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Abstract: Graph theory can be used to optimize interconnection network systems. The compatibility
of such networks mainly depends on their topology. Topological indices may characterize the
topology of such networks. In this work, we studied a symmetric network θφ formed by φ time
repetition of the process of joining θ copies of a selected graph Ω in such a way that corresponding
vertices of Ω in all the copies are joined with each other by a new edge. The symmetry of θφ is
ensured by the involvement of complete graph Kθ in the construction process. The free hand to
choose an initial graph Ω and formation of chemical graphs using θφΩ enhance its importance as a
family of graphs which covers all the pre-defined graphs, along with space for new graphs, possibly
formed in this way. We used Zagreb connection indices for the characterization of θφΩ. These indices
have gained worth in the field of chemical graph theory in very small duration due to their predictive
power for enthalpy, entropy, and acentric factor. These computations are mathematically novel and
assist in topological characterization of θφΩ to enable its emerging use.

Keywords: Zagreb connection indices; graph invariants; interconnection networks; mk graphs;
topological index

1. Introduction

Graph theory provides a fundamental tool for designing and analyzing desired net-
works with accuracy and gives a thorough understanding of the manners by which the
parts of a system interconnected through topology of an interconnection network [1].
Along with the other disciplines, graph theory has a special place in the field of chemistry,
especially in chemical graph theory [2]. Thus, chemical graph theory is a composition of
chemistry, computer science, and graph theory [3–5]. It provides information about organic
substances regarding their physicochemical properties with the help of graph invariants
using chemical graphs associated with their molecular structure. A chemical graph is a
simple connected and hydrogen depleted graph consisting of vertices replacing atoms
and edges for the bonds between atoms. A simple graph is comprised of only a single
edge between two vertices and no self-loop (an edge with the same initial and final vertex).
Graph invariants have strong applications in quantitative structure properties relation-
ship (QSPR) investigation [6]. These invariants reduce the practical work to some extent
to study the new chemicals structures using the topology of desired chemical structure.
Topological indices are also the graph invariants that map chemical graphs into a numeric
value and characterize the underlying structure’s topology. Harry Wiener, in 1947, first
introduced Wiener index [7]. Later on, the first and second Zagreb indices were proposed
in Reference [8,9] as
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M1(Ω) = ∑
st∈E(Ω)

(ds + dt), M2(Ω) = ∑
st∈E(Ω)

(dsdt).

Zagreb connection indices have been recently introduced, which are based on con-
nection numbers of vertices as τs, s ∈ V(Ω). The connection number τs is assigned to the
vertex s ∈ V(Ω) of a graph calculated as distinct vertices at a distance of two from vertex s.
Zagreb connection indices studied in Reference [10–13] are defined as

ZC1(Ω) = ∑
s∈V(Ω)

τ2
s , ZC2(Ω) = ∑

st∈E(Ω)

τs × τt

and
ZC∗1 (Ω) = ∑

s∈V(Ω)

(dsτs) = ∑
st∈E(Ω)

(τs + τt).

Ali et al. [10,13] and Jakkannavar and Basavanagoud [14] concluded that these in-
dices have a good correlation with entropy, enthalpy, and acentric factors. The published
work of Reference [15–18], along with the chemical applicability of these indices and for-
mation of chemical networks using θφΩ, provides motivation for the study of θφΩ via
Zagreb connection indices. The θφΩ is a symmetric network formed by the Cartesian
product of any graph Ω with complete graph Kθ , then resultant graph with Kθ , and repeat
this process φ times, i.e., θφΩ = Kθ × (Kθ × (Kθ × ( . . .× (Kθ ×Ω) . . .))). The symmetry
of underlying network θφΩ is due to the iterative Cartesian product of Ω with complete
graph Kθ . The Cartesian product ΩH ×ΩK of any two graphs ΩH and ΩK is defined in
such a way that V(ΩH ×ΩK) = V(ΩH)×V(ΩK) and set of edge E(ΩH ×ΩK),

E(ΩH ×ΩK) = {(uΩH , uΩK )(vΩH , vΩK ) : [uΩH = vΩH ∈ V(ΩH) ∧ uΩK vΩK ∈ E(ΩK)]

∨[uΩH vΩH ∈ E(ΩH) ∧ uΩK = vΩK ∈ V(ΩK)]}.

The Cartesian product of path graph P3 and cycle C4 are shown in Figure 1.

P
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Figure 1. Cartesian product of P3 and Cn, where n = 4.

In this work, we first compute exact results for Zagreb connection indices ZC1, ZC2,
and ZC∗1 of θφΩ for arbitrary values of θ and φ when Ω = N1 consists single vertex. Further,
we determined closed form formulas and bounds regarding ZC1, ZC2, and ZC∗1 for θφΩ
when Ω is any given graph. At the end, we computed exact results for θφΩ when Ω belongs
to a certain family of graphs as applications of computed results.

2. Materials and Methods

We used edges and vertices partition technique based on the connection number
assigned to the vertices for desired computation [19–22]. For this purpose, we focused on
the construction rules of θφΩ defined in Reference [23,24] and combinatorial enlisting by
vertices and edges segment procedure. Throughout this work, Ω is notation for graph,
V(Ω) for set of vertices, the set of edges E(Ω), |V(Ω)| = nΩ for order and |E(Ω)| = eΩ size
of Ω, ds for degree of vertex s ∈ Ω, Pn for path, Cn for cycle, Nn for null graph of order n,
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and Kθ for complete graph having order θ. The Cartesian product of graphs ΩH and ΩK is
denoted by ΩH ×ΩK. The topological indices computation, along with their mathematical
study regarding certain graph or family of graphs, is very rich area of study today.

3. θφ Network

θΩ is a network formed by θ copies of graph Ω in such a way that the corresponding
vertices of all copies of graphs linked by new edges, i.e., θΩ = θ(Ω) = Kθ ×Ω. θ2(Ω), is
the graph formed by θ copies of θΩ, i.e., θ2(Ω) = θ(θΩ) = Kθ × (Kθ ×Ω). The φ times rep-
etition of such a process formed a large network as θφ(Ω) = θ(θφ−1Ω) = θ(θ(θφ−2Ω)) =
θ(θ(θ((θφ−3Ω)))) = . . . = θ(θ(θ( . . . (θ︸ ︷︷ ︸

(φ− 1) times

(θΩ)) . . .))) = θ(θ(θ( . . . (θ︸ ︷︷ ︸
(φ) times

(Ω)) . . .))) =

Kθ × (Kθ × (Kθ × ( . . .× (Kθ︸ ︷︷ ︸
(φ) times

×Ω) . . .))). The construction of θφΩ implies that the |V(θφΩ)|

= θφnΩ, and |E(θφΩ)| = θφeΩ + (θ
2)nΩφθφ−1.

Molecular Networks Formed by θφΩ

The formation of molecular networks by θφΩ encouraged us to study these networks
via Zagreb connection indices. Figure 2 presents chemical graphs of organic compounds
formed by θφΩ when Ω = N1 consists of only one vertex.

G 2 G
2

CH

CH

H C

H C

 Cyclobutane

2

2 2

2

G 3G

CH

H C

H C

 Cyclopropane

2

2 2

Figure 2. θφΩ as organic compounds.

Carbon Nanotube TUC4(m, 3) as 3Pn

Let Pn be the graph of alkane. The graph formed by Pn as 3Pn is a carbon nanotube
TUC4(m, 3), as shown in Figure 3.

Pn

3P=TUC (n,3)n
 

4

Figure 3. 3Pn as carbon nanotube TUC4(n, 3).

Cyclobutane can also be formed by 2P2.
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4. Main Results

4.1. θφΩ When Ω Consist of Only One Vertex

In case of one vertex graph Ω = N1, θΩ must be a complete graph Kθ . The total
number of vertices of θφΩ is |V(θφΩ)| = θφ, and the number of edges is |E(θφΩ)| =
(θ

2)φθφ−1. The θφN1 for θ = 2 is the cube Qφ of dimension φ. The cube of dimension
φ = 1, 2, 3, 4 is shown in Figure 4 as 2N1 = K2 × N1, 22N1 = K2 × (K2 × N1), 23N1 =
K2 × (K2 × (K2 × N1)), 24N1 = K2 × (K2 × (K2 × (K2 × N1))). The θφN1 for θ = 3 and
φ = 1, 2, 3, 4 is shown in Figure 5 as 3N1 = K3 × N1, 32N1 = K3 × (K3 × N1), 33N1 =
K3 × (K3 × (K3 × N1)).

2GG 2 G
4

2 G
3

2 G
2

Figure 4. θφΩ for θ = 2 and φ = 1, 2, 3, 4 when Ω = N1.

3G 3 G
3

G

3 G
2

Figure 5. θφΩ for φ = 1, 2, 3 when Ω is a single vertex graph.

Theorem 1. Let Ω be the graph with nΩ = 1. Then, ZC1, ZC2, and ZC∗1 of θφΩ are

ZC1(θ
φΩ) =

1
4

φ2(φ− 1)2(θ − 1)4θφ,

ZC2(θ
φΩ) =

1
4

(
θ

2

)
φ3(φ− 1)2(θ − 1)4θφ−1,

ZC∗1 (θ
φΩ) =

(
θ

2

)
φ2(φ− 1)(θ − 1)2θφ−1.

Proof. Let Ω be the graph with nG = 1, |V(θφΩ)| = θφ, and |E(θφΩ)| = (θ
2)φθφ−1. For the

connection number of each vertex of Ω, we use vertex listing technique. The observation
shows that θ1Ω is complete graph Kθ , and the degree of each vertex v ∈ θΩ is dv = θ − 1.
The connection number τθφΩ(v) of each vertex v ∈ θφΩ is zero for φ = 1, 2. The construc-
tion of θφΩ implies that the complicated network formed for larger value φ. The increase in
value of φ causes an increase in the degree dθφΩ(v), as well as connection number τθφΩ(v)
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of v ∈ θφ(Ω). The connection number of each vertex v ∈ θφ(Ω) is τθφΩ(v) = φ(φ−1)(θ−1)2

2 .
Using these, we determine first connection Zagreb index ZC1(θ

φΩ).

ZC1(θ
φΩ) = ∑

u∈V(θφΩ)

(τθφΩ(v))2,

ZC1(θ
φΩ) = ∑

u∈V(θφΩ)

(
φ(φ− 1)(θ − 1)2

2
)2.

In case nΩ = 1, the total number of vertices of θφΩ is θφ, i.e, |V(θφΩ)| = θφ.

ZC1(θ
φΩ) =

1
4

φ2(φ− 1)2(θ − 1)4θφ. (1)

Now, for ZC2(θ
φΩ),

ZC2(θ
φΩ) = ∑

uv∈E(θφΩ)

τθφΩ(u)τθφΩ(v),

since the connection number of each vertex v ∈ θφ(Ω) is τθφΩ(v) = φ(φ−1)(θ−1)2

2 , and the
total number of edges in case nΩ = 1 is (θ

2)φθφ−1. So,

ZC2(θ
φΩ) = ∑

uv∈E(θφΩ)

(
φ(φ− 1)(θ − 1)2

2
)(

φ(φ− 1)(θ − 1)2

2
),

ZC2(θ
φΩ) =

(
θ

2

)
φθφ−1(

φ(φ− 1)(θ − 1)2

2
)2,

ZC2(θ
φΩ) =

1
4

(
θ

2

)
φ3(φ− 1)2(θ − 1)4θφ−1. (2)

Now, for ZC∗1 (Ω),

ZC∗1 (θ
φΩ) = ∑

uv∈E(θφΩ)

(τθφΩ(u) + τθφΩ(v)),

since the connection number of each vertex v ∈ θφ(Ω) is τθφΩ(v) = φ(φ−1)(θ−1)2

2 , and the
total number of edges in case nΩ = 1 is (θ

2)φθφ−1. So,

ZC∗1 (θ
φΩ) = ∑

uv∈E(θφΩ)

(
φ(φ− 1)(θ − 1)2

2
+

φ(φ− 1)(θ − 1)2

2
),

ZC∗1 (θ
φΩ) =

(
φ

2

)
φθφ−1(φ(φ− 1)(θ − 1)2),

ZC∗1 (θ
φΩ) =

(
φ

2

)
φ2(φ− 1)(θ − 1)2θφ−1. (3)

Equations (1)–(3) complete the proof.
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4.2. θφΩ When Ω Is Any nΩ-Vertex Simple Connected Graph

In case of any nΩ-vertex simple connected graph Ω, θΩ is a complete graph consisting
of θ copies of Ω. The total number of vertices in θφΩ is |V(θφΩ)| = θφ|V(Ω)|, and the
number of edges is |E(θφΩ)| = θφ|E(Ω)|+ (θ

2)|V(Ω)|φθφ−1. The connection number asso-

ciated to the vertex u ∈ θφΩ is τu + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 ). In this section, we determined
generalized results for ZC1, ZC2, and ZC∗1 of θφΩ. We also made a more concise approach
and find the bonds and extremal for some specific families of graphs using already proven
results for connection Zagreb indices. Figure 6 presents the case when θφΩ graphs and Ω is
a simple connected graph with |V(Ω)| ≥ 1 for φ = 0, 1, 2. The second example is presented
in Figure 7, where θφPn graph for φ = 0, 1, 2 and n = 3.

2GG 2 G
2

Figure 6. θφΩ graphs when Ω is a simple connected graph with |V(Ω)| ≥ 1 for φ = 0, 1, 2.

G 3G

3 G
2

Figure 7. θφPn graph for φ = 0, 1, 2 and n = 3.

Theorem 2. Let Ω be a simple connected graph with |V(Ω)| = nΩ ≥ 2. Then, ZC1 of θφΩ is

ZC1(θ
φΩ) = θφZC1(Ω) + [2(θ − 1)φ + φ(φ− 1)(θ − 1)2]θφZC∗1 (Ω)

+ [
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2θφ M1(Ω).

Proof. Let Ω be a simple connected graph. The connection number of each vertex v ∈ θφ(Ω)

is τθφΩ(v) = τv + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )dv. The total number of vertices in θφΩ is |V(θφΩ)|
= θφnΩ, and the number of edges is |E(θφΩ)| = θφeΩ + (θ

2)nΩφθ(φ−1). Using these results,
we determine first connection Zagreb index ZC1(θ

φΩ) as

ZC1(θ
φΩ) = ∑

u∈V(θφΩ)

(τθφΩ(u))2,
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ZC1(θ
φΩ) = ∑

u∈V(θφΩ)

(τu + (
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)du)

2,

ZC1(θ
φΩ) = ∑

u∈V(θφΩ)

(τu)
2 + ∑

u∈V(θφΩ)

2[(
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)duτu]

+ ∑
u∈V(θφΩ)

[(
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)du]

2,

ZC1(θ
φΩ) = ∑

u∈V(θφΩ)

τ2
u + 2[

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
] ∑

u∈V(θφΩ)

duτu

+ [
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2 ∑

u∈V(θφΩ)

d2
u.

As |V(Ω)| ≥ 1, the total number of vertices of θφΩ is θφnΩ, i.e, |V(θφΩ)| = θφ|V(Ω)|.

ZC1(θ
φΩ) = θφ ∑

u∈V(Ω)

τ2
u + 2[

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]θφ ∑

u∈V(Ω)

duτu

+ [
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2θφ ∑

u∈V(Ω)

d2
u.

Since ZC1(Ω) = ∑u∈V(Ω) τ2
u , ZC∗1 (Ω) = ∑u∈V(Ω) duτu, and M1(Ω) = ∑u∈V(Ω) d2

u.
Replacing these formulas, we get

ZC1(θ
φΩ) = θφZC1(Ω) + [2(θ − 1)φ + φ(φ− 1)(θ − 1)2]θφZC∗1 (Ω) (4)

+ [
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2θφ M1(Ω).

Theorem 3. Let Ω be the simple connected graph with |V(Ω)| = nΩ ≥ 2. Then,

ZC2(θ
φΩ) ≤ θφZC2(Ω) +

(
θ

2

)
φθ(φ−1)ZC1(Ω) + [2(θ − 1)φ + φ(φ− 1)(θ − 1)2][∆θφ +(

θ

2

)
φθ(φ−1)]ZC∗1 (Ω) + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2[θφ M2(Ω) +(

θ

2

)
φθ(φ−1)M1(Ω)],

and

ZC2(θ
φΩ) ≥ θφZC2(Ω) +

(
θ

2

)
φθ(φ−1)ZC1(Ω) + [2(θ − 1)φ + φ(φ− 1)(θ − 1)2][δθφ +(

θ

2

)
φθ(φ−1)]ZC∗1 (Ω) + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2[θφ M2(Ω) +(

θ

2

)
φθ(φ−1)M1(Ω)].

Equality holds for regular graph Ω.
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Proof. Let Ω be the simple connected graph with nΩ ≥ 2. The connection number of each

vertex v ∈ θφ(Ω) is τθφΩ(v) = τv + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )dv. The total number of vertices
in θφΩ is |V(θφΩ)| = θφnΩ, and the number of edges is |E(θφΩ)| = θφeΩ + (θ

2)nΩφθ(φ−1).

ZC2(θ
φΩ) = ∑

uv∈E(θφΩ)

τθφΩ(u)τθφΩ(v).

Let A = {u, v : uv ∈ E(Ω)}.

ZC2(θ
φΩ) = ∑

uv∈E(θφΩ)

Πa∈A[τa + (
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)da],

ZC2(θ
φΩ) = ∑

uv∈E(θφΩ)

τuτv + [
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
] ∑

uv∈E(θφΩ)

(duτv + dvτu)

+ [
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2 ∑

uv∈E(θφΩ)

dudv.

The edges between corresponding vertices of all the θφ copies of graph Ω in θφΩ

have the same end vertex connection number τu + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )du. These edges
are (θ

2)nΩφθ(φ−1) in number. The edges between vertices of all the θφ copies of graph Ω

have different end vertex connection numbers τθφΩ(u) = τu + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )du

and τθφΩ(v) = τv + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )du for uv ∈ G. These edges make the total θφeΩ.
Using these findings, we get

ZC2(θ
φΩ) = θφ ∑

uv∈E(Ω)

τuτv +

(
θ

2

)
φθ(φ−1) ∑

u∈V(Ω)

τ2
u + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]

[θφ ∑
uv∈E(Ω)

(duτv + dvτu) +

(
θ

2

)
φθ(φ−1) ∑

u∈V(Ω)

2duτu] +

[
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2[θφ ∑

uv∈E(Ω)

(dudv) +

(
θ

2

)
φθ(φ−1) ∑

u∈V(Ω)

d2
u].

Since ZC1(Ω) = ∑u∈V(Ω) τ2
u , ZC2(Ω) = ∑uv∈E(Ω) τuτv, ZC∗1 (Ω) = ∑u∈V(Ω) duτu

M1(Ω) = ∑u∈V(Ω) d2
u, and M2(Ω) = ∑uv∈E(Ω) dudv. Replacing these formulas, we get

ZC2(θ
φΩ) = θφZC2(Ω) +

(
θ

2

)
φθ(φ−1)ZC1(Ω) + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
][θφ

∑
uv∈E(Ω)

(duτv + dvτu) + 2
(

θ

2

)
φθ(φ−1)ZC∗1 ] + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2 (5)

[θφ M2(Ω) +

(
θ

2

)
φθ(φ−1)M1(Ω)].

Replacing du = dv = ∆, we get
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ZC2(θ
φΩ) ≤ θφZC2(Ω) +

(
θ

2

)
φθ(φ−1)ZC1(Ω) + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
][θφ

∑
uv∈E(Ω)

(∆τv + ∆τu) + 2
(

θ

2

)
φθ(φ−1)ZC∗1 ] + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2

[θφ M2(Ω) +

(
θ

2

)
φθ(φ−1)M1(Ω)].

ZC2(θ
φΩ) ≤ θφZC2(Ω) +

(
θ

2

)
φθ(φ−1)ZC1(Ω) + [2(θ − 1)φ + φ(φ− 1)(θ − 1)2]

[∆θφ +

(
θ

2

)
φθ(φ−1)]ZC∗1 (Ω) + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2 (6)

[θφ M2(Ω) +

(
θ

2

)
φθ(φ−1)M1(Ω)].

Now, again, replacing du = dv = δ in equation (5), we get inequality (7).

ZC2(θ
φΩ) ≥ θφZC2(Ω) +

(
θ

2

)
φθ(φ−1)ZC1(Ω) + [2(θ − 1)φ + φ(φ− 1)(θ − 1)2]

[δθφ +

(
θ

2

)
φθ(φ−1)]ZC∗1 (Ω) + [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2 (7)

[θφ M2(Ω) +

(
θ

2

)
φθ(φ−1)M1(Ω)].

The inequalities (6) and (7) complete the proof.

Theorem 4. Let Ω be the simple connected graph with |V(Ω)| = nΩ ≥ 2. Then,

ZC∗1 (θ
φΩ) ≤ θφZC∗1 (Ω) + 2

(
θ

2

)
θ(φ−1)(M1(Ω)− 2eΩ) + (

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)

[θφ M1(Ω) + 2
(

θ

2

)
θ(φ−1)eΩ]. (8)

Equality holds for {C3, C4}−free network Ω. In addition,

ZC∗1 (θ
φΩ) ≥ θφZC∗1 (Ω) + (

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
) (9)

[θφ M1(Ω) + 2
(

θ

2

)
θ(φ−1)eΩ].

Equality holds when Ω is a complete graph.

Proof. Let Ω be the simple connected graph with nΩ ≥ 2. The connection number of
each vertex v ∈ θφ(Ω) is τθφΩ(v) = τv + ((θ − 1)φ + 1

2 φ(φ − 1)(θ − 1)2)dv. The total
number of vertices in θφΩ is |V(θφΩ)| = θφnΩ, and the number of edges is |E(θφΩ)| =
θφeΩ + (θ

2)nΩθ(φ−1).

ZC∗1 (θ
φΩ) = ∑

uv∈E(θφΩ)

(τθφΩ(u) + τθφΩ(v)),
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ZC2(θ
φΩ) = ∑

uv∈E(θφΩ)

[(τu + (
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)du) + (τv + ((θ − 1)φ

+
1
2

φ(φ− 1)(θ − 1)2)dv)],

ZC∗1 (θ
φΩ) = ∑

uv∈E(θφΩ)

(τu + τv) + (
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
) ∑

uv∈E(θφΩ)

(du + dv).

The edges between corresponding vertices of all the θφ copies of graph Ω in θφΩ

have the same end vertex connection number τu + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )du. These edges
are (θ

2)nΩθ(φ−1) in number. The edges between vertices of all the θφ copies of graph Ω

have different end vertex connection numbers τθφΩ(u) = τu + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )du

and τθφΩ(v) = τv + ( 2(θ−1)φ+φ(φ−1)(θ−1)2

2 )du for uv ∈ Ω. These edges make the total θφeΩ.
Using these findings, we get

ZC∗1 (θ
φΩ) = θφ ∑

uv∈E(Ω)

(τu + τv) + 2
(

θ

2

)
θ(φ−1) ∑

u∈V(Ω)

τu + [
2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]

[θφ ∑
uv∈E(Ω)

(du + dv) +

(
θ

2

)
θ(φ−1) ∑

u∈V(Ω)

2du].

Since, for a connected graph Ω, ∑u∈V(Ω) τu ≤ M1(Ω)− 2eΩ [15], 0 ≤ ∑u∈V(Ω) τu, and
∑u∈V(Ω) du = 2|E(Ω)|. Hence,

ZC∗1 (θ
φΩ) ≤ θφZC∗1 (Ω) + 2

(
θ

2

)
θ(φ−1)(M1(Ω)− 2eΩ) + (

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)

[θφ M1(Ω) + 2
(

θ

2

)
θ(φ−1)eΩ], (10)

and

ZC∗1 (θ
φΩ) ≥ θφZC∗1 (Ω) + (

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)[θφ M1(Ω) +

2
(

θ

2

)
θ(φ−1)eΩ]. (11)

Equations (10) and (11) complete the proof.

4.3. Applications of Computed Results as Zagreb Connection Indices of θφCn and θφKθ1

Figures 8 and 9 present simple applications of computed results as Zagreb connection
indices of θφCn and θφKθ1 .

C6 2C6 2 C6

2

Figure 8. θφCn for n = 6 and k = 1, 2.
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Corollary 1. Let Ω = Cn be a uni-cyclic graph of order n. Then,

ZC1(θ
φCn) = 4nθφ[1 + 2(θ − 1)φ + φ(φ− 1)(θ − 1)2 + (

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)2].

Proof. Let Ω = Cn be a uni-cyclic graph of order n. By replacing ZC1(Cn) = 4n,
M1(Cn) = 4n, and ZC2(Cn) = 4n in Theorem 2, we get the required result as

ZC1(θ
φCn) = 4nθφ[1 + 2(θ − 1)φ + φ(φ− 1)(θ − 1)2 + (

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)2].

Corollary 2. Let Ω = Cn be a uni-cyclic graph of order n.

ZC2(θ
φCn) = 4nθφ[(1 +

(
θ

2

)
φθ)(

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)2 + (2θφ +

(
θ

2

)
φθ)

(2(θ − 1)φ + φ(φ− 1)(θ − 1)2)].

Proof. By replacing ZC1(Cn) = 4n, ZC2(Cn) = 4n, ZC∗1 (Cn) = 4n, M2(Ω) = 4n, and
M1(Cn) = 4n in Theorem 3, we get the required result as

ZC2(θ
φCn) = 4nθφ[(1 +

(
θ

2

)
φθ)(

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)2 + (2θφ +

(
θ

2

)
φθ)

(2(θ − 1)φ + φ(φ− 1)(θ − 1)2)].

Corollary 3. Let Ω = Cn be a uni-cyclic graph for n ≥ 5. Then,

ZC∗1 (θ
φCn) = 4nθφ[(1 +

(
θ

2

)
φθ)(1 +

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)].

Proof. Let Ω = Cn be a uni-cyclic graph for n ≥ 5. Then, by replacing ZC∗1 (Cn) = 4n,
M1(Cn) = 4n and eΩ = n in Theorem 4, we get the required result as

ZC∗1 (θ
φCn) = 4nθφ[(1 +

(
θ

2

)
φθ)(1 +

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
)].

G 3 G
2

3G

Figure 9. θφKθ1 graph for k = 0, 1, 2 and θ1 = 3.

Corollary 4. Let Ω = Kθ1 be a complete graph of order θ1. Then,

ZC1(θ
φKθ1) = 4θ1(θ1 − 1)2[

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2θφ.
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Proof. Let Ω = Kθ1 be a complete graph of order θ1. By replacing ZC1(Kθ1) = ZC∗1 (Kθ1) = 0
and M1(Kθ1) = θ1(θ1 − 1)2 in Theorem 2, we get the required result as

ZC1(θ
φKθ1) = 4θ1(θ1 − 1)2[

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2θφ.

Corollary 5. Let Ω = Kθ1 be a complete graph of order θ1. Then,

ZC2(θ
φΩ) = [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2[

(θ1 − 1)
2

+

(
θ

2

)
φθ]θ1(θ1 − 1)2θφ.

Proof. Let Ω = Kθ1 be a complete graph of order θ1 and size θ1(θ1−1)
2 . Replacing ZC1(Kθ1) =

0, ZC2(Kθ1) = 0, ZC∗1 (Kθ1) = 0, M2(G) = θ1(θ1−1)3

2 , and M1(Kθ1) = θ1(θ1 − 1)2 in
Theorem 3, we get the required result as

ZC2(θ
φΩ) = [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
]2[

(θ1 − 1)
2

+

(
θ

2

)
φθ]θ1(θ1 − 1)2θφ.

Corollary 6. Let Ω = Kθ1 be a complete graph for θ1 ≥ 5. Then,

ZC∗1 (θ
φΩ) = [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
][θ1 − 1 +

(
θ

2

)
φθ]θ1(θ1 − 1)θφ. (12)

Proof. Let Ω = Kθ1 be a complete graph of order θ1 and size θ1(θ1−1)
2 . Using ZC∗1 (Kθ1) = 0,

M1(Kθ1) = θ1(θ1 − 1)2 and Theorem 4, we get the required result as

ZC∗1 (θ
φΩ) = [

2(θ − 1)φ + φ(φ− 1)(θ − 1)2

2
][θ1 − 1 +

(
θ

2

)
φθ]θ1(θ1 − 1)θφ. (13)

5. Conclusions

The applicability of this study can be measured by the published work of refs. [10–15,25–30]
on Zagreb connection indices, along with the free hand to choose an initial graph Ω for
θφΩ and formation of chemical graphs by the θφΩ network. In Theorem 1, we computed
exact formulas for these indices of Kθ × (Kθ × (Kθ × ( . . .× (Kθ︸ ︷︷ ︸

(φ) times

×Ω) . . .))) when Ω = N1

is a single vertex graph. By setting θ = 2 in Theorem 1, Equations (1)–(3), we get Zagreb
connection indices of cube of dimension φ as ZC1(2φN1) =

1
4 φ2(φ− 1)22φ, ZC2(2φN1) =

1
4 φ3(φ− 1)22φ−1, and ZC∗1 (2

φN1) = φ2(φ− 1)2φ−1. In Theorem 2, we determined general-
ized exact formulas for ZC1(θ

φΩ) for any connected graph Ω and determined exact results
for ZC1(θ

φCn) in Corollary 1 and ZC1(θ
φKθ1) in Corollary 4. Further, in Theorem 3, we

established bounds for ZC2(θ
φΩ) regarding generalized graph Ω with equality for regular

graph Ω and determined the exact formula in Corollary 2 and Corollary 5 for Ω = Cn and
Ω = Kθ1 , respectively. In Theorem 4, we established bounds for ZC∗1 (θ

φΩ) with equality
over {C3, C4}−free graph Ω. The computed results in Corollary 3 for ZC∗1 (θ

φKm) and
Corollary 6 for ZC∗1 (θ

φCn), n ≥ 5 are the application of Theorem 4.
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