shaheen et al. [25] presented an alternate algorithm to get
these grading functions, supporting q-ROFzS. Peng et al. [26] studied the exponential
operation and aggregation operator for q-ROFzSs, supported a replacement score function,
and applied them to the choice of the teaching management system. Hussain et al. [27]
defined the covering based q-ROFzS rough set and proposed an approach to unravel DMP.
We organized the paper as follows:

In Section 2, we have discussed the concepts and fundamental notions of RSs, FFzSs,
IFzSs, PFzSs, and q-ROFzSs. In Section 3, we have presented upper approximations (UAPs)
and lower approximations (LAPs) of q-ROFzSs, using crisp binary relations (CBRs) with
regard to foresets (FRs) and aftersets (ARs), and provided the related results. In Section 4,
we have introduced two forms of q-ROFz topological spaces (q-ROFzTSs) induced by CBRs.
In Section 5, we have introduced similarity relations (SmRs) over q-ROFzSs supported by
CBRs. In Section 6, we have introduced the roughness degree and the accuracy degree
for q-ROMDs, with regard to FRs and ARs. In Section 7, we have presented an algorithm
to resolve symmetry between objects and alternatives, ranking the alternatives using
q-ROFzSs approach. In the end, an illustrative example of the proposed method is given,
which shows how the proposed model works in an exceedingly DMP having symmetry
between objects. In Section 8, we have summarized the results with long-term directions.
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2. Preliminaries

This section consists of fundamental concepts, and notions of BR, RS, IFzS, PFzS, and
q-ROFzS are provided.

Throughout the work, M and N will be considered as two non-empty finite universes
unless stated.

Definition 1. A binary relation (BR) T from M to N could be a subset of M× N and a subset of
M×M is named as BR on M.

If T is a BR on M then,

(i) T is reflexive if (m, m) ∈ T; for all m ∈ M
(ii) T is symmetric if (m1, m2) ∈ T implies (m2, m1) ∈ T; for all m1, m2 ∈ M
(iii) T is transitive if (m1, m2), (m2, m3) ∈ T implies (m1, m3) ∈ T; for all m1, m2, m3 ∈ M.

If T satisfies conditions (i), (ii) and (iii), then it is called an equivalence relation (EqR).

Definition 2 ([28]). Let T be an arbitrary BR on M and two elements m1, m2 ∈ M. If m1Tm2,
we are saying that m2 is T-related to m1. A BR is also more conveniently represented by a mapping
T∗ : M→ P(M);

T∗(m1) = {m2 ∈ M : (m1, m2) ∈ T}

That is, T∗(m1) consists of all T-related elements of m1. Then two unary set-theoretic operators
T(A) and T(A) are defined, for an arbitrary subset A of M:

T(A) = {m1 : T∗(m1) ∩ A 6= ∅} = {m1 ∈ M : there exists m2 ∈ M such that
(m1, m2) ∈ T and m2 ∈ A}, and

T(A) = {m1 : T∗(m1) ⊆ A} = {m1 ∈ M : for all m2 ∈ M, (m1, m2) ∈ T implies
m2 ∈ A}.

The set T(A) consists of elements whose T-related elements belong to A, and T(A) consists
of elements, such as a minimum of one amongst whose T-related elements is in A. The pair
(T(A), T(A)) is said to be the generalized RS of A induced by T. Its physical meaning depends on
the interpretations of the universe and, therefore, the relation T, specifically in applications. (M, T)
is termed as generalized approximation space.

Let M be a non-empty finite universe and T be an EqR on M. Then (M, T) is known
to be an approximation space. If A ⊆ M and A can be written as the union of some or all
of Eq classes of the universe set M, then A is T-definable, Ref. [1].

If A is not definable, then A can be approximated by a pair of definable subsets called
UAP T(A) and LAP T(A) of A as; T(A) = ∪{[m]T : [m]T ∩ A 6= ∅} and T(A) = ∪{[m]T :
[m]T ⊆ A}, where [m]T denotes Eq class of m with regard to the relation T, for m ∈ M.
A rough set (RS) is a pair (T(A), T(A)). The set T(A)− T(A) represents the boundary
region. Clearly, if T(A) = T(A), then A is T-definable and T(A)− T(A) = ∅.

Definition 3 ([6]). An IFzS A in the universe M is a set given by

A = {(m, YA(m), Yc
A(m)) : m ∈ U}

where YA : M → [0, 1], Yc
A : M → [0, 1] with the condition that YA(m) + Yc

A(m) ≤ 1, for all
m ∈ M. The value YA(m) is called the MD of m and the value Yc

A(m) is called the NMD of m. The
pair (YA(m), Yc

A(m)), for any m ∈ M, is called a intuitionistic fuzzy degree (IFzD). Moreover,
πA(m) = (1−YA(m)−Yc

A(m)) denotes the hesitancy degree or degree of indeterminacy.

Definition 4 ([16]). A PFzS A in the universe M is a set given by

A = {(m, YA(m), Yc
A(m)) : m ∈ M}

where YA : M → [0, 1], Yc
A : M → [0, 1] with the condition that YA

2(m) + Yc
A

2(m) ≤ 1, for
all m ∈ M. The value YA(m) is termed the MD of m and the value Yc

A(m) is named the NMD
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of m. The pair (YA(m), Yc
A(m)), for any m ∈ M, is named a Pythagorean fuzzy degree (PFzD).

Moreover, πA(m) = (1−YA
2(m)−Yc

A
2(m))

1
2 denotes the hesitancy degree, also known as degree

of indeterminacy.

In [17], Yager proposed the idea of the q-rung orthopair fuzzy set q-ROFzS. This idea
has enlarged the range of membership degrees (MDs). Within the following, a quick review
of q-ROFzSs is given.

Definition 5 ([17]). A q-ROFzS A in the universe M is given by

A = {(m, YA(m), Yc
A(m)) : m ∈ M, q ≥ 1}

where YA : M→ [0, 1], Yc
A : M→ [0, 1] with the condition that YA

q(m) + Yc
A

q(m) ≤ 1, for all
m ∈ M. The value YA(m) is known as MD of m and the value Yc

A(m) is known as NMD of m.

πA(m) = 1− (YA
q(m) + Yc

A
q(m))

1
q is called indeterminacy or hesitancy of m ∈ M. The pair

(YA(m), Yc
A(m)), for any m ∈ M, is known to be a q-rung orthopair fuzzy degree (q-ROFzD). The

collection of all q-ROFzSs in M is represented by q-ROFzS(M).
We can see that if q = 1, then (YA(m), Yc

A(m)) is an IFzN and if q = 2, then it is a PFzN.
From Figure 1, it is evident that q-ROFzS incorporates a big selection for the q-ROFzDs. Thus,
q-ROFzSs are more general than PFzSs and IFzSs.

Figure 1. Comparison of IFz MD, PFz MD, q-ROFz MD.

Definition 6 ([18]). Consider two q-ROFzSs A = {(m, YA(m), Yc
A(m)) : m ∈ M, q ≥ 1} and

B = {(m, YB(m), Yc
B(m)) : m ∈ M, q ≥ 1} in M. Then the fundamental operations on

q-ROFzS(M) defined by Lie and Wang [18] are as follows:

(i) A ∪ B = {(m, YA(m) ∨YB(m), Yc
A(m) ∧Yc

B(m)) : m ∈ M}
(ii) A ∩ B = {(m, YA(m) ∧YB(m), Yc

A(m) ∨Yc
B(m)) : m ∈ M}

(iii) A ⊆ B if and only if YA(m) ≤ YB(m) and Yc
A(m) ≥ Yc

B(m), for all m ∈ M
(iv) A = B if and only if YA(m) = YB(m) and Yc

A(m) = Yc
B(m), for all m ∈ M

(v) Ac = {(m, Yc
A(m), YA(m)) : m ∈ M}

(vi) A⊕ B = {(m, [Yq
A(m) + Yq

B(m)−YA(m).YB(m)]
1
q , Yc

A(m).Yc
B(m)) : m ∈ M}

(vii) A⊗ B = {(m, YA(m).YB(m), [Yc
A

q(m) + Yc
B

q(m)−Yc
A(m).Yc

B(m)]
1
q ) : m ∈ M}

(viii) tA = {(m, (1− (1−YA
q(m))t)

1
q , Yc

A
t(m)) : m ∈ M, t ≥ 0}

(ix) At = {(m, YA
t(m), (1− (1−Yc

A
q(m))t)

1
q ) : m ∈ M, t ≥ 0}

The q-ROFzS 1M = (1, 0) and q-ROFzS 0M = (0, 1), where 1(m) = 1 and 0(m) = 0, for
all m ∈ M.
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Definition 7 ([24]). The score value of any q-ROFzD A = (YA(m), Yc
A(m)), m ∈ M, is defined as

S(A) =
1
2
(1 + Yq

A(m)−Yc
A

q(m)),

for q ≥ 1. The greater the worth of score function, the better will be the q-ROFzD.

3. Rough q-ROFzSs

In this section, we consider a CBR from M to N, approximate a q-ROFzS over M by
using FRs and acquire two q-ROFzSs over N.

Likewise, we approximate a q-ROFzS of N by using AFs and acquire two q-ROFzSs
over M. We additionally talk about a number of their properties.

Definition 8. Let T be a CBR from M to N and A = (YA, Yc
A) be a q-ROFzS in N. Then we

define LAP TA = (TYA , TYc
A) and UAP TA

= (TYA , TYc
A) of A = (YA, Yc

A) with respect to AFs,
as follows:

TA = {(m, TYA , TYc
A) : m ∈ M, q ≥ 1}

TA
= {(m, TYA , TYc

A) : m ∈ M, q ≥ 1},

where

TYA(m) =

{∧
n∈mT YA(n) i f mT 6= ∅;

1 i f mT = ∅.

TYc
A(m) =

{∨
n∈mT Yc

A(n) i f mT 6= ∅;
0 i f mT = ∅.

and

TYA(m) =

{∨
n∈mT YA(n) i f mT 6= ∅;

0 i f mT = ∅.

TYc
A(m) =

{∧
n∈mT Yc

A(n) i f mT 6= ∅;
1 i f mT = ∅.

where mT = {n ∈ N : (m, n) ∈ T}, and is called the afterset (AR) of m for all m ∈ M.

It can be verified that TA, TA are q-ROFzSs of M. Moreover, the operators TA, TA:
q-ROFzS(N)→ q-ROFzS(M) are the upper and lower rough q-ROFz approximation opera-
tors, respectively.

The pair (TA, TA
) is named the rough q-ROFzS with respect to ARs.

Definition 9. Let T be a CBR from M to N and A = (YA, Yc
A) be a q-ROFzS in M. Then we

define LAP AT = (YA T,Y
c
A T) and UAP AT = (YA T,Y

c
A T) of A = (YA, Yc

A) with respect to FRs
as follows:

AT = {(m,YA T,Y
c
A T) : m ∈ M, q ≥ 1}

AT = {(m,YA T,Y
c
A T) : m ∈ M, q ≥ 1},

where
YA T(n) =

{∧
m∈Tn YA(m) i f Tn 6= ∅;

1 i f Tn = ∅.

Yc
A T(n) =

{∨
m∈Tn Yc

A(m) i f Tn 6= ∅;
0 i f Tn = ∅.
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and
YA T(n) =

{∨
m∈Tn YA(m) i f Tn 6= ∅;

0 i f Tn = ∅.

Yc
A T(n) =

{∧
m∈Tn Yc

A(m) i f Tn 6= ∅;
1 i f Tn = ∅.

where Tn = {m ∈ M : (m, n) ∈ T}, and is called the foreset (FR) of n for all n ∈ N.

It can be verified that AT, AT are q-ROFzSs of N. And AT, TA: q-ROFzS(M) →
q-ROFzS(N) are upper and lower rough q-ROFz approximation operators, respectively.

The pair (AT, AT) is termed the rough q-ROFzS with reference to FRs.
The above defined concepts are elaborated in the next example.

Example 1. Suppose a student wants to buy a new laptop. Let M = {the set of available models} =
{m1, m2, m3, m4}, N = {the colors of laptops} = {n1, n2, n3}. Take a CBR T ∈ P(M × N)
such that, T = {(m1, n1), (m1, n2), (m2, n1), (m2, n3), (m3, n1), (m3, n2), (m3, n3), (m4, n2),
(m4, n3)} represents the CBR between models and colors available at the shop.

Now, let A ∈ q-ROFzS(N) and B ∈ q-ROFzS(M), for q = 5, where the preference of colors
is represented by the q-ROFzS A and the q-ROFzS B represents the choice of models, provided by
the student, are:

A = { n1
(0.9,0.8) , n2

(0.8,0.6) , n3
(0.6,0.7)}, B = { m1

(0.9,0.5) , m2
(0.7,0.5) , m3

(0.7,0.6) , m4
(0.4,0.8)}.

Then LAP and UAP of q-ROFzS A with respect to ARs miT are two q-ROFzSs on M,
given by;

TA = { m1
(0.8,0.8) , m2

(0.6,0.8) , m3
(0.6,0.8) , m4

(0.6,0.7)}, TA
= { m1

(0.9,0.6) , m2
(0.9,0.7) , m3

(0.9,0.6) , m4
(0.8,0.6)}.

Thus, (TA, TA
) is a rough q-ROFzS with respect to ARs.

Similarly, the LAP and UAP of q-ROFzS B with respect to FRs Tni are two q-ROFzSs on
N, given by;

BT = { n1
(0.7,0.6) , n2

(0.4,0.8) , n3
(0.4,0.8)},

BT = { n1
(0.9,0.5) , n2

(0.9,0.5) , n3
(0.7,0.5)}.

Thus, (BT,B T) is a rough q-ROFzS with respect to FRs.

Theorem 1. Let T be a CBR from M to N, that is, T ∈ P(M × N). For any three q-ROFzSs
A = (YA, Yc

A), A1 = (YA1 , Yc
A1
), and A2 = (YA2 , Yc

A2
) of N, the following hold:

(i) A1 ⊆ A2, implies TA1 ⊆ TA2

(ii) A1 ⊆ A2, implies TA1 ⊆ TA2

(iii) TA1 ∩ TA2 = TA1∩A2

(iv) TA1∩A2 ⊆ TA1 ∩ TA2

(v) TA1∪A2 ⊇ TA1 ∪ TA2

(vi) TA1 ∪ TA2 = TA1∪A2

(vii) T1N = 1M = T1N , if mT 6= ∅

(viii) TA = (TAc
)c and TA

= (TAc
)c, if mT 6= ∅

(ix) T0N = 0M = T0N .

Proof.

(i) Let A1 ⊆ A2, that is, for all n ∈ N, we have YA1(n) ≤ YA2(n), and Yc
A1
(n) ≥ Yc

A2
(n).

If mT = ∅, then TA1 = (1, 0) = TA2 .
If mT 6= ∅, then TYA1 (m) =

∧
n∈mT YA1(n) ≤

∧
n∈mT YA2(n) = TYA2 (m) and
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TYc
A1 (m) =

∨
n∈mT Yc

A1
(n) ≥ ∨

n∈mT Yc
A2
(n) = TYc

A2 (m). Thus, TYA1 (m) ≤ TYA2 (m)

and TYc
A1 (m) ≥ TYc

A2 (m). Hence, TA1 ⊆ TA2 .
(ii) Let A1 ⊆ A2, that is, for all n ∈ N, we have YA1(n) ≤ YA2(n), and Yc

A1
(n) ≥ Yc

A2
(n).

If uT = ∅, then TA1 = (0, 1) = TA2 .
If uT 6= ∅, then TYA1 (m) =

∨
n∈mT YA1(n) ≤

∨
n∈mT YA2(n) = TYA2 (m) and

TYc
A1 (m) =

∧
n∈mT Yc

A1
(n) ≥ ∧

n∈mT Yc
A2
(n) = TYc

A2 (m).

Thus, TYA1 (m) ≤ TYA2 (m) and TYc
A1 (m) ≥ TYc

A2 (m). Hence, TA1 ⊆ TA2 .
(iii) Consider

(TYA1 ∩ TYA2 )(m) = TYA1 (m) ∧ TYA2 (m) = (
∧

n∈mT YA1(n)) ∧ (
∧

n∈mT YA2(n)) =∧
n∈mT(YA1(n) ∧YA2(n)) = TA1∩A2(m),

and

(TYc
A1 ∪ TYc

A2 )(m) = TYc
A1 (m) ∨ TYc

A2 (m) = (
∨

n∈mT Yc
A1
(n)) ∨ (

∨
n∈mT Yc

A2
(n)) =∨

n∈mT(Yc
A1
(n) ∨Yc

A2
(n)) = TA1∪A2(m).

Hence, TA1∩A2 = TA1 ∩ TA2 .
(iv) Since we know that A1 ∩ A2 ⊆ A1 and A1 ∩ A2 ⊆ A2, we have TA1∩A2 ⊆ TA1 and

TA1∩A2 ⊆ TA2 by part (ii). Which gives that TA1∩A2 ⊆ TA1 ∩ TA2 .
(v) Since A1 ⊆ A1 ∪ A2 and A2 ⊆ A1 ∪ A2, we have TA1 ⊆ TA1∪A2 and TA2 ⊆ TA1∪A2 ,

by part (i). Which gives that TA1 ∪ TA2 ⊆ TA1∪A2 .
(vi) Consider

(TYA1 ∪ TYA2 )(m) = TYA1 (m) ∨ TYA2 (m) = (
∨

n∈mT YA1(n)) ∨ (
∨

n∈mT YA2(n)) =∨
n∈mT(YA1(n) ∨YA2(n)) = TA1∪A2(n)

and

(TYc
A1 ∩ TYc

A2 )(m) = TYc
A1 (m) ∧ TYc

A2 (m) = (
∧

n∈mT Yc
A1
(n)) ∧ (

∧
n∈mT Yc

A2
(n)) =∧

n∈mT(Yc
A1
(n) ∧Yc

A2
(n)) = TA1∩A2(m).

Thus, TA1∪A2 = TA1 ∪ TA2 .
(vii) Since T1N (m) =

∧
n∈mT 1(n) =

∧
n∈mT 1 = 1 and T0N (m) =

∧
n∈mT 0(n) =

∧
n∈mT 0 =

0. Thus, T1N = 1M. Similarly, we can prove that T1N = 1M.
(viii) Consider

TYAc
(m) =

∨
n∈mT YAc(n) =

∨
n∈mT Yc

A(n) = TYc
A(m) = (TYA(m))c

and

TNAc
(m) =

∧
n∈mT NAc(n) =

∧
n∈mT YA(n) = TYA(m) = (TYc

A(m))c.

Thus, TAc
= (TYAc , TNAc

) = ((TYA)c, (TYc
A)c) = (TYA , TYc

A)c = (TA)c, which gives

that (TAc
)c = TA. Similarly, TA

= (TAc
)c.

(ix) Straightforward.

Theorem 2. Let T be a CBR from M to N; that is, T ∈ P(M× N). For any three q-ROFzSs
A = (YA, Yc

A), A1 = (YA1 , Yc
A1
), and A1 = (YA2 , Yc

A2
) of M, the following hold:

(i) A1 ⊆ A2, implies A1 T ⊆ A2 T
(ii) A1 ⊆ A2, implies A1 T ⊆ A2 T
(iii) A1 T ∩ A2 T = A1∩A2 T
(iv) A1∩A2 T ⊆ A1 T ∩ A2 T
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(v) A1∪A2 T ⊇ A1 T ∪ A2 T
(vi) A1 T ∪ A2 T = A1∪A2 T
(vii) 1M T = 1N = 1M T, if Tn 6= ∅
(viii) AT = (Ac

T)c, and AT = (Ac
T)c if Tn 6= ∅

(ix) 0M T = 0N = 0M T.

Proof. The proof follows directly from the proof of Theorem 1.

Example 2 confirms that the converse is not true in (iv) and (v) parts of Theorem 1.

Example 2. Revisiting example 1, we define two q-ROFzSs A1, A2 on N by:

A1 = { n1
(0.8,0.6) , n2

(0.1,0.9) , n3
(0.4,0.7)}, A2 = { n1

(0.35,0.65) , n2
(0.65,0.95) , n3

(0.6,0.87)}, for q = 5.

Then,

A1 ∩ A2 = { n1
(0.35,0.65) , n2

(0.1,0.95) , n3
(0.4,0.87)}, and A1 ∪ A2 = { n1

(0.8,0.6) , n2
(0.65,0.9) , n3

(0.6,0.7)}.

Now, observing Table 1, we can verify that (TA1 ∪ TA2)(m1) 6= TA1∪A2(m1), (TA1 ∪
TA2)(m2) 6= TA1∪A2(m2) and (TA1 ∪ TA2)(m3) 6= TA1∪A2(m3). Thus, the LAP of the union
of two q-ROFzSs is not equal to the union of LAPs of two q-ROFzSs; that is, TA1 ∪ TA2 6= TA1∪A2 .
Similarly, from Table 2, we see that intersection of the UAP of the intersection of two q-ROFzSs is
not equal to UAPs of two q-ROFzSs; that is, TA1 ∩ TA2 6= TA1∩A2 .

Thus, the converse in not true in (iv) and (v) parts of Theorem 1.

Table 1. Union of LAPs and LAP of union of two q-ROFzSs.

m1 m2 m3 m4

TA1 (mi) (0.1, 0.9) (0.4, 0.7) (0.1, 0.9) (0.1, 0.9)
TA2 (mi) (0.35, 0.95) (0.35, 0.87) (0.35, 0.95) (0.6, 0.95)

(TA1 ∪ TA2 )(mi) (0.35, 0.9) (0.4, 0.7) (0.35, 0.9) (0.6, 0.9)
TA1∪A2 (mi) (0.65, 0.9) (0.6, 0.7) (0.6, 0.9) (0.6, 0.9)

Table 2. Intersection of UAPs and UAP of intersection of two q-ROFzSs.

m1 m2 m3 m4

TA1 (mi) (0.8, 0.6) (0.8, 0.6) (0.8, 0.6) (0.4, 0.7)

TA2 (mi) (0.65, 0.65) (0.6, 0.65) (0.65, 0.65) (0.65, 0.87)

(TA1 ∩ TA2 )(mi) (0.65, 0.65) (0.6, 0.65) (0.65, 0.65) (0.4, 0.87)

TA1∩A2 (mi) (0.35, 0.65) (0.4, 0.65) (0.4, 0.65) (0.4, 0.87)

Theorem 3. Let T1, T2 be two CBRs from M to N such that T1 ⊆ T2. Then, for any A ∈
q-ROFzS(N), TA

2 ⊆ TA
1 and T1

A ⊆ T2
A.

Proof. Since T1 ⊆ T2, we have mT1 ⊆ mT2.
Now if mT1 = ∅, then TYA

2 (m) ≤ 1 = TYA
1 (m), and TYc

A
1 (m) = 0 ≤ TYc

A
2 (m). This

implies that TA
2 ⊆ TA

1 .
If mT1 6= ∅, then TYA

1 (m) =
∧

n∈mT1
YA(n) ≥

∧
n∈mT2

YA(n) = TYA
2 (m), since mT1 ⊆

mT2 and TYc
A

1 (m) =
∨

n∈mT1
Yc

A(n) ≤
∨

n∈mT2
Yc

A(n) = TYc
A

2 (m), since mT1 ⊆ mT2.
Thus, TA

2 ⊆ TA
1 .

Similarly, T1
A ⊆ T2

A.

Theorem 4. Let T1, T2 be two BRs from M to N, such that T1 ⊆ T2. Then, for any A ∈
q-ROFzS(M), AT2 ⊆ AT1 and AT1 ⊆ AT2.
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Proof. The proof follows directly from the proof of Theorem 3.

Theorem 5. Let T1, T2 be two BRs from M to N. Then, for any A ∈ q-ROFzS(N), the following
are true:

(i) TA
1 ⊆ (T1 ∩ T2)

A and TA
2 ⊆ (T1 ∩ T2)

A.

(ii) (T1 ∩ T2)
A ⊆ T1

A and (T1 ∩ T2)
A ⊆ T2

A.

Proof. The proof follows directly from Theorem 3.

Following Theorem 5, we have the following result.

Theorem 6. Let T1, T2 be two BRs from M to N. Then, for any A ∈ q-ROFzS(M), the follow-
ing hold:

(i) AT1 ⊆ A(T1 ∩ T2) and AT2 ⊆ A(T1 ∩ T2).
(ii) A(T1 ∩ T2) ⊆ AT1 and A(T1 ∩ T2) ⊆ AT2.

Theorem 7. Let T be a BR from M to N and {Ai : i ∈ I} be a finite set of q-ROFzSs defined on
N. Then the following hold:

(i) T(
⋂

i∈I Ai) =
⋂

i∈I TAi

(ii)
⋃

i∈I TAi ⊆ T(
⋃

i∈I Ai)

(iii) T(
⋃

i∈I Ai) =
⋃

i∈I TAi

(iv) T(
⋂

i∈I Ai) ⊆ ⋂
i∈I TAi .

Proof.

(i) Let Ai ∈ q-ROFzS(N), for i ∈ I. Then

T(
⋂

i∈I AiY
)(m) =

∧
n∈mT(∧i∈I AiY (n)) =

∧
i∈I(∧n∈mT AiY (n)) =

⋂
i∈I TAiY (m) and

T(
⋃

i∈I AiN
)(m) =

∨
n∈mT(∨i∈I AiN (n)) =

∨
i∈I(∨n∈mT AiN (n)) =

⋃
i∈I TAiN (m).

Thus, T(
⋂

i∈I Ai) =
⋂

i∈I TAi .
(ii) Since we known that Ai ⊆

⋃
i∈I Ai for each i ∈ I. Then TAi ⊆ T(

⋃
i∈I Ai), which implies

that
⋃

i∈I TAi ⊆ T(
⋃

i∈I Ai).
(iii) The proof follows directly from the proof of part (i).
(iv) The proof follows directly from the proof of part (ii).

Theorem 8. Let T be a BR from M to N and {Ai : i ∈ I} be a finite set of q-ROFzSs defined on
M. Then the following hold:

(i) (
⋂

i∈I Ai)T =
⋂

i∈I
Ai T

(ii)
⋃

i∈I
Ai T ⊆ (

⋃
i∈I Ai)T

(iii) (
⋃

i∈I Ai)T =
⋃

i∈I
Ai T

(iv) (
⋂

i∈I Ai)T ⊆ ⋂
i∈I

Ai T.

Proof. The proof follows directly from the proof of Theorem 7.

Theorem 9. Let M be a finite universe and T be a reflexive relation (RR) on M. Then, for any
A ∈ q-ROFzS(M), the following properties for LAP and UAP with respect to ARs hold:

(i) TA ≤ A and TA ≥ A

(ii) TA ≤ TA.

Proof. For m ∈ M

(i) Consider TYA(m) =
∧

n∈mT YA(n) ≤ YA(m), since m ∈ mT, and
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TYc
A(m) =

∨
n∈mT Yc

A(n) ≥ Yc
A(m), since m ∈ mT. Thus, TA ≤ A.

Also, TYA(m) =
∨

n∈mT YA(n) ≥ YA(m), since m ∈ mT, and TYc
A(m) =

∧
n∈mT Yc

A(n) ≤
Yc

A(m), since m ∈ mT. Thus, TA ≥ A.

(ii) From part (i) we get that TA ≤ A ≤ TA, which implies that TA ≤ TA.

Theorem 10. Let T be a RR over M. For any A ∈ q-ROFzS(M), the following properties for
LAP and UAP with respect to FRs hold:

(i) AT ≤ A and AT ≥ A
(ii) AT ≤ AT.

Proof. The proof follows directly from the proof of Theorem 9.

4. q-ROFzTs Induced by RR

Cheng [29] proposed the idea of fuzzy topological space and extended some basic
terms related to topology. Olgun [30] et al. proposed the idea of a q-rung orthopair fuzzy
topological space (q-ROFzTS) and discussed continuity between two q-ROFzTSs.

Here, we give two kinds of q-ROFzTs based on a RR.

Definition 10 ([30]). A family A ⊆ q-ROFzS(M) of q-ROFzSs on M is called a q-ROFzT on M
if it satisfies:

(i) 0, 1 ∈ A

(ii) A1 ∩ A2 ∈ A, for all A1, A2 ∈ A

(iii)
⋃

i∈I Ai ∈ A, for all Ai ∈ A, i ∈ I.

The pair (M,A) is said to be a q-ROFzTS and the elements of A are called q-ROFz open sets.

Theorem 11. If T is a RR on M, then

T = {A ∈ q-ROFzS(M) : TA = A}

is a q-ROFzT on M.

Proof.

(i) From Theorem 1, we have T0 = 0 and T1 = 1, which implies 0, 1 ∈ T.
(ii) Let A1, A2 ∈ T. Then TA1 = A1, and TA2 = A2.

From Theorem 1, TA1∩A2 = (TA1 ∩ TA2) = (A1 ∩ A2).
Thus, A1 ∩ A2 ∈ T.

(iii) If Ai ∈ T, then, for each i ∈ I, we have TAi = Ai. Since T is a RR, so by Theorem 9,
we have

T(
⋃

i∈I Ai) ≤
⋃
i∈I

Ai. (1)

Also, since Ai ≤
⋃

i∈I Ai, so TAi ≤ T(
⋃

i∈ Ai),, which gives
⋃

i∈I TAi ≤ T(
⋃

i∈I Ai). Thus,⋃
i∈I

Ai ≤ T(
⋃

i∈I Ai). (2)

From the relations (1) and (2), we get T(
⋃

i∈I Ai) =
⋃

i∈I Ai.
Hence, T is a q-ROFzT on M.

Theorem 12. If T is a RR on M, then

T
′
= {A ∈ q-ROFS(M) : AT = A}
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is a q-ROFzT on M.

Proof. The proof follows directly from the proof of Theorem 11.

5. Similarity Relations (SmRs) Based on CBR

Here, we discuss some similarity relations (SmRs) between q-ROFzSs based on their
rough UAPs, LAPs and prove some results.

Definition 11. Let T be a CBR from M to N. For A1, A2 ∈ q-ROFzS(N), we define the relations
S, S̃ and S on N, as follows:

• A1SA2 if and only if TA1 = TA2

• A1S̃A2 if and only if TA1 = TA2

• A1SA2 if and only if TA1 = TA2 and TA1 = TA2 .

Definition 12. Let T be a CBR from M to N. For A1, A2 ∈ q-ROFzS(M), we define the relations
s, s̃ and s on M, as follows:

• A1sA2 if and only if A1 T =A2 T
• A1 s̃A2 if and only if A1 T =A2 T
• A1sA2 if and only if A1 T =A2 T and A1 T =A2 T.

The above CBRs are called as the lower q-ROFz similarity relation (q-ROFzSmR), up-
per q-ROFz similarity relation (q-ROFzSmR), and q-ROFz similarity relation (q-ROFzSmR),
respectively.

Proposition 1. The relations S, S̃, S are EqRs on q-ROFzS(M).

Proof. Straightforward.

Proposition 2. The relations s, s̃, s are EqRs on q-ROFzS(M).

Proof. Straightforward.

Theorem 13. Let T be a CBR from M to N and A1, A2, A3, A4 ∈ q-ROFzS(N). Then:

(i) A1S̃A2 if and only if A1S̃(A1 ∪ A2)S̃A2
(ii) If A1S̃A2 and A3S̃A4, then (A1 ∪ A3)S̃(A2 ∪ A4)
(iii) If A1 ⊆ A2 and A2S̃0, then A1S̃0
(iv) (A1 ∪ A2)S̃0 if and only if A1S̃0 and A2S̃0
(v) If A1 ⊆ A2 and A1S̃1, then A2S̃1
(vi) If (A1 ∩ A2)S̃1, then A1S̃1 and A2S̃1.

Proof.

(i) If A1S̃A2, then TA1 = TA2 . By Theorem 1, TA1∪A2 = TA1 ∪ TA2 = TA1 = TA2 , so we
have, A1S̃(A1 ∪ A2)S̃A2.
Conversely, if A1S̃(A1 ∪ A2)S̃A2, then A1S̃(A1 ∪ A2) and (A1 ∪ A2)S̃A2. This implies
that TA1 = TA1∪A2 and TA1∪A2 = TA2 . Thus, TA1 = TA2 . Hence, A1S̃A2.

(ii) If A1S̃A2 and A3S̃A4, then TA1 = TA2 and TA3 = TA4 . By Theorem 1, TA1∪A3 =

TA1 ∪ TA3 = TA2 ∪ TA4 = TA2∪A4 . Thus, (A1 ∪ A3)S̃(A2 ∪ A4).
(iii) Let A1 ⊆ A2 and A2S̃0. Then TA2 = T0. Also, since A1 ⊆ A2, so we have TA1 ⊆

TA2 = T0. However, T0 ⊆ TA1 , so TA1 = T0. Hence, A1S̃0.
(iv) If (A1 ∪ A2)S̃0, then TA1 ∪ TA2 = TA1∪A2 = T0. Since TA1 ⊆ TA1 ∪ TA2 = T0, so we

have TA1 = T0. Similarly, TA2 = T0. Hence, A1S̃0 and A1S̃0.
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Conversely, if A1S̃0 and A2S̃0, then TA1 = T0 and TA2 = T0. By Theorem 1,

T(A1∪A2) = TA1 ∪ TA2 = T0 ∪ T0
= T0. Hence, (A1 ∪ A2)S̃0.

(v) If A1S̃1, then TA1 = T1. Since A1 ⊆ A2, so T1
= TA1 ⊆ TA2 . However, TA2 ⊆ T1 so,

T1
= TA1 . Hence, A2S̃1.

(vi) If A1 ∩ A2S̃1, then TA1∩A2 = T1. By Theorem 1, we have TA1 ∩ TA2 ⊇ TA1∩A2 = T1.

Thus, T1
= TA1 and T1

= TA2 . Hence, A1S̃1 and A2S̃1.

Theorem 14. Let T be a CBR from M to N and A1, A2, A3, A4 ∈ q-ROFzS(M). Then:

(i) A1 s̃A2 if and only if A1 s̃(A1 ∪ A2)s̃A2
(ii) If A1 s̃A2 and A3 s̃A4, then (A1 ∪ A3)s̃(A2 ∪ A4)
(iii) If A1 ⊆ A2 and A2 s̃0, then A1 s̃0
(iv) (A1 ∪ A2)s̃0 if and only if A1 s̃0 and A2 s̃0
(v) If A1 ⊆ A2 and A1 s̃1, then A2 s̃1
(vi) If (A1 ∩ A2)s̃1, then A1 s̃1 and A2 s̃1.

Proof. The proof follows directly from the proof of Theorem 13.

Theorem 15. Let T be a CBR from M to N and A1, A2, A3, A4 ∈ q-ROFzS(N). Then the
following hold:

(i) A1SA2 if and only if A1S(A1 ∩ A2)SA2
(ii) If A1SA2 and A3SA4, then (A1 ∩ A3)S(A2 ∩ A4)
(iii) If A1 ⊆ A2 and A2S0, then A1S0
(iv) (A1 ∪ A2)S0 if and only if A1S0 and A2S0
(v) If A1 ⊆ A2 and A1S1, then A2S1
(vi) If (A1 ∩ A2)S1, then A1S1 and A2S1.

Proof. Straightforward.

Theorem 16. Let T be a CBR from M to N and A1, A2, A3, A4 ∈ q-ROFzS(M). Then the
following hold:

(i) A1sA2 if and only if A1s(A1 ∩ A2)sA2
(ii) If A1sA2 and A3sA4, then (A1 ∩ A3)s(A2 ∩ A4)
(iii) If A1 ⊆ A2 and A2s0, then A1s0
(iv) (A1 ∪ A2)s0 if and only if A1s0 and A2s0
(v) If A1 ⊆ A2 and A1s1, then A2s1
(vi) If (A1 ∩ A2)s1, then A1s1 and A2s1.

Proof. Straightforward.

Theorem 17. Let T be a CBR from M to N and A1, A2 ∈ q-ROFzS(N). Then the following hold:

(i) A1SA2 if and only if A1S(A1 ∩ A2)SA2 and A1S̃(A1 ∪ A2)S̃A2
(ii) If A1 ⊆ A2 and A2S0, then A1S0
(iii) (A1 ∪ A2)S0 if and only if A1S0 and A2S0
(iv) If (A1 ∩ A2)S1, then A1S1 and A2S1.
(v) If A1 ⊆ A2 and A1S1, then A2S1

Proof. The proof follows directly from Theorems 13 and 15.

Theorem 18. Let T be a CBR from M to N and A1, A2 ∈ q-ROFzS(M). Then the following hold:

(i) A1sA2 if and only if A1s(A1 ∩ A2)sA2 and A1 s̃(A1 ∪ A2)s̃A2
(ii) If A1 ⊆ A2 and A2s0, then A1s0
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(iii) (A1 ∪ A2)s0 if and only if A1s0 and A2s0
(iv) If (A1 ∩ A2)s1, then A1s1 and A2s1.
(v) If A1 ⊆ A2 and A1s1, then A2s1

Proof. The proof follows directly from Theorems 14 and 16.

6. Accuracy Measures of q-ROFzDs

The approximation of q-ROFzSs gives a new method for checking how much accurate
a q-ROMD is, which describe the objects. First we define (α, β)-level cut of a q-ROFzS A.

Definition 13. Let A ∈ q-ROFzS(M) and α, β ∈ [0, 1] be such that αq + βq ≤ 1, for q ≥ 1.
Then we define (α, β)-level cut set of a q-ROFzS A by

Aβ
α = {m ∈ M : YA(m) ≥ α and Yc

A(m) ≤ β}.

For example, if we have A = { u1
(0.9,0.4) , u2

(0.95,0.3) , u3
(0.8,0.5) , u4

(0.9,0.2) , u5
(0.7,0.65) , u6

(0.94,0.42)}, and
(α, β) = (0.7, 0.5) ∈ [0, 1]× [0, 1] such that αq + βq ≤ 1, where q = 3.

Then, Aβ
α = {u1, u2, u3, u4, u6}.

The set Aα = {m ∈ M : YA(m) ≥ α} is a membership set α-level cut, which is
generated by A and Aα̇ = {m ∈ M : YA(m) > α} is a membership set of strong α-level
cut of A. Similarly, the set Aβ = {m ∈ M : Yc

A(m) ≤ β}, Aβ̇ = {m ∈ M : Yc
A(m) < β} are

membership sets of β-level and strong β-level cuts of A.
Thus, we can define the other cuts sets of a q-ROFzS A as:

• Aβ
α̇ = {m ∈ M : YA(m) > α and Yc

A(m) ≤ β}, which we call as (α̇, β)-level cut set
of A

• Aβ̇
α = {m ∈ M : YA(m) ≥ α and Yc

A(m) < β}, which we call as (α, β̇)-level cut set
of A

• Aβ̇
α̇ = {m ∈ M : YA(m) > α and Yc

A(m) < β}, which we call as (α̇, β̇)-level cut set
of A.

Theorem 19. Let A, B ∈ q-ROFzS(M) and α, β ∈ [0, 1] be such that αq + βq ≤ 1, for q ≥ 1.
Then the following properties hold:

(i) Aβ
α = Aα ∩ Aβ

(ii) (Ac)α = (Aα̇)c, (Ac)β = (Aβ̇)
c

(iii) A ⊆ B implies Aβ
α ⊆ Bβ

α

(iv) (A ∩ B)α = Aα ∩ Bα, (A ∩ B)β = Aβ ∩ Bβ, (A ∩ B)β
α = Aα ∩ Bβ

α

(v) (A ∪ B)α = Aα ∪ Bα, (A ∪ B)β = Aβ ∪ Bβ, Aα ∩ Bβ
α ⊆ (A ∪ B)β

α

(vi) α1 ≥ α2 and β1 ≤ β2 implies Aα1 ⊆ Aα2 , Aβ1 ⊆ Aβ2 , Aβ1
α1 ⊆ Aβ

α2 .

Proof.

(i) Directly follows from Definition 13.
(ii) Let A ∈ q-ROFzS(M) be such that A = {(m, YA(m), Yc

A(m)) : m ∈ M}. Then
Ac = {(m, Yc

A(m), YA(m)) : m ∈ M} and so m ∈ ((Ac)α)c if and only if m /∈ (Ac)α =
{m ∈ M : Yc

A(m) ≥ α} if and only if Yc
A(m) < α if and only if m ∈ Aα̇. This implies

that (Ac)α = (Aα̇)c.
Similarly, we can show that (Ac)β = (Aβ̇)

c.
(iii) Directly follows from Definition 13.
(iv) Let m be an element of (A ∩ B)α. Then YA(m) ∧ YB(m) ≥ α implies YA(m) ≥ α and

YB(m) ≥ α, which gives that m ∈ Aα ∩ Bα. And if m ∈ (A ∩ B)β, then Yc
A(m) ∨

Yc
B(m) ≤ β implies Yc

A(m) ≤ β and Yc
B(m) ≤ β, which gives that m ∈ Aβ ∩ Bβ.
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Now by using (i), we get

(A ∩ B)β
α = (A ∩ B)α ∩ (A ∩ B)β

= (Aα ∩ Bα) ∩ (Aβ ∩ Bβ)

= (Aα ∩ Aβ) ∩ (Bα ∩ Bβ)

= Aβ
α ∩ Bβ

α .

(v) Let m be an element of (A ∪ B)α. Then YA(m) ∨ YB(m) ≥ α implies YA(m) ≥ α

or YB(m) ≥ α which gives that m ∈ Aα ∪ Bα. And if m ∈ (A ∪ B)β, then Yc
A(m) ∧

Yc
B(m) ≤ β implies Yc

A(m) ≤ β or Yc
B(m) ≤ β, which gives that m ∈ Aβ ∪ Bβ.

As we know that A ⊆ A ∪ B and B ⊆ A ∪ B.
Therefore, Aβ

α ⊆ (A∪ B)β
α and Bβ

α ⊆ (A∪ B)β
α which implies that Aβ

α ∪ Bβ
α ⊆ (A∪ B)β

α .
(iv) Let m ∈ Aα1 . Then YA(m) ≥ α1 but α1 ≥ α2, so YA(m) ≥ α2, which gives that

m ∈ Aα2 . Similarly, if m ∈ Aβ1 implies Yc
A(m) ≤ β1 but β1 ≤ β2, so Yc

A(m) ≤ β2,
which gives that m ∈ Aβ2 . Consequently, we have Aα1 ∩ Aβ1 ⊆ Aα2 ∩ Aβ2 . Thus, by
using (i), we have Aβ1

α1 ⊆ Aβ2
α2 .

Note that if T is a CBR over M, then TAβ
α is the LAP of the crisp set Aβ

α and (TA)
β
α will

be (α, β)-level cut set of TA with regard to the ARs. Thus, we have,

(TA)
β
α = {m ∈ M : TYA(m) ≥ α and TYc

A(m) ≤ β}
= {m ∈ M : ∧n∈mTYA(n) ≥ α and ∨n∈mT Yc

A(n) ≤ β}

and

(TA
)

β
α = {m ∈ M : TYA(m) ≥ α and TYc

A(m) ≤ β}
= {m ∈ M : ∨n∈mTYA(n) ≥ α and ∧n∈mT Yc

A(n) ≤ β}

with regard to ARs.
Similarly,

(AT)β
α = {m ∈ M : YA T(m) ≥ α and Yc

A T(m) ≤ β}
= {m ∈ M : ∧n∈TmYA(n) ≥ α and ∨n∈Tm Yc

A(n) ≤ β}

and

(AT)β
α = {m ∈ M : YA T(m) ≥ α and Yc

A T(m) ≤ β}
= {m ∈ M : ∨n∈TmYA(n) ≥ α and ∧n∈Tm Yc

A(n) ≤ β}

with respect to FRs.

Lemma 1. Let T be a RR on a finite universe M and A ∈ q-ROFzS(M). Let α, β ∈ [0, 1] be such

that αq + βq ≤ 1, for q ≥ 1. Then TAβ
α = (TA)

β
α and TAβ

α = (TA
)

β
α .

Proof. Let α, β ∈ [0, 1] be such that αq + βq ≤ 1, for q ≥ 1. Then, since m ∈ mT,

(TA)
β
α = {m ∈ M : TYA(m) ≥ α and TYc

A(m) ≤ β}
= {m ∈ M : ∧n∈mTYA(n) ≥ α and ∨n∈mT Yc

A(n) ≤ β}
= {m ∈ M : YA(n) ≥ α and Yc

A(n) ≤ β, for all n ∈ mT}

= {m ∈ M : mT ⊆ Aβ
α}

= TAβ
α (m).
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Similarly, we can show that TAβ
α = (TA

)
β
α .

Lemma 2. Let T be a RR on a finite universe M and A ∈ q-ROFzS(M). Let α, β ∈ [0, 1] be such

that αq + βq ≤ 1, for q ≥ 1. Then Aβ
α T = (AT)β

α and Aβ
α T = (AT)β

α .

Proof. The proof follows directly from the proof of Lemma 1.

The accuracy degree (AD) and roughness degree (RD) of a q-ROFzS are defined below.

Definition 14. Let T be a RR on a finite universe M. The accuracy degree of A ∈ q-ROFzS(M),
with regard to the parameters α, β, θ, γ ∈ [0, 1] such that β ≥ θ, α ≤ γ, and γq + θq ≤ 1,
αq + βq ≤ 1, for q ≥ 1, and with regard to ARs, is given as:

δ
(γ,θ)
(α,β)(T

A) =
| TAθ

γ |

| TAβ
α |

The roughness degree for the membership of A ∈ q-ROFzS(M) is given as:

η
(γ,θ)
(α,β)(T

A) = 1− δ
(γ,θ)
(α,β)(T

A)

Similarly, the accuracy degree for the membership of A ∈ q-ROFzS(M), with regard to FRs,
can be given as:

δ
(γ,θ)
(α,β)(

AT) =
|Aθ

γ T |
|A

β
α T |

The roughness degree for the membership of A ∈ q-ROFzS(M), with regard to FRs, is
given as:

η
(γ,θ)
(α,β)(

AT) = 1− δ
(γ,θ)
(α,β)(

AT)

It is clear that the concepts of FRs and ARs coincide when we have an EqR. Further,

TAθ
γ is equal to the set of elements of M, which have γ as the minimum definite MD and θ

as the highest definite NMD in A; TAβ
α is equal to the set of elements of M, having α as the

minimum possible MS and β as the highest possible NMD in A.
In other words, TAθ

γ is the union of Eq classes of M, which have γ as the minimum

definite MD and θ as the maximum definite NMD in the LAP of A, while TAβ
α is the union

of Eq classes of M having α as the minimum possible MD and β as the greatest possible
NMD in the UAP of A. Therefore, (γ, θ), (α, β) can be considered as thresholds of possible
and definite memberships of the element m in A.

Hence, δ
(γ,θ)
(α,β)(T

A) can be considered as the MD to how much A is accurate, with
regard to (γ, θ) and (α, β).

The next example illustrates the above concepts related to degrees.

Example 3. Let M = {m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11} and T ∈ P(M × M)
be such that the Eq classes are given by: E1 = {m1, m9}, E2 = {m2, m4, m6, m7}, E3 =
{m3, m5, m8, m10}, E4 = {m11}. Define a q-ROFzS A : M→ [0, 1], for q = 4, by;

A = { m1
(0.8,0.65) , m2

(0.6,0.9) , m3
(0.64,0.8) , m4

(0.44,0.94) , m5
(0.65,0.95) , m6

(0.54,0.85) , m7
(0.64,0.65) , m8

(0.7,0.86) , m9
(1,0) , m10

(0.3,0.89) , m11
(0.4,0.9)}.

Take (α, β) = (0.45, 0.85) and (γ, θ) = (0.75, 0.76) then (α, β)-level and (γ, θ)-level cuts
A0.76

0.75 and A0.85
0.45 are,

Aβ
α = A0.85

0.45 = {m : YA(m) ≥ 0.45, Yc
A(m) ≤ 0.85} = {m1, m3, m6, m7, m9}, Aθ

γ = A0.76
0.75 = {m1, m9, m11},
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respectively.

So that, TAθ
γ = {m ∈ M : mT ⊆ Aθ

γ} = {m1, m9, m11} and TAβ
α = {m ∈ M :

mT ∩ Aβ
α 6= ∅} = {m1, m2, m3, m4, m5, m6, m7, m8, m9, m10}

Thus, δ
(γ,θ)
(α,β)(T

A) = |TAθ
γ |

|TAβ
α |

= 3
10 .

Theorem 20. Let T be a RR on a finite universe M, A ∈ q-ROFzS(M), and α, β, θ, γ ∈ [0, 1] be
such that β ≥ θ, α ≤ γ, and γq + θq ≤ 1, αq + βq ≤ 1, for q ≥ 1. Then 0 ≤ δ

(γ,θ)
(α,β)(T

A) ≤ 1
with regard to the ARs.

Proof. Let A ∈ q-ROFzS(M) and the parameters α, β, θ, γ ∈ [0, 1] be such that α ≤ γ, β ≥ θ

and γq + θq ≤ 1, αq + βq ≤ 1, for q ≥ 1. Then Aθ
γ ⊆ Aβ

α by Theorem 19. Now by Theorem 1,

TAθ
γ ⊆ TAθ

γ ⊆ TAβ
α , so we have | TAθ

γ |≤| TAβ
α |. Thus, |T

Aθ
γ |

|TAβ
α |
≤ 1.

Hence, 0 ≤ δ
(γ,θ)
(α,β)(T

A) ≤ 1.

Corollary 1. Let T be a RR on a finite universe M, A ∈ q-ROFzS(M), and the parameters
α, β, θ, γ ∈ [0, 1] be such that β ≥ θ, α ≤ γ, and γq + θq ≤ 1, αq + βq ≤ 1, for q ≥ 1. Then
0 ≤ η

(γ,θ)
(α,β)(T

A) ≤ 1 with regard to the ARs.

Proof. The proof follows directly from Theorem 20 and Definition 14.

Theorem 21. Let T be a RR on a finite universe M, A, B ∈ q-ROFzS(M), and the parameters
α, β, θ, γ ∈ [0, 1] be such that β ≥ θ, α ≤ γ, and γq + θq ≤ 1, αq + βq ≤ 1, for q ≥ 1. If A ≤ B,
then we have the following results, with regard to the ARs:

(i) δ
(γ,θ)
(α,β)(T

A) ≤ δ
(γ,θ)
(α,β)(T

B), whenever TAβ
α = TBβ

α

(ii) δ
(γ,θ)
(α,β)(T

A) ≥ δ
(γ,θ)
(α,β)(T

B) whenever TAβ
α = TBβ

α .

Proof.

(i) Let the parameters α, β, θ, γ ∈ [0, 1] be such that β ≥ θ, α ≤ γ and γq + θq ≤ 1,
αq + βq ≤ 1, for q ≥ 1.
Let A, B ∈ q-ROFzS(M) be such that A ≤ B, which implies that Aθ

γ ⊆ Bθ
γ.

Then by Theorem 1, TAθ
γ ≤ TBθ

γ , this implies that |T
Aθ

γ |

|TAβ
α |
≤ |T

Bθ
γ |

|TBθ
γ |

, whenever TAβ
α = TBβ

α .

Thus, δ
(γ,θ)
(α,β)(T

A) ≤ δ
(γ,θ)
(α,β)(T

B).

(ii) The proof is similar to the proof of part (i).

Corollary 2. Let T be a RR on a finite universe M, A, B ∈ q-ROFzS(M), and the parameters
α, β, θ, γ ∈ [0, 1] be such that β ≥ θ, α ≤ γ, and γq + θq ≤ 1, αq + βq ≤ 1, for q ≥ 1. Then
A ≤ B, then we have the following results, with respect to the ARs:

(i) η
(γ,θ)
(α,β)(T

A) ≤ η
(γ,θ)
(α,β)(T

B), whenever TAβ
α = TBβ

α

(ii) η
(γ,θ)
(α,β)(T

A) ≥ η
(γ,θ)
(α,β)(T

B), whenever TAβ
α = TBβ

α .

Proof. The proof follows directly from Theorem 21.
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Theorem 22. Let T1 be a RR on a finite universe M, A ∈ q-ROFzS(M), and the parameters
α, β, θ, γ ∈ [0, 1] be such that β ≥ θ, α ≤ γ, and γq + θq ≤ 1, αq + βq ≤ 1, for q ≥ 1. If T2 is
another RR on M, such that T1 ⊆ T2, then δ

(γ,θ)
(α,β)(T

A
1 ) ≥ δ

(γ,θ)
(α,β)(T

B
2 ), with respect to the ARs.

Proof. Let A ∈ q-ROFzS(M) and T1, T2 be two RRs on M such that T1 ⊆ T2. By Theorem 1,

T1
A ≥ T2

A and T1
A ≤ T2

A. Using Theorem 19, we have T
Aθ

γ

2 ⊇ T
Aθ

γ

2 and TAβ
α

1 ⊆ TAβ
α

2 so that

|TAθ
γ

1 | ≥ |T
Aθ

γ

2 | and |TAβ
α

1 | ≤ |T
Aβ

α
2 |. Rearranging and dividing the two inequalities, we have

|T
Aθ

γ
1 |

|TAβ
α

1 |
≥ |T

Aθ
γ

2 |

|TAβ
α

2 |
.

Hence, δ
(γ,θ)
(α,β)(T

A
1 ) ≥ δ

(γ,θ)
(α,β)(T

A
2 ).

Corollary 3. Let T be a RR on a finite universe M, A ∈ q-ROFzS(M), and α, β, θ, γ ∈ [0, 1] be
such that β ≥ θ, α ≤ γ, and αq + βq ≤ 1, γq + θq ≤ 1. If T2 is a another RR on M such that
T1 ⊆ T2, then η

(γ,θ)
(α,β)(T

A
1 ) ≥ η

(γ,θ)
(α,β)(T

A
2 ) with regard to the ARs.

Proof. The proof follows directly from the proof of Theorem 22.

7. Application of Proposed Method in DM

The Pawlak RS theory is a qualitative model that discusses three regions for approx-
imation of a subset of a finite universe based on a CBR on the universe. There arises a
question about the rigidness of Pawlak RS approximations; that is, is the classification
of elements fully correct or certain? FzS theoretical approaches to RS theory can help to
address this matter. The approach based on the FzS theory is one of the most important
and applicable generalizations of the quantitative RS theory. The LAPs and UAPs of a
probabilistic RS are defined by a pair of thresholds (α, β) with α > β, and also define three
regions for approximating a subset of a universe of objects with these two parameters [31].
The decision-theoretic RS model (DTRS) was given in the early 1990s, based on the estab-
lished Bayesian decision procedure by Yao et al. [32], Yao and Wong [33], as one of the
probabilistic RS models. To calculate probabilistic parameters for rough regions, the DTRS
model used ideas from the Bayesian decision theory. Based on the concepts of expected
loss (conditional risk), the model has the ability to depend solely on concepts of cost for
classification of an object into a region. Thus, a systematic way is given for calculation of
the parameters in a probabilistic RR model. In [34], Sun et al. proposed an approach for
RRs over dual universes using a Bayesian DM technique.

In DMPs, different evaluation results are produced by different experts. Yager [16]
introduced the q-ROFzS and described its operations. A number of researchers have
worked on the q-ROFzS theory, and applications have been discussed in different aspects,
so far. In the present paper, we presented another way to accommodate with DMPs based
on rough q-ROFzS by CBRs and extended the methods proposed by Bilal and Shabir [35],
Kanwal and Shabir [36], Hussain et al. [2], and Sun et al. [34]. This proposed method uses
the data input by the DMP only and does not ask for extra information by decision-makers
or other ways. Thus, this method avoids the effect of subjective data on the choice results.
Hence, the outputs can be objective and can avoid the paradox results for the identical
decision problem because of the effect of the subjective factors by the various experts.

Since the rough LAP and UAP are the pair of sets very close to the set, approximated
in the universe, we can obtain the pair of values TA(mi) and TA

(mi), with regard to the
ARs, which are close to the decision alternative mi ∈ M in the universe M by the q-ROFzSs,
LAPs and UAPs of the q-ROFzS A. The choice-value λi for the alternative mi in universe
M, with regard to the ARs, is defined as:

λi = S(TA(mi)⊕ TA
(mi))
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where S is the score function as given in Definition 7. Thus, the element mi ∈ M is
considered the best decision if mi has the greatest choice-value λi, and the object mi ∈ M is
considered the worst decision if mi has the least choice-value λi for the DMP. If there exists
more that one element mi ∈ M with the same greatest (least) choice-values λi, then we can
take any one of them as the optimum decision for the DMP.

Here, two algorithms for the proposed method are presented: one can use the ring
product operation ⊗ to perform Algorithms 1 and 2.

Algorithm 1 Selection of Best and Worst alternative based on ARs

Step i Using Definition 8, finds the lower q-ROFzS approximation TA and upper

q-ROFzS approximation TA of a q-ROFzS A with respect to the ARs.
Step ii By sum operation ⊕, calculate the choice set; T = TA ⊕ TA

Step iii Compute the choice value using score function given in Definition 7,

λi = S(T(mi))

Step iv The best decision is mt ∈ M if λt = maxiλi, i = 1, 2, 3, . . . | M |.
Step v Alternative mt ∈ M will be the worst decision if λt = miniλi, i = 1, 2, 3, . . . | M |.
Step vi If there is more than one value for t, then take any mt as the best/worst alternative.

Algorithm 2 Selection of Best and Worst alternative based on FRs

Step i Using Definition 9 find the lower q-ROFzS approximation AT and upper q-ROFzS
approximation AT of a q-ROFzS A with respect to the FRs.

Step ii By the sum operation ⊕, calculate the choice set; T
′
= TA ⊕ TA

Step iii Compute the choice value using the score function given in Definition 7,

λi = S(T
′
(mi))

Step iv The best decision is mt ∈ M if λt = maxiλi, i = 1, 2, 3, ... | M |.
Step v Alternative mt ∈ M will be the worst decision if λt = miniλi, i = 1, 2, 3, ... | M |.
Step vi If there is more than one value for t, then take any mt as the best/worst alternative.

7.1. An Application of the DM Approach

Here, we study emergency DM under the framework of rough q-ROFzS over dual
universes. Plans for sound emergency preparedness can guarantee a quick and an efficient
emergency response and can keep loss to a minimum. Existing research focuses on qual-
itative evaluation criteria, including economy, effectiveness, adequacy of protection, etc.
The literature presents methodologies on how to determine the corresponding significance
of each criterion and indicator and, thus, the weight of each expert opinion, the method
to aggregate group opinions and judgments, and other related issues. Meanwhile, the
outputs of a quantitative evaluation are provided using the method to choose a plan for
emergency preparedness. Thus, this work provides a basis for decision-makers to choose
the best emergency plan in practice.

7.2. Problem Statement

The criteria and evaluation indicators for an emergency DM are the fundamental
characteristics of a plan for an emergency situation. Therefore, we do not depend upon
scoring of expert or pairwise comparisons to evaluate the indicators. Instead, to evaluate
the indicators, for instance, specificity, quick response to a situation, completeness, and
other main characteristics of the plan are considered to be a finite collection or universe,
denoted by N. That is, the universe N will stand for characteristics of the plan for an
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emergency situation, i.e., N = {soundness of personnel and resources allocation (c1),
good intersectoral collaboration (c2), . . . , and reasonable cost (cl)}. Generally speaking,
N is finite as the indicators describing the basic features of the plan are finite. Mean-
while, we collect all of the plans for an emergency situation into a set, denoted by M, i.e.,
M = {p1, p2, p3, . . . , pk}, where each pi stands for the ith emergency plan. A subset T of
M× N is the relation between the plan set M and the set of characteristics N. That is, for
any plan of emergency pi ∈ M, the characteristic is that the AR piT. Then, the details of
emergency DMP are as follows:

First, suppose that each plan of emergency (denoted by universe M = {pi : i =
1, 2, . . . , k}) will be linked with several characteristics.

Secondly, the choice of the decision-makers are given with the most characteristics
(denote because the q-ROFzS A of universe N = {cj : j = 1, 2, . . . , l}), which are related
to an optimal plan for emergency situations, depending on online information and real-
time scenarios.

Finally, decision-makers will choose one amongst the plans, pi ∈ M(i = 1, 2 . . . , k),
with minimum risk of losing since the criterion for the optimal plan is to implement
the plan.

Example 4. Let M = {p1, p2, p3, . . . , p8} be the set of eight plans for an emergency preparation
of a reasonably unconventional emergency situation. Let N denote characteristics or indicators of
evaluation of a plan for emergency preparation for this situation. Suppose there exists subsequent
fundamental characteristics: identification of risk comprehensiveness (c1), warning and preven-
tion (c2), formation specifics (c3), completeness of post-event disposal programs (c4), scientific
rescue program (c5), good traceable emergency resources (c6), good pertinence (c7), efficiency of
elements of a plan (c8), competency of team members (c9), clarity of the response level (c10), quick
emergency handling (c11), effectiveness of guaranteed measures (c12), good rescue steps (c13),
clarity of responsibility among agencies (c14), and median cost of emergency material (c15). That
is, N = {c1, c2, . . . , c15}. The main characteristics of each plan are described in relation T as:



c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

p1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1
p2 0 1 0 0 1 0 1 0 0 1 1 0 0 0 1
p3 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0
p4 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0
p5 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0
p6 0 1 0 0 1 1 0 0 1 0 1 0 0 0 1
p7 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1
p8 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0


This matrix objectively describes the characteristics of the given eight emergency preparedness

plans for a specific form of emergency events. Just as within the above analysis, there is no strict
superiority or inferiority for each emergency preparedness plan and the only decision standard
is whether or not it is appropriate for the given unconventional emergency event. Thus, for a
given unconventional emergency event, there are different loss functions or risks when selecting
an emergency preparedness plan. The team of experts give their preferences of characteristics for a
selected plan within the kind of a q-ROFzS, for q = 3;

A = { c1
(0.9,0.45) , c2

(0.8,0.45) , c3
(0.4,0.7) , c4

(0.62,0.78) , c5
(0.74,0.32) , c6

(0.7,0.4) , c7
(0.65,0.46) , c8

(0.9,0.1) , c9
(0.81,0.65) ,

c10
(0.85,0.31) , c11

(0.84,0.3) , c12
(0.94,0.23) , c13

(0.74,0.31) , c14
(0.74,0.13) , c15

(0.12,0.83)}.

Since c15 is cost characteristic, we will take its complement; thus, the new q-ROFzS will be

A = { c1
(0.9,0.45) , c2

(0.8,0.45) , c3
(0.4,0.7) , c4

(0.62,0.78) , c5
(0.74,0.32) , c6

(0.7,0.4) , c7
(0.65,0.46) , c8

(0.9,0.1) , c9
(0.81,0.65) ,

c10
(0.85,0.31) , c11

(0.84,0.3) , c12
(0.94,0.23) , c13

(0.74,0.31) , c14
(0.74,0.13) , c15

(0.83,0.12)}.
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Here, we used the sum operation ⊕ to calculate T, and λi is calculated using Definition 7. All
of the calculations were conducted using Python software.

Table 3 shows that λ4 = 0.7696 is the greatest of all the values and the score value λ4 is the
score of p4. This implies the plan p4 for one reasonable emergency event.

Table 3. LAPs and UAPs of q-ROFzS A with respect to ARs.

T A
(pi) T A(pi) T(pi) λi = S(T(pi))

p1 (0.94, 0.1) (0.4, 0.78) (0.8, 0.08) 0.7587
p2 (0.85, 0.12) (0.65, 0.46) (0.7, 0.06) 0.6677
p3 (0.9, 0.1) (0.74, 0.65) (0.8, 0.07) 0.7344
p4 (0.94, 0.1) (0.74, 0.45) (0.81, 0.05) 0.7696
p5 (0.9, 0.13) (0.7, 0.65) (0.76, 0.09) 0.7209
p6 (0.84, 0.12) (0.7, 0.65) (0.7, 0.08) 0.6735
p7 (0.94, 0.12) (0.62, 0.78) (0.8, 0.09) 0.7424
p8 (0.9, 0.1) (0.74, 0.45) (0.8, 0.05) 0.7345

8. Conclusions

In this work, the notion of LAPs and UAPs of the q-ROFzSs is presented using CBRs.
We presented some basic terms, results, and related examples. Meanwhile, we defined
two varieties of q-ROFzT induced by RRs. Further, we proposed a brand new approach to
the accuracy measure of a q-ROFzS using RRs. The objective of this work was to enhance
the proposed model, to tackle DMPs, where the strong points of view were in favor
(and against) some projects, objects, or plans. The proposed model is incredibly useful
where decision-makers have contradictory points of view about certain plans or proposals.
Applying perspective—the effectiveness of the presented method was checked by applying
it to a real-life problem, supporting q-ROFzS, by analyzing the benefits and downside
of the prevailing literature. The choice steps and, therefore, the algorithm of the choice
method, were also presented. This method provides an objective-based decision result with
the information owned by the decision problem only.

With this method, the decision-makers are liberated when assigning the membership
and non-membership degrees by adjusting the worth of q. Hence, the proposed approach
is stronger than existing methods. By the motivation of concrete concepts presented in this
work, one can extend this work by using soft BRs; an investigation is more important for
the theoretical parts of those generalized terms and needs more consideration.
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