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Abstract: Phase retrieval is a classical inverse problem with respect to recovering a signal from
a system of phaseless constraints. Many recently proposed methods for phase retrieval such as
PhaseMax and gradient-descent algorithms enjoy benign theoretical guarantees on the condition that
an elaborate estimate of true solution is provided. Current initialization methods do not perform
well when number of measurements are low, which deteriorates the success rate of current phase
retrieval methods. We propose a new initialization method that can obtain an estimate of the original
signal with uniformly higher accuracy which combines the advantages of the null vector method
and maximal correlation method. The constructed spectral matrix for the proposed initialization
method has a simple and symmetrical form. A lower error bound is proved theoretically as well as
verified numerically.

Keywords: phase retrieval; spectral method; non-convex reconstruction

1. Introduction

Phase retrieval (PR) has many applications in science and engineering, which include
X-ray crystallography [1], molecular imaging [2], biological imaging [3], and astronomy [4].
Mathematically, phase retrieval is a problem about finding a signal x ∈ Rn or Cn satisfying
the following phaseless constraints:

bi = |〈ai, x〉|+ εi, i = 1, · · · , m. (1)

where bi ∈ R is the observed measurement, ai ∈ Rn or Cn is the measuring vector, and
εi denotes noise. In optics and quantum physics, ai is related to the Fourier transform or
the Fractional Fourier transform [5]. To remove the theoretical barrier, recent works also
focus on the generic measurement vectors, namely ai ∈ R independently sampled from
N (0, In×n).

Current methods for solving phase retrieval can be generally divided into two groups:
convex and non-convex approaches. Convex methods, e.g., PhaseLift [6] and PhaseCut [7],
utilize a semidefinite relaxation to transfer the original problem into a convex one. Never-
theless, the heavy computational cost of these methods hinders its application to practical
scenarios. On the other hand, non-convex methods including the Gerchberg–Saxton
(GS) [8,9], the (truncated) Wirtinger flow (WF/TWF) [10,11], and the (truncated) amplitude
flow (AF/TAF) have a significant advantage in lower computational cost and sampling
complexity (i.e., the minimal required m/n to achieve successful recovery) [12]. More
recently, two variants of AF using the reweighting [13] and the smoothing technique [14,15]
have been proposed to further lower sampling complexity. However, for the mentioned
nonconvex methods, the rate of successful reconstruction relies upon elaborate initial-
ization. Moreover, an initialization point nearby the true solution is also a necessity for
convergency property in theoretical analysis.
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1.1. Prior Art

Current initialization methods for PR problem include spectral method [16], the
orthogonality promoting method [12], null vector method [17], and the (weighted) maximal
correlation method [13]. These methods first construct a spectral matrix in the form of

M =
m

∑
i=1

wiaiaH
i ,

where the weight wi is a positive real number. The estimate is then given as the (scaled)
eigenvector corresponding to the largest or smallest eigenvalue of M. The spectral method
and the (weighted) maximal correlation method fall into one category as they seek the lead-
ing vector of M as the estimate. We categorize these methods as correlation-focused methods,
since their spectral matrices endow more weight to the measuring vectors more correlated
to the original signal. Conversely, the null vector and orthogonality promoting method can
be regarded as orthogonality-focused methods. For the vector ai with less correlation to the
original signal, the corresponding weight wi is larger in the spectral matrix.

These two types of initialization methods each have their own merits and demerits.
The correlation-focused methods perform better when the oversalting rate m/n is low.
While the situation is contrary as m/n is large enough, the orthogonality-focused method
provides a more accurate estimate.

1.2. This Work

In this paper, we propose a method combining the advantages of the above two types
of initialization methods. Our intuition is to construct a composite spectral matrix, which
is a weighted sum of spectral matrices of correlation-focused methods and orthogonality-
focused methods. Hence, the new method is termed as the composite initialization method.

1.3. Article Organization and Notations

This paper adopts the following notations. The bold-font lower-case letter denotes
a column vector, e.g., b, z. Bold capital letters such as A denote matrices. (·)T and (·)H

stand for the transpose and the conjugate transpose, respectively. Calligraphic letters such
as I denote a index set, and |I| denotes the number of elements of I . {ai}m

i=1 is a simple
notation of a set of elements in the form of {a1, . . . , am}. ‖x‖2 denotes the `2-norm of x.
‖x‖means ‖x‖2 for the sake of simplicity, if not specially specified.

The reminder of this article is organized as follows. The algorithm is given in Section 2.
Section 3 provides the theoretical error analysis about the proposed initialization method
with some relevant technique error bounds being placed in the Appendix. Section 4
illustrates the numerical performance and makes a comparison of the proposed method
with other initialization methods.

2. The Formulation of the Composite Initialization Method

This section provides the formulation of the proposed method. Without loss of
generality, we assume that b1 ≤ b2 ≤ · · · ≤ bm. Measuring vectors {ai}m

i=1 are assumed to
be independently sampled centered Gaussian variables with identity covariance for the
convenience of theoretical analysis. Let x0 be the true solution of (1). For concreteness,
we focus on the real-valued Gaussian model. We further assume that ‖x0‖ = 1 since this
investigation focuses on the estimation of the original signal. In practice, ‖x0‖ can be
estimated by ‖x0‖2 ≈ 1

m ∑m
1 b2

i . To begin with, we describe the null vector and the maximal
correlation method which form the basis of our algorithm.

The null vector method first picks out a subset of vectors {ai}i∈I1
, where I1 ⊂

{1, 2, · · · , m}. Then, the null vector method approximates the original signal x0 by a
vector that is most orthogonal to this subset. Since {bi}m

i=1 is in the ascending order, I1 can
be directly written as {1, 2, · · · , T1}, where T1 is the cardinality of I1. The intuition of the
null vector method is as simple as follows. Since ∑i∈I1

xHaiaH
i x takes a very small value
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∑i∈I1
b2

i when x = x0, one can construct the following minimizing problem to estimate x0
to coincide this property.

x̂ = arg min
‖z‖=1

zH

(
1
T1

T1

∑
i=1

aiaH
i

)
z. (2)

Solving (2) is equivalent to finding the smallest eigenvalue and the corresponding
eigenvector of M1 := 1

T ∑T1
i=1 aiaH

i . The so-called orthogonality promoting method pro-
posed by Wang is an approximately equivalent method that transforms the minimization
problem (2) into a maximization problem.

The maximal correlation method is based on the opposite intuition, which picks out a
subset of vectors {ai}i∈I2

corresponding to the largest T2 elements in {bi}m
i=1. As {bi}m

i=1
is in the ascending order, I2 can also be written directly as {m− T2 + 1, · · · , m}. The core
idea of maximal correlation method is searching for the vector that is most correlated with
{ai}i∈I2

. This is achieved by solving the following maximizing problem.

x̂ = arg max
‖z‖=1

1
T2

m

∑
i=m−T2+1

|〈ai, z〉|2 = arg max
‖z‖=1

zH

(
1
T2

m

∑
i=m−T2+1

aiaH
i

)
z. (3)

From (2) and (3), one can observe that these two methods only utilize a subset of
vectors that are either most correlated or most orthogonal to the original signal. To make
use of as much as possible information, we try to solve a composite problem combining (2)
and (3) together.

x̂ = arg min
‖z‖=1

{
zH

(
1
T1

T1

∑
i=1

aiaH
i

)
z− αzH

(
1
T2

m

∑
i=m−T2+1

aiaH
i

)
z

}
. (4)

We can observe that (4) has a symmetrical structure and can be interpreted as a
modified version of (2), which adds the objection of (3) as a penalization term. The solution
of (4) will be a more accurate estimate than that of (3) since it utilize the information
from (2).

Let H1 = ∑T1
i=1 b2

i /T1, H2 = ∑T2
i=m−T2+1 b2

i /T2. We set the parameter as α = H1/H2
in (4). The true signal x is roughly the solution of (2) and (3); thus, it is also the approximated
solution of (4). In next section, we will analyze the error of our proposed method.

The algorithm is presented in Algorithm 1. 2αI is added to ensure the positivity of M.
The x′k+1 in Step 4 is obtained by solving the following system of linear equations:

Mx = xk. (5)

which can be solved by the conjugate descent method since M is a positive and Hermitian
by using xk−1 as initializer.

Since x0 and e−iφx0 are indistinguishable for the phase retrieval, we evaluate the
estimate using the following metric.

dist (x̃, x0) = min
φ∈[0,2π)

∥∥e−iφ x̃− x0
∥∥. (6)

The other initialization methods, e.g., the spectral method, the truncated spectral
method, and the (weighted) maximal correlation method, are all based on the power
iteration. The spectral method is for finding the leading eigenvector of matrix ∑m

i=1 b2
i aiaT

i ,
which is also realized by the power approach. Chen proposed the truncated spectral method
to improve the performance of the spectral method, which constructed another matrix via
the threshold parameter τ [17]. The corresponding matrix for iteration is ∑m

i=1 1τ(bi)b2
i aiaH

i ,
where 1τ is defined by the following.
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1τ(bi) =

{
1, if bi ≤ τ‖b‖2/

√
m;

0, else.
(7)

The numerical performance of these initialization methods will be compared later.

Algorithm 1: The composite initialization method.

Input: Increasingly arranged {bi}m
i=1 and corresponding {ai}m

i=1, truncated value
T1, T2, threshold value ε, a random initialization x1.

1: M1 = 1
T1

∑T1
i=1 aiaH

i , M2 = 1
T2

∑m
i=T2+1 aiaH

i , α = ( 1
T1

∑T1
i=1 b2

i )/(
1
T2

∑m
i=m−T2+1 b2

i )
2: M = M1 − αM2 + 2αI
3: for k = 1, 2, · · · do
4: x′k+1 ← M−1xk
5: xk+1 ← x′k/

∥∥x′k+1

∥∥
6: if ‖xk+1 − xk‖ ≤ ε, break
7: end for

Output: xOPMP = xk+1/‖xk+1‖.

3. Theoretical Analysis

In this section, we will present the error estimate of the proposed method under
Gaussian assumptions in the real case.

Since the measuring vectors are assumed to be i.i.d. Gaussians, we can assume that
x0 = e1 without loss of generality, where e1 = [1, 0, · · · , 0]T. Otherwise if x0 6= e1, there
exists an orthogonal matrix, P, satisfying Px0 = e1. Denote A = [a1, a2, · · · , am], then
ATx = ATPTPx. Let z = Px, then the original problem (1) is identical to (PA)Tz = b
because PA is composed by Gaussian vectors due to the invariance of Gaussian under the
orthogonal transform.

The spectral matrix for orthogonality promoting method is the following.

M1 =
1
T1

T1

∑
i=1

aiaT
i . (8)

By denoting di = (ai2, ai3, · · · , ain)
T, then M can be written as follows:

M1 =
1
T1

T1

∑
i=1

[
a2

i1 ai1dT
i

ai1di didT
i

]
=

[
H1 ET

1

E1 G1

]
(9)

where the following is the case.

H1 =
1
T1

T1

∑
i=1

a2
i1, E1 =

1
T1

T1

∑
i=1

ai1di, G1 =
1
T1

T1

∑
i=1

didT
i . (10)

The matrix for maximal correlation method is the following:

M2 =
1
T2

m

∑
i=m−T2+1

[
a2

i1 ai1dT
i

ai1di didT
i

]
=

[
H2 ET

2

E2 G2

]
(11)

where the following is the case.

H2 =
1
T2

m

∑
i=m−T2+1

a2
i1, E2 =

1
T2

m

∑
i=m−T2+1

ai1di, G2 =
1
T2

m

∑
i=m−T2+1

didT
i . (12)
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The constructed matrix for estimation is the following.

M = M1 − αM2, α = H1/H2. (13)

To proceed, we notice the following basic facts:

1. The orthogonality promoting method is for finding the eigenvector of minimum
eigenvalue of M.

M =

[
0 ET

1 − αET
2

E1 − αE2 G1 − αG2

]
:=

[
0 ET

E G

]
. (14)

2. In the ideal case that E is a zero matrix, M degenerates to the following.

M̃ =

[
0 0
0 G

]
.

If we can also ensure that G = G1 − αG2 is positively definite, the eigenvector
corresponding to the smallest eigenvalue is exactly the true signal.

These two facts inspire us to estimate the error by computing the eigenvector of matrix
M̃ after adding perturbation E = E1 − αE2. Thus, the outline of theoretical analysis is
concluded as follows:

1. Estimate ∆λ = λ− λ̃, where λ and λ̃ are the minimum eigenvalue of M and M̃,
respectively;

2. With ∆λ, we can then compute the perturbation of corresponding eigenvector, ‖v− ṽ‖,
which is the exact error of our algorithm.

Specifically, we have the following roadmap of theoretical analysis. Section 3.1
presents bound results for each component of the spectral matrix M. Using the results in
Section 3.1, the bounds of ∆λ can then be easily obtained in Section 3.2. The relationship
between perturbation of eigenvalues and eigenvectors is presented in Section 3.3, which
finally induces the error estimation of our algorithm formally in Section 3.4.

3.1. Analysis of Each Component of the Spectral Matrix

In this part, we will provide the bounds for the variables involved of matrix M, which
are basic ingredients for estimating perturbation of eigenvalue and eigenvector, namely
∆λ and ‖v− ṽ‖. In particular, the upper bound for H1, lower bound for H2, and the norm
of E will be analysed.

3.1.1. Upper Bound of α = H1/H2

Finding the upper bound of α actually consists in finding the upper bound of H1 and
the lower bound of H2. First, we have the upper bound of H1 under statistical meaning in
the follow lemma.

Lemma 1. We have the following:

Pr(H1 ≤
p2

1
4ρ2

0
) ≥ 1− exp

(
−

mp2
1

50

)
(15)

where p1 = T1/m.

The proof of Lemma 1 is placed in the Appendixes A and B. As for the lower bound
of H2, we borrow a result from Wang [13], Lemma 3.
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Lemma 2. The following holds with probability exceeding 1− e−c0m:

H2 ≥ 0.99(1 + log(m/T2)), (16)

provided that T2 ≥ c1n, m ≥ c2T2 for some absolute constants c0, c1, and c2.

Then, we obtained the required upper bound of H1/H2.

Lemma 3. Under the set-up of Lemmas 1 and 2, we have the following:

α = H1/H2 ≤
p2

1
3.96ρ2

0(1− log p2)
(17)

with probability of at least

1− exp

(
−

mp2
1

50

)
− exp(−c0m), (18)

where ρ0 = 1/
√

2π, p1, and p2 denote T1/m and T2/m, respectively.

3.1.2. Lower Bound of the Smallest Eigenvalue of G

Since G is a linear combination of G1 and G2, the lower bound of the smallest eigen-
value of G can be estimated from the bounds of eigenvalues of G1 and G2.

According to (10) and (12), we rewrite G1 and G2 as the following:

G1 =
1
T1

DT
1 D1, G2 =

1
T2

DT
2 D2, (19)

where D1 = [d1, . . . , dT1 ]
T and D2 = [dm−T2+1, . . . , dm]T. D1 and D2 are termed Gaussian

matrices here since their entries are all sampled from the Gaussian distribution. We notice
that DT

1 D1 and DT
2 D2 are Wishart matrices, which can be written as the product of a

Gaussian matrix and its adjoint [18]. Moreover, the eigenvalue perturbation of Wishart
matrix obeys the following classical result.

Theorem 1 ([19], Corollary 5.35). Let A be an N1 × N2 matrix for which its entries are inde-
pendent standard normal random variables. Then, for every t ≥ 0, with a probability of at least
1− 2 exp

(
−t2/2

)
, the following events hold simultaneously:√

N1 −
√

N2 − t ≤ smin(A), (20)

smax(A) ≤
√

N1 +
√

N2 + t, (21)

where smin(A) and smax(A) stand for the smallest and the largest singular value of A, respectively.

By pplying Theorem 1 to D1 ∈ RT1×(n−1) with the following replacements:

1. D1 → A,
2. T1 → N1, n− 1→ N2,
3.

√
n− 1/10→ t,

one can see that the following is the case.

Pr
(

smin(D1) ≥
√

T1 − 1.1
√

n− 1
)
≥ 1− 2 exp

(
−n− 1

200

)
. (22)
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In theoretical analysis, we assume that T1 is large enough such that
√

T1− 1.1
√

n− 1 ≥ 0.
However, it should be observed that setting T1 ≥ n suffices to output reasonable estimates
as shown in the numerical test. Based on this assumption, one then has the following.

smin(G1) = smin(
1
T1

DT
1 D1) =

1
T1

s2
min(D1)

≥ 1
T1

(
√

T1 − 1.1
√

n− 1)2 = (1− 1.1
√

s1)
2 (23)

The above holds with probability exceeding 1− 2 exp(− n−1
200 ), where s1 = (n− 1)/T1.

Similarly, we have the following:

Pr
(

smax(G2) ≤ (1 + 1.1
√

s2)
2
)
≥ 1− 2 exp

(
−n− 1

200

)
(24)

where s2 = (n− 1)/T2.
Hence, we obtain the lower bound for the smallest eigenvalue of G.

smin(G) = smin(G1 − αG2) ≥ smin(G1)− αsmax(G2)

≥ (1− 1.1
√

s1)
2 − α(1 + 1.1

√
s2)

2.
(25)

A necessary condition for the validness of our method is smin(G) ≥ 0, which can be
satisfied by choosing proper s1 and s2.

3.1.3. The Upper Bound of ‖E‖2

Now, let us turn to the estimation of the norm of E. We denote each item of E as ξk.

ξk =
1
T1

T1

∑
i=1

ai1aik −
α

T2

m

∑
i=m−T2+1

ai1aik. (26)

Since aik obeys normal distribution, H1 = 1
T1

∑T1
i=1 a2

i1 and H2 = 1
T2

∑m
i=m−T2+1 a2

i1, we
can derive the following.

ξk ∼ N (0,
H1

T1
+

α2H2

T2
).

Let ψk = ξk
/√H1

T1
+ α2 H2

T2
, then ψ2

k obeys chi-squared distribution, which is a sub-

exponential distribution. With ψk, we can reform ‖E‖2
2 as the following.

‖E‖2 =

(
H1(n− 1)

T1
+

α2H2(n− 1)
T2

)
1

n− 1

n

∑
k=2

ξ2
k = (H1s1 + H1αs2)

n

∑
k=2

ξ2
k

n− 1
. (27)

The expectation of ‖E‖2
2 is obviously H1(s1 + s2α).

The variance of ‖E‖2
2 is also needed in order obtain the upper bound of ‖E‖2

2. To this
end, we need to recall the Bernstein-type inequality for sub-exponential random variable.

Theorem 2. Let X1, · · · , XN be i.i.d. centered sub-exponential random variables with sub-
exponential norm denoted as K. Then, for every t ≥ 0, we have the following:

Pr

(
1
N

∣∣∣∣∣ N

∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

[
−cN min

(
t2

K2 ,
t
K

)]
(28)
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where c > 0 is an absolute constant. K is the so-called sub-exponential norm defined as the following.

K = sup
p≥1

1
p
(E|X1|p)1/p, (29)

Define a centered sub-exponential random variable Zi = ξi − 1. The sub-exponential
norm of Zi is computed in Appendix C. Appendix C tells that the sub-exponential norm
K = 1 in our case. By replacing n− 1→ N, 0.1→ t and K → 1 in Theorem 2, one can then
conclude the following result.

Theorem 3. Since K ≤ 2, let t = 0.1, then we have the following:

Pr

(
1

n− 1

n

∑
i=2

ξ2
i − 1 ≥ 0.1

)
≤ exp

(
−c

n− 1
100

)
(30)

where c > 0 is an absolute constant.

Gathering these results, we have the following theorem.

Theorem 4.
‖E‖2 ≤ 1.1H1(s1 + s2α) (31)

The above holds with the probability stated below:

1− exp
(
−c

n− 1
100

)
, (32)

with some absolute constant c > 0.

3.2. Estimate of ∆λ

To make an estimate for ∆λ, we first recall a classical result from matrix perturbation
theory in [20].

Theorem 5. Let the following be the case:

M =

[
H ET

E G

]
, M̃ =

[
H 0
0 G

]
(33)

Let the above be Hermitian and set η = min|µ− ν| over all µ ∈ σ(H) and ν ∈ σ(G), where
σ(H) stands for the set of eigenvalue of H. Then, the following is the case:

max
1≤j≤n

∣∣∣λ↑j − λ̃↑j

∣∣∣ ≤ 2‖E‖2
2

η +
√

η2 + 4‖E‖2
2

. (34)

where λ↑j and λ̃↑j are the j-th smallest one among the eigenvalues of M and M̃, respectively.

To ensure the effectiveness of our algorithm, H1 should still be the minimum eigen-
value after adding perturbation in our case. Then, η is simply smin(G) that is bounded
by (25). Hence, ∆λ can be estimated by the following.

|∆λ| ≤ max
1≤j≤n

∣∣∣λ↑j − λ̃↑j

∣∣∣ ≤ 2‖E‖2
2

η +
√

η2 + 4‖E‖2
2

≤ 2‖E‖2
2

2η

≤ 1.1H1(s1 + αs2)

(1− 1.1
√

s1)2 − α(1− 1.1
√

s2)2 .

(35)
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3.3. Computing ‖v− ṽ‖
With the upper bound of ∆λ, we can now estimate the perturbation of the eigenvector.

The minimum eigenvector of M is computed by solving (M − (λ + ∆λ)In)v = 0:

(M − (λ + ∆λ)Im)v =

[
−∆λ ET

E G− (λ + ∆λ)In−1

]
v = 0, (36)

where In denotes the n× n identity matrix here. Without loss of generality, the solution
of (36) can be written in the form of v = (1, δv)T. Then, we have the following.

δv = −(G− (λ + ∆λ)In−1)
−1E. (37)

Therefore, ‖v− ṽ‖ can be bounded by the following:

‖v− ṽ‖2 ≤ ‖δv‖2

≤
∥∥∥(G− (λ + ∆λ)In−1)

−1
∥∥∥2
‖E‖2 (38)

≤‖E‖2/
(

η − ‖E‖2/η
)

, (39)

where (38) is derived based on (37). The form of (39) would be a bit complicated, as stated
as follows.

‖E‖2

η − ‖E‖2/η
≤

1.1H1(s1 + s2α)
(
(1− 1.1

√
s1)

2 − α(1 + 1.1
√

s2)
2
)

(
(1− 1.1

√
s1)

2 − α(1 + 1.1
√

s2)
2
)2
− 1.1H1(s1 + s2α)

. (40)

3.4. Main Result

Notice that ‖v− ṽ‖ is exactly ‖x0 − x̃‖. Then, it is straightforward to induce our main
theorem by combining the above results.

Theorem 6 (Main result). Consider the problem of estimating arbitrary x ∈ Rn from m phaseless
measurements (1) under the Gaussian assumption. Suppose the output of Algorithm 1 is x̃0. If
m ≥ c1T1, m ≥ c2T2, T1 > n, and m ≥ T1 + T2, then we have the following error estimate for the
composite initialization method:

‖x0 − x̃‖2 ≤ RQ
R−Q

, (41)

with a probability of at least the following:

P = 1− exp

−mp2
1

144
e
−p2

1
2ρ2

0

− e−
mp2

1
50 − 2e−

n−1
200 − e−c n−1

100 − e−c0m, (42)

where the following is the case,

Q = 1.1p2
1

(
4ρ2

0(1− log p2)s1 + 0.99p2
1s2

)
(1− log p2), (43)

R =
[
4ρ2

0(1− log p2)(1− 1.1
√

s1)
2 − 0.99p2

1(1 + 1.1
√

s2)
2
]2

, (44)

pi = Ti/m, si = (n− 1)/Ti for i = 1, 2, and some absolute constants c0, c1, c2, ρ0 ≥ 0.

Probability P in (42) can be negative when m and n are too small, which shows the
limitation of our analysis since m and n need to be large enough so as to render the
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probability reasonable. In the extreme case that p1, p2, s1 and s2 are close to 0, our error
estimation expression (41) can be approximated by a simpler form:

‖x0 − x̃‖2 /
1.1p2

1s1

10ρ2
0

(45)

which is verified by numerical experiments later.

4. Numerical Results

In this section, we test the accuracy of the proposed method and compare it with other
methods, including the spectral method, the truncated spectral method, the reweighted
maximal correlation method, the null vector method, and the orthogonality method. The
sampling vectors ai and the original signal x0 ∈ R100 are independently randomly gener-
ated. To eliminate the influence of error brought by estimation of ‖x0‖, the original signal
x0 is normalized. We chose T1 = n, T2 = 0.3n for numerical experiments for the proposed
method. All the following simulation results are averaged over 80 independent Monte
Carlo realizations.

Figure 1 provides the RMSE calculated by (6) versus the oversampling rate m/n of
the mentioned initialization methods. Obviously, all methods exhibit better performance
as m/n increases. In particular, the proposed initialization method outweighs the other
methods. When m/n ≥ 10 roughly, the composite initialization method performs closely
as the null vector does, and the convergency behavior coincides with (45). When m/n ≤ 10,
the proposed method does not lose its accuracy as dramatically as the null vector method
does. The proposed algorithm provides the most accurate estimate when oversampling
rate is below the information limit, i.e., m/n ≈ 2.

Oversampling rate

R
M

S
E

null vector method

orthogonality promoting method

spectral method

t-spectral method

reweighted max correlation method

composite method

Figure 1. RMSE vs. oversampling rate of several initialization method. n = 100, T1 = n, T2 = 0.3n
for the composite initialization method, while for the other algorithms, the involved parameters are
selected according to related articles.
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Figure 2 illustrates the importance of initialization method on refining the success rate
of TAF algorithm [12]. In each simulation, each initialization generates an estimate as the
initializer for the TAF algorithm. A trial is considered to be successful if TAF algorithm
can return a result with RMSE less than 10−5. When m/n is large, all the presented
initialization methods ensure almost 100% success rate. However, when m/n approaches
0, the differences in success rates of various methods appear gradually. Therefore, the
composite initialization method can help TAF to achieve better success rate compared with
the other two methods.

Table 1 illustrates the CPU time needed for the TAF using our method as an initializer
compared with other two typical initialization methods. To distinguish the performance
more clearly, the length of signal is set as a large number n = 1000. The proposed method
and null vector method need to solve a linear system of equations at each inverse power
computation, which makes it more time-consuming than the power computation of the
maximal correlation method. However, the proposed method provides a more accurate
initializer, which can help TAF converges faster. Hence, the overall efficiency of our
algorithm is not far behind power-type methods as shown in Table 1.

1 1.5 2 2.5 3 3.5 4

m/n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l 
s
u
c
c
e
s
s
 r

a
te

composed initialization

maximum correlation

null vector

Figure 2. Empirical success rate of different initialization methods versus number of measurements
with n = 100, with m/n varying form 1 to 4 for TAF.

Table 1. CPU time (s) for TAF using the proposed initialization method compared with other two
typical initializer.

Method Initialization Stage TAF Stage Overall

Null vector 1.24 1.34 2.58
Maximal correlation 0.47 0.76 1.23m/n = 2

Proposed 0.72 0.70 1.42

Null vector 1.12 1.02 2.14
Maximal correlation 0.42 0.49 0.91m/n = 3

Proposed 0.73 0.47 1.2

Null vector 0.95 1.02 1.97
Maximal correlation 0.44 0.45 0.89m/n = 5

Proposed 0.67 0.46 1.13
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5. Conclusions

This paper proposes a new initialization method that combines the advantages of
two methods constructed from two totally contrary intuitions. Both theoretical analysis
and numerical experiments indicate the validness of our method and higher accuracy
compared with other methods. Future work will focus on extending our initialization
algorithms to the more generalized problem of PR, e.g., the quadratic sensing and the
matrix reconstruction problems [21].
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Appendix A. Upper Bound of H1

H1 is the average of the smallest T1 elements of the set
{

b2
i
}m

i=1. As b2
i has been sorted

in ascending order, we have the following.

H1 =
1
T1

T1

∑
i=1

a2
i1 =

1
T1

T1

∑
i=1

b2
i .

By the Gaussian assumption,
∣∣aT

i x0
∣∣2 = a2

i1, obeys the following chi-squared distribu-
tion with probability function:

ρ(z) = ρ0
e−z/2
√

z
, z ≥ 0, (A1)

where ρ0 = 1√
2π

is the normalization constant. The cumulative distribution function is the
following.

F(τ) :=
∫ τ

0
ρ0

e−z/2
√

z
dz. (A2)

Let p = T1
m and τ∗ = F−1(p). The estimation of H1 hinges on the value of τ∗. However,

ρ(z) is not explicitly integrable; hence we cannot derive an explicit expression of τ∗ about
p. To this end, we first calculate following bounds of τ∗ using some basic inequalities, as
the following two lemmas shows. The detailed proof is placed in Appendix B.

Lemma A1 (Upper bound of τ∗). Let τ∗ = F−1(p), then for p ∈ (0, 0.75], we have the following.

τ∗ <
4p2

9ρ2
0

. (A3)

Lemma A2 (Lower bound of τ∗). Let τ∗ = F−1(p), then for p ∈ (0, 1), we have the following.

τ∗ >
p2

4ρ2
0

. (A4)
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Then, we turn back to the estimation of H1. Notice that
{

b2
i
}T1

i=1 can be approximately
regarded as random variables sampled from a bounded chi-squared distribution. Therefore,
we first provide an upper bound of the largest element of

{
b2

i
}T1

i=1, namely, b2
T1

. We prove
the following result.

Theorem A1. Assume that F(τ∗) = p1= T1/m. We have the following.

Pr

(
b2

T1
≥

p2
1

2ρ2
0

)
≤ Pr

(
b2

T1
≥ 9

8
τ∗

)
≤ exp

(
−

mp2
1

144
exp

(
−p2

1
2ρ2

0

))
. (A5)

Proof. Let ψ := F(τ∗ + 1
8 τ∗)− F(τ∗), which satisfies the following:

ψ ≥ 1
8

τ∗F′(τ∗ +
1
8

τ∗), (A6)

as the probability function ρ(z) is monotonically decreasing. Since F′(τ) = ρ(τ) and (A3),
we have the following.

ψ2 ≥ τ2
∗

64
·

ρ2
0 exp (−9τ∗/8)

9τ∗/8
=

1
72

ρ2
0τ∗ exp

(
−9τ∗

8

)
≥

p2
1

288
exp

(
−9

8
τ∗

)
≥

p2
1

288
exp

(
−

p2
1

2ρ2
0

)
. (A7)

Define the following indicator random variables:{
ri
∣∣ri = 1[9τ∗/8,+∞)(τi), i = 1, . . . , m

}
, (A8)

where τi i.i.d. obeys the chi-squared distribution with the probability function (A1) and the
characteristic function of the following.

1[9τ∗/8,+∞)(τi) =

{
1, τi ≥ 9τ∗/8;
0, otherwise.

(A9)

The event
{

b2
T1
≥ 9τ∗/8

}
means that at least m− T1 + 1 measurements are larger than

9τ∗/8. Therefore, we have the following.

Pr
(

b2
T1
≥ 9τ∗/8

)
= Pr

(
m

∑
i=1

ri ≥ m− T1 + 1

)
= Pr

(
m

∑
i=1

ri > m− T1

)
. (A10)

The expectation of ri is then

Eri = 1− F(9τ∗/8).

ri is the bounded distribution and the upper bound of the sum of ri can be provided by the
well-known Hoeffding’s inequality.

Lemma A3 (Hoeffding’s inequality). Let X1, · · · , Xn be i.i.d. random variables bounded by the
interval [a, b]. Then, the following is the case.

Pr(X− EX ≥ t) ≤ exp
(
− 2nt2

(b− a)2

)
(A11)
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Using (A10), Hoeffding’s inequality yields the following:

Pr
(

b2
T1
≥ τ∗ +

1
8

τ∗

)
= Pr

(
m

∑
i=1

ri > m− T1

)
(A12)

= Pr

(
1
m

m

∑
i=1

ri −Eri > 1− T1/m−Eri

)

= Pr

(
1
m

m

∑
i=1

ri −Eri > 1− F(τ∗)− (1− F(9τ∗/8))

)
(A13)

≤ exp
(
− 2mψ2), (A14)

with replacements τ∗/8→ t and [a, b]→ [0, 1] in Lemma A3. Combining (A7) and (A14),
we can see that (A5) holds naturally, which completes the proof.

Let us consider the i.i.d. bounded random variables of the following.

Zi := b2
i 1[0,9τ∗/8](b

2
i ). (A15)

Since 1
T1

∑m
i=1 Zi is larger than H1, we can provide an upper bound of H1 by finding

the upper bound of 1
T1

∑m
i=1 Zi.

The expectation of Zi is the following:

E
(

b2
i 19τ∗/8(b2

i )
)
=
∫ 9τ∗/8

0
xρ(x)dx ≤

(
9
8

)3/2 ∫ τ∗

0
xρ(x)dx, (A16)

with the following.∫ τ∗

0
xρ(x)dx =

∫ τ∗

0
ρ0
√

x exp(−x/2)dx

≤
∫ τ∗

0
ρ0
√

xdx =
2
3

ρ0τ3/2
∗ ≤

48p3
1

243ρ2
0
≤

p3
1

5ρ2
0

.
(A17)

After computing the expectation of Zi, we can bound ∑m
i=1 Zi by Hoeffding’s inequality

for bounded random variables similarly.
Since 0 ≤ Zi ≤ 9τ∗/8, we can obtain the following result by replacing p3

1/(20ρ2
0)→ t

in Lemma A3.

Pr(
1
m

m

∑
i=1

Zi −EZi ≥
p3

1
20ρ2

0
) ≤ exp

(
− 1

50
mp2

1

)
. (A18)

Hence, we have the following.

Pr

(
1
T1

T

∑
i=1

Zi ≥
p2

1
4ρ2

0

)
≤ exp

(
−

mp2
1

50

)
. (A19)

Therefore, we obtain the upper bound of H1 under statistical meaning.

Pr(H1 ≤
p2

1
4ρ2

0
) ≥ 1− exp

(
−

mp2
1

50

)
. (A20)

Appendix B. The Bound Estimation of τ∗

Appendix B.1. The Upper Bound for τ∗

Construct the following function.

ρ̂(x) = ρ0
1−
√

x/2√
x

, (A21)
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Then, it can be proved that the following is the case.

e−x2/2 > 1− x/2, ∀x ∈ (0, 2]. (A22)

Therefore, we have the following.

ρ(x) > ρ̂(x), ∀x ∈ (0, 4]. (A23)

Define F̂(τ) =
∫ τ

0 ρ̂(x)dx. Then, it is obvious that the following is the case.

F(x) > F̂(x), ∀x ∈ (0, 4]. (A24)

Since F(τ) and F̂(τ) are both strictly monotone decreasing over (0, 4], their inverse
functions satisfy the following:

τ∗ = F−1(p) < F̂−1(p) := τ̂, ∀p ∈ (0, F̂(4)]. (A25)

where F̂(4) is about 0.79.
In the orthogonality promoting apporach using inverse power, |I|/m is always less

than 1/2 to achieve a tolerant performance. Therefore, in our concerned range (0 < p <
1/2), it is accessible to estimate τ∗ by function F̂−1.

Now, we compute F̂.

F̂(τ) =
∫ τ

0
ρ0

1−
√

x/2√
x

dx = ρ0
(
4
√

τ − τ
)
/2. (A26)

Then, we obtain τ̂ by solving F̂(τ) = p.

τ± =
(

2±
√

4− 2p/ρ0

)2
. (A27)

Picking out the unreasonable solution with excess (0, 4], we have the following.

τ̂ =
(

2−
√

4− 2p/ρ0

)2
. (A28)

Since 2p/ρ0 < 1 and ∀s ∈ [0, 1], 2−
√

4− s < s/3, we can determine the following
upper bound of τ̂.

τ̂ <

(
2p
3ρ0

)2
. (A29)

Appendix B.2. Lower Bound for τ∗

Similarly, consider the following function.

ρ̌(x) = ρ0
1√
x
≥ ρ(x). (A30)

Define F̌(τ) =
∫ τ

0 ρ̌(x)dx. Then, it is obvious that the following is the case.

F(τ) ≤ F̌(τ). (A31)

Therefore, we have the following.

τ̌ = F̌−1(p) =
(

p
2ρ0

)2
< F−1(p) = τ∗. (A32)
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Appendix C. The Bound of K

The sub-exponential norm of ξ is defined by the following.

K = sup
p≥1

p−1(E|Zk|p
)1/p

= sup
p≥1

p−1
(∫ +∞

0
xpρ0

exp(−x)√
x

dx
)1/p

. (A33)

Denote Ip =
∫ +∞

0 xpρ0
exp(−x)√

x dx, then through integrating by part, we have the
following.

Ip = −
∫ ∞

0
ρ0xp−1/2d exp (−x)

= −(ρ0e−xxp−1/2)
∣∣+∞
0 + (p− 1/2)

∫ +∞

0
ρ0xp−1−1/2 exp(−x)dx

= (p− 1/2)Ip−1.

Noticing that I0 = 1, we have the following.

Ip =
p

∏
i=1

(i− 1/2) ≤ p!. (A34)

It is also obvious that the mean value of ξ is 1. Therefore, Zi = ξi − 1 obeys a centered
sub-exponential distribution since its mean value is 0 and sub-exponential norm is limited.

K = sup
p≥1

p−1(E|Zk|p
)1/p

= sup
p≥1

p−1(E|ξ − 1|p
)1/p

≤ 1 + sup
p≥1

p−1(E|ξ|p)1/p

≤ 1 + sup
p≥1

p−1(p!)1/p ≤ 2.
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