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Abstract: Due to the quick increase in digital data, especially in mobile usage and social media, data 

deduplication has become a vital and cost-effective approach for removing redundant data seg-

ments, reducing the pressure imposed by enormous volumes of data that must be kept. As part of 

the data deduplication process, fingerprints are employed to represent and identify identical data 

blocks. However, when the amount of data increases, the number of fingerprints grows as well, and 

due to the restricted memory size, the speed of data deduplication suffers dramatically. Various 

deduplication solutions show a bottleneck in the form of matching lookups and chunk fingerprint 

calculations, for which we pay in the form of storage and processors needed for storing hashes. 

Utilizing a fast hash algorithm to improve the fingerprint lookup performance is an appealing chal-

lenge. Thus, this study is focused on enhancing the deduplication system by suggesting a novel and 

effective mathematical bounded linear hashing algorithm that decreases the hashing time by more 

than two times compared to MD5 and SHA-1 and reduces the size of the hash index table by 50%. 

Due to the enormous number of chunk hash values, looking up and comparing hash values takes 

longer for large datasets; this work offers a hierarchal fingerprint lookup strategy to minimize the 

hash judgement comparison time by up to 78%. Our suggested system reduces the high latency 

imposed by deduplication procedures, primarily the hashing and matching phases. The symmetry 

of our work is based on the balance between the proposed hashing algorithm performance and its 

reflection on the system efficiency, as well as evaluating the approximate symmetries of the hashing 

and lookup phases compared to the other deduplication systems. 

Keywords: data deduplication; mathematical bounded linear hashing algorithm; hash lookup; 

hashing index table 

 

1. Introduction 

Globally, the amount of digital data is rapidly increasing. Organizations and compa-

nies are collecting and storing ever-increasing amounts of data, so more computing 

power, storage, and network bandwidth are required. According to IDC’s Digital Uni-

verse Study, the expected quantity of data created in 2010 and 2011 increased significantly 

from 1.2 zettabytes to 1.8 zettabytes, respectively, and the amount of data produced in 

2020 was predicted to be 44 zettabytes [1]. 

Due to this “data deluge”, cost-effectively and efficiently storing and managing the 

data has become one of the most difficult and important issues in big data and has a sig-

nificant effect on the overhead cost of storage, processing, and networks. Systems, apps, 

users, and communication models cause significant redundancy in large chunks of data 

[2,3]. According to deduplication works carried out via IBM, Microsoft, Intel, Google, and 

Motorola, approximately three-quarters of digital information is considered redundant; 
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such redundant data consume not only considerable IT resources but also expensive net-

work bandwidths [4]. There is a considerable gap between available storage capacity and 

data production for the near future, indicating that much of the information will be lost. 

As a result, the technology of data deduplication is becoming increasingly necessary to 

address this problem, and it has emerged as the primary strategy for data reduction [5]. 

Identifying files with the same size or file name is the most intuitive deduplication 

approach. However, this method might lead to a deduplicated result that is incorrect. As 

a result, a hashing-based deduplication approach has been developed to improve accu-

racy. A hashing calculation and lookup, on the other hand, may lead to a high computing 

cost [6–8]. File-based deduplication and chunk-based deduplication are two types of data 

deduplication technology. Although file-based deduplication has a faster throughput, it 

has a low ratio of duplicated data detection. In comparison to file-based techniques, 

chunk-based data deduplication finds duplicated data more quickly. As a result, chunk-

based deduplication is used by the majority of data deduplication solutions [1]. 

The three primary stages of the data deduplication process are chunking, hash value 

production, and redundancy discovery and deletion (lookup and matching). Generally, 

the method separates ingested files into variable-length or fixed-size chunks; after that, it 

evaluates a fingerprint regarding each one of the chunks with the use of a cryptographic 

hash technique (SHA-1 or MD5) and finds duplicate chunks through comparing their fin-

gerprints against a fingerprint store. The chunk is considered a duplicate and is obviated 

for storage in cases where the fingerprint matches the fingerprint store, indicating that the 

relevant chunk content has already been saved. If no fingerprint matches, the chunk is 

considered a distinctive chunk and is written to a distinctive data container [9,10]. 

As the amount of deduplicated data grows, the performance of data deduplication 

diminishes. This is due to the fact that the fingerprints’ volume is growing exponentially 

as data grow, and utilizing small chunk sizes causes an increase in the possibility of 

matching. However, a variety of additional hashes are created, introducing transactional 

complexity and the possibility of poor performance. Moreover, the chunk’s fingerprint 

values are stored in each one of the entries of the hash index table, which is modified or 

accessed more often compared to the data chunk container [6,11]. This paper focuses on 

speeding up the hash generation and redundancy lookup processes. It is focused on the 

hashing computation overhead caused by the process of allocating each chunk a hash 

value known as a fingerprint, the memory space needed for storing the hash index table, 

and the lookup time needed for comparing the fingerprints by determining if a new chunk 

is considered identical to the one that is already stored. 

The following are the contributions of the presented study: 

1. A new hash method for the data deduplication process that generates a fingerprint 

for each chunk is created. The suggested approach applies a mathematical bounded 

linear hash function to build multiple hashes that require fewer computational re-

sources and minimize the hash index table’s size based on its symmetrical character-

istics, whereas content-defined chunking with the use of MD5 or SHA-1 for data fin-

gerprinting consumes significant processing resources for calculating hash values. 

2. For reducing hash judgements, a novel heretical hash lookup framework is created. 

Through removing the byte-to-byte comparison that is required for comparing chunks, 

the cascade comparison is going to decrease the time required to compare them. 

The remainder of this work goes into the specifics of the suggested system. The works 

in Section 2 are linked to data deduplication. The technique of the system is detailed in 

Section 3. The suggested system is outlined in Section 4. The results of the proposed ap-

proach are indicated in Section 5. The final portion concludes the paper and discusses 

future projects. 
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2. Related Works 

For the past few years, the systems of data deduplication have been the topic of ex-

tensive research. Fingerprint lookup and generation has become a bottleneck, restricting 

the throughput and scalability of data deduplication systems [1,6,12], as the volume of 

data has increased dramatically. Several previous studies have contributed to this topic in 

various ways. Different approaches are offered for reducing the overhead related to fin-

gerprint lookup and generation. Benjamin Zhu et al. [6] presented three techniques of data 

deduplication to alleviate the disk bottleneck: the first is the Summary Vector, which is 

considered a compact data structure in memory used for identifying new chunks; the sec-

ond is the Stream-Informed Segment Layout, which uses a new data layout model for 

sequentially accessing chunks in disk; and the third is Locality Preserved Caching, which 

maintains high cache hit rations through improving the locality related to duplicate 

chunks’ fingerprints. All three strategies together remove 99% of the disk access for the 

deduplication system, resulting in a single-stream throughput of 100 MB/s and a multi-

stream throughput of 210 MB/s. Deepavali et al. [13] proposed Extreme Binning as a scal-

able and parallel deduplication method that takes advantage of file similarity rather than 

locality and uses only one disk access for each file for chunk lookup, resulting in a satis-

factory throughput. To improve performance, the system has scaled out multi-nodes de-

pendent on the amount of input data. For parallelized data management with little over-

head, each file is assigned to only one node with the use of a stateless routing technique. 

The system divides the hash index table into tiers, with no data or index sharing between 

nodes, leading to a small memory footprint and allowing the system to sustain through-

put for a large dataset compared to a flat hash index scheme. In addition, the loss of dedu-

plication is minor, and the advantages in memory utilization and system scalability read-

ily compensate for it. To alleviate the chunk-lookup disk bottleneck that fingerprint-based 

deduplication systems confront, Lillibriged et al. [14] employed sampling and sparse in-

dexing that uses inherent locality. For determining which chunks have previously been 

saved, they preserve a small fraction of the sampling index in memory, which needs only 

a few seeks per chunk, rather than a full index that indexes every chunk. The system uti-

lizes sampling and a sparse index to divide an incoming stream into reasonably large 

chunks and deduplicate each piece against only some of the most similar prior chunks. 

The suggested technique reduces the average number of champions loaded per chunk by 

3.9% while increasing the deduplication factor by 1.1%. 

Guanlin et al. [15] developed BloomStore, a flash-based store architecture that ena-

bles a probabilistic duplication lookup and ensures a very low amortized memory over-

head by keeping a flash-page-sized data buffer and an extremely small buffer per Bloom-

Store instance in memory. It also stores the entire index structure on a flash disk for im-

proving the deduplication performance by achieving a high lookup/insertion throughput 

through decreasing the maximum number of flash page reads with a key range partition-

ing. The BloomStore design reached a considerably better key lookup throughput with a 

22.5% lower memory usage through decoupling the chunk existence and location searches 

to avoid unwanted complex searches when a hash is not stored. Liangshan Song et al. [7] 

worked on the hash lookup stage by providing a fingerprint-prefetching approach that 

makes use of data locality and file similarity via detecting comparable files that share a 

significant number of identical data blocks with the use of a comparable file recognition 

algorithm. Moreover, to optimize the cache hit ratio, the fingerprints are organized on the 

disk depending on the sequence of data streams. As memory is insufficient to hold the 

entire hash index table, a portion of it will be stored on the disk and requested or recalled 

to be in memory before they are actually required, demonstrating an adequate optimiza-

tion for fingerprint lookup and leading to the conclusion that a fingerprint prefetching 

algorithm is more efficient for large files than for small files. 

Naresh et al. [16] suggested a bucket-based data deduplication method in which the 

hash index table is divided into buckets, and MapReduce is used to locate duplicate 

chunks with the use of the Hadoop Distributed File System (HDFS). First, the system will 
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create fixed-size chunks before making fingerprints for such chunks by means of the MD5 

hashing algorithm and storing hash values in corresponding buckets. For detecting dupli-

cate MapReduce models, the system will compare such hash values with previously 

stored hash values in the bucket storage. When such hash values already exist in bucket 

storage, they will be indicated as a duplicate. The solution attempts to address the issue 

of a large hashing index table and hash lookup through storing hashes in distinct buckets 

to be accessible via MapReduce. In comparison to the present fixed-size chunking tech-

niques, the suggested approach hash time and chunk lookup is minimal. Shrivastava et 

al. [17] developed a modified hash value concept that uses the SHA-2 hashing algorithm 

rather than the usual MD2, SHA-1, and MD5 hashing algorithms to improve the dedupli-

cation system efficacy, particularly at the hash creation stage. With regard to the time and 

quantity of secure hashes created, the suggested technique provides enhanced security 

and takes less time compared to the MD5, MD2, and SHA-1 approaches, although the size 

of the fingerprint formed by SHA-2 is larger than that of the existing hashing algorithms. 

As a result, the hashing stage’s throughput was increased, yet the problem of the hashing 

index table’s size was not resolved. Dongyang et al. [18] proposed hardware-based dedu-

plication acceleration using a FPGA-based accelerator interface and three compute-inten-

sive kernel modules. The expected results were achieved by 30% enhancement in the 

deduplication ratio and six times latency improvement compared to software-based 

deduplication. 

The goal of the research mentioned above is to figure out how to decrease the number 

of chunk hashes in memory while also speeding up the table lookup procedure. There are 

two primary forms of optimizations for lowering the size of the hash index table in 

memory: decreasing the hash length and employing a large chunk size, although both 

have drawbacks. More hashes will be recorded for various chunk blocks as the number of 

chunks increases, resulting in a larger hash index table. In addition, the chunking algo-

rithm might be utilized to reduce the overall number of hashes in memory by using a large 

average chunk size. This method, on the other hand, can lower the deduplication ratio. 

Table 1 shows different data deduplication research studies. 

Table 1. Related works compression table. 

Research Paper Technique Used Achievement Limitation  

Avoiding the disk bottleneck in 

the data domain deduplication 

file system [6] 

Summary Vector 

Stream-Informed Segment 

Layout 

Locality Preserved Caching 

Enhancing the chunks fingerprint 

lookup by reducing the disk 

access  

Disk bottleneck had been 

reduced but still the hashing 

index table size is big and 

can’t be hosted in memory 

Extreme binning: Scalable, 

parallel deduplication for chunk-

based file backup [13] 

Extreme Binning 

Scaled out multi-nodes system 

Reduce the fingerprint index 

table size by divides into tiers for 

better memory utilization 

Multi-nodes system add 

complexity which affect 

deduplication throughput 

Sparse Indexing: Large Scale, 

Inline Deduplication Using 

Sampling and Locality [14] 

Sampling and sparse indexing 

for the hashing index table  

Preserve a small fraction of the 

hashing index table in memory 

reduce the hashes lookup time  

Deduplication factor enhanced 

by 1.1% only as the big part of 

the hashing index table is still 

in disk  

BloomStore: Bloom-filter based 

memory-efficient key-value store 

for indexing of data 

deduplication on flash [15] 

BloomStore, a flash-based store 

architecture 

Store the entire hash index table 

on a flash disk achieving a high 

lookup throughput and lower 

memory usage 

Bloom-filter based on flash 

disk will add a high cost 

impact to the system as its 

considered as hardware-based 

deduplication  

Exploiting fingerprint 

prefetching to improve the 

performance of data 

deduplication [7] 

Fingerprint-prefetching 

approach using locality and file 

similarity 

Fingerprints are organized on the 

disk depending on the sequence 

of data streams which optimize 

the prefetching cache hit ratio 

Fingerprint prefetching 

algorithm is more efficient for 

large files than for small files. 
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Bucket based data deduplication 

technique for big data storage 

system [16] 

Bucket-based and MapReduce 

under Hadoop Distributed File 

System (HDFS) 

Storing hashes in distinct buckets 

to be accessible via MapReduce 

reduce hashing time and chunk 

lookup 

Fixed-size chunking reduce 

deduplication ratio 

A Big Data Deduplication Using 

HECC Based Encryption with 

Modified Hash Value in Cloud 

[17] 

SHA-2 hashing algorithm 
Enhance hashing time and 

throughput 

Problem of the hashing index 

table’s size has not been 

resolved due to size of the 

fingerprint formed by SHA-2 

Hardware accelerator for 

similarity based data dedupe [18] 

Hardware-based deduplication 

acceleration using FPGA-based 

accelerator interface 

Enhancement in deduplication 

ratio and reduce latency 

compared to software-based 

deduplication 

Higher cost due to the 

required investment in 

acceleration hardware 

3. Methodology 

Data deduplication is the process of eliminating redundant data through storing just 

the data that is unique. When many copies of the same dataset must be stored, this strat-

egy efficiently minimizes the storage capacity requirements. Chunking, fingerprinting, 

and lookup and matching are the three stages of the deduplication process [19,20]. In this 

paper, we will focus on the last two stages by proposing a new fingerprinting (hashing) 

algorithm and efficient lookup procedure. 

3.1. Fingerprinting (Hashing) Stage 

The most difficult aspect of deduplication systems is swiftly identifying duplicate 

data segments. Byte-by-byte comparison is impossible, since it necessitates too much I/O. 

As a result, the majority of deduplication systems use “fingerprints” for detecting dupli-

cate data segments. The fingerprints must satisfy the requirement that two fingerprints 

are identical if and only if the two data segments corresponding to them are identical. A 

conventional cryptographic hash algorithm is used to establish a unique identification re-

ferred to as a fingerprint for each chunk [11,21]. A hash algorithm is considered as a func-

tion that converts an arbitrary-length input into a fixed amount of output bits, known as 

the hash value. Each time the same input is hashed, the hash value must be the same. The 

resulting fingerprint (hash) values are saved in a hash index table. In addition, the finger-

print of incoming data is compared to the ones already recorded in the hash index table 

throughout the deduplication process. When the fingerprint has already been stored, the 

incoming data are replaced with a link to it. Furthermore, the data are written to the disk 

as a new unique chunk if the fingerprint does not exist [22,23]. In a hash-based dedupli-

cation system, duplicate data are identified by comparing the identifier of the data, so the 

hash function should be strongly efficient and collision-resistant. The drawback is that, 

for a large dataset, the size of a hash index table grows dramatically in order to accommo-

date all the fingerprints by allocating a unique index position for every fingerprint that 

needs to be stored. In such a case, the hash index table size grows out of the memory range 

and requires paging and other operating system-based operations. This likely results in 

an overall reduced performance, as fingerprinting and lookup are the determining factors 

of data deduplication with which the data are identified as unique or duplicate [4]. Cryp-

tographic hash functions such as SHA-1 and MD5 are the most commonly used methods 

for this purpose [1]. 

3.1.1. The MD5 Hashing Algorithm 

Ron Rivest of MIT invented the Message Digest 5 (MD5) cryptographic hash func-

tion, which contains a string of digits. It is essentially a more secure version of his earlier 

technique, MD4, which is faster than MD5. Its purpose is to protect the data’s integrity 

and identify all the changes made to the data. Through compressing a message of any 

length, MD5 creates a fixed 128-bit hash value [24]. Message blocks go through four 

rounds of processing. The MD5 hash algorithm aids in data integrity verification. MD5 is 
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a frequently utilized strategy for identifying, protecting, and certifying data in digital sig-

nature and cryptography applications. MD5 is a text compression algorithm that divides 

text into 512-bit blocks, which are afterward fragmented into 16 32-bit sub-blocks. The 

MD5 encryption algorithm produces a series of four blocks, each of which is 32 bits in size, 

resulting in a hash value of 128 bits [25]. 

3.1.2. The SHA-1 Hashing Algorithm 

The National Institute of Standards and Technology (NIST) developed SHA-1 as a 

security algorithm according to the SHA algorithm’s patch results. The major hash algo-

rithm is SHA-1, which is based on the MD4 method [26]. To construct a 160-bit message 

digest, SHA-1 takes the bits of the message’s maximum length. This arithmetic operation, 

like the MD5, is divided into 32-bit words with a 512-bit length for processing units, with 

four loop operators and 20 rounds in each loop, for a total of 80 rounds. SHA-1, on the 

other hand, is a complicated method using data shifting and logical functions [25,27]. 

The SHA-1 encryption algorithm has the advantage of being stronger, but the time 

required for encryption is slow in comparison to the MD5 algorithm, as MD5 has 64 iter-

ations, whereas SHA-1 has 80 iterations, so SHA-1 seems to be slower compared with 

MD5. Practically, SHA-1 will require a larger storage size compared to MD5, so the MD5 

algorithm is cheaper to compute and utilizes less disk space [28]. Both MD5 and SHA-1 

are computationally demanding; in specific applications, chains of millions of hash algo-

rithm rounds are evaluated. One of these applications is data deduplication, in which the 

chunk hash calculation forms a bottleneck in the form of processor utilization. Using a 

faster hash function is therefore attractive. 

3.1.3. The Mathematical Bounded Linear Hashing Algorithm 

The mathematical bounded linear hashing algorithm creates a hash value by multi-

plying a random sequence of numbers by the linear bounded sum of a string of nonre-

peatable zero bytes. The employment of various random number sequences to generate 

various short hash values is sufficient to generate different signatures for characterizing the 

plain text contents of chunks. In addition, the mathematical signatures are hash functions 

with algebraic characteristics identifying large data objects with a low probability of colli-

sion. Moreover, the mathematical operations utilized for computing the hash values are 

simple, primitive mathematical operations, resulting in a computing overhead that is ex-

tremely low compared to conventional security hash functions. Compared to the computa-

tional complexity related to cryptographic hash functions (such as MD5 and SHA-1), it has 

a low computational cost. The use of more than one hash sequence to describe the string 

content might also result in a combined value with lower collision rates while improving 

the lookup stage. The main objective to using a mathematical hash function is that there are 

many properties and features that strongly required, cryptographically secure hash func-

tions, which are not required for non-cryptographically secure hash functions [29,30]. 

3.1.4. Hash Collision 

A hash collision is a situation where chunk fingerprints coincide and the chunks 

themselves differ. The result of a collision in a deduplication system is that the incoming 

file is not stored correctly, rendering it essentially unusable. A chunk collision therefore 

always constitutes data loss [31]. 

When hash collision is not handled efficiently, the size of a hash index table grows 

dramatically to accommodate all fingerprints by allocating space for every fingerprint that 

needs to be stored. In such a case, the table size grows out of memory range and requires 

paging and other operating system-based operations. This likely results in an overall re-

duced performance, as fingerprint indexing and lookup are the determining factors of 

data deduplication, with which the data are identified as unique or duplicate. If there is a 

hash collision—two different chunks have the same hash value—then the system has lost 
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the newer data [15,32]. We can easily control the hash collision probability by using good 

hash functions with more bits, replacing MD5 with 128 bits with SHA-1 (160 bits) or up-

grading to a member of the SHA-2 family, such as SHA-256 with 256 bits, but in such a 

case, the hashing index table size grows and leads to system performance degradation in 

both hash generation and matching stages [9]. 

3.2. Lookup and Matching Stage 

The fingerprint of split blocks is compared to the fingerprint table at this stage. When a 

block in the table has a duplicate, it is not written to disk; only the metadata are stored. If there 

is no duplicate regarding the block in the table, the block’s fingerprint is entered into the hash 

index table as a unique block in the system. This stage includes an additional fingerprint in-

dexing procedure to check for duplicate material and updates the file’s metadata, which in-

cludes the pointer-based mapping of blocks and files. Moreover, hash indexing is a crucial 

step in the fingerprinting process, as it organizes fingerprints into a logical order. It is used to 

verify the uniqueness of data chunks before storing or discarding them [33]. As the index size 

is proportional to the data size, the fingerprint (hash) index is a design problem for scale and 

resource consumption in a conventional deduplication system. Conserving memory and disk 

IOPS resources is critical in a primary data deduplication system. To link fingerprints to phys-

ical addresses of chunks or files, a fingerprint index must be created. Checking for the finger-

print of a duplicate file or chunk in the fingerprint index can help identify it. There are two 

types of approaches for detecting duplicate fingerprints. (1) Exact detection compares each 

newly arrived fingerprint against the whole fingerprint index. This technique seeks to dis-

cover all duplicate data by checking all fingerprints in the index store extensively. This ap-

proach has a significant flaw in terms of fingerprint query performance, as the large search 

space might result in unnecessary disk visits. (2) In near-exact detection, each fingerprint only 

checks a portion of the fingerprint index at the risk of losing certain deduplication opportuni-

ties, reaching an approximate deduplication ratio, such as the ratio between the original total 

data size and the amount of data that is actually stored following deduplication; this approach 

represents data deduplication efficiency and is a significant indicator when comparing vari-

ous deduplication systems [7]. When performing data deduplication, fingerprints are em-

ployed for describing and identifying identical data blocks. However, as the volume of data 

expands, so does the number of fingerprints. The fingerprints must be saved on hard drives 

because of the limited memory size. When the fingerprints are not satisfied in memory, disk 

I/Os are created to obtain the fingerprints from the disk. Due to the random and small I/Os, 

data deduplication performance suffers considerably. Moreover, the chunk–lookup disk bot-

tleneck problem, which limits the throughput and scalability of deduplication-based storage 

systems, is a popular challenge. It is impractical to keep a large index in RAM with a consid-

erable amount of data, and a disk-based index with one seek for each incoming chunk is far 

too slow for large-scale storage [6,15]. 

3.3. Experimental Datasets 

For testing the system efficiency and performance, three datasets with different features 

were used. The first dataset contains various versions of Linux source codes from the Linux 

Kernel Archives [34], second dataset contains 309 versions of SQLite [35], and the third dataset 

contains Oracle RMAN Backup. The features of the datasets used are listed in Table 2. 

Table 2. The characteristics of the tested datasets. 

Dataset Dataset 1 Dataset 2 Dataset 3 

Dataset Name Linux Kernel SQLite Oracle RMAN Backup 

Dataset Type Linux source codes (3.16.57-5.5-rc4) 309 releases of SQLite from version 1.0 to 3.33.0 Backup 

No. of Files 926,953 212,741 36 

Dataset Size (in MB) 11,161.6 6594.6 19148.8 

Dataset Size (in GB) 10.9  6.44 18.7 
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4. The Proposed System 

The most prevalent methods of data deduplication include comparing chunks of data 

to find duplicates. This method is known as hash-based or fingerprints-based deduplica-

tion, and it involves the following steps: (1) chunking, where deduplication begins with 

the data being split into data blocks, referred to as chunks; (2) computing fingerprints, 

where, for each chunk, its fingerprint is computed using the hash function; and (3) dupli-

cate detection by matching lookups, where the new chunks are compared with the chunks 

that have already been stored in the system. If the fingerprint (hash value) of the chunk is 

found in the hashing index table, the chunk will be deleted, and a logical reference is 

added to the matched one. If not, then it is considered a new chunk; the location and the 

hash value of the chunk are stored in the database and in the hashing index table. 

Though deduplication can be a promising solution, it suffers from the wasted time 

required for generating the fingerprints and lookup for duplicate chunks, and this is too 

expensive to be effective in terms of its computation and space overheads. In a hash-based 

deduplication system, a considerable amount of time is spent on both fingerprint genera-

tion and lookup, as it frequently needs extra CPU processing for intensive hash calcula-

tions, as well as extra disk I/O processing to compare the fingerprints. It can be saved by 

efficiently handling these two stages. 

This work presents a data deduplication design with the following characteristics: 

We effectively introduce a mathematical multi-hash function that enhances the hashing 

stage throughput and reduces the size of the fingerprint index. Performance degradation 

is minimized by enhancing the hash lockup procedure to effectively support data dedu-

plication. The next guiding requirements guided the creation of our hashing function are 

as follows: (1) The hashing and matching time must be substantially short compared to 

old approaches due to a high throughput and low latency. (2) As short strings are the 

primary unit for computing fingerprints, fingerprints must not exceed 80 bytes in length, 

resulting in storage savings in the hash index table. Given that shorter fingerprints may 

have a higher collision rate, the purpose of this section is to suggest a hash function that 

performs better and has the fewest hash collisions. 

In the matching stage, where there are many queries for checking the deduplication 

fingerprint, the lookup process could be time-intensive; thus, this work utilized a hierati-

cal multilevel matching mechanism to optimize the lookup process, since the matching 

stage requires lookup for the entire hash index table to find match fingerprints. This phase 

could be a time-consuming process that needs a heavy I/O request. The idea is to find a 

simple method to test whether a data fingerprint exists in the index table. 

4.1. Multi-Hash Function Using a Mathematical Bounded Linear Hashing Algorithm 

The collision problem affects the legacy deduplication systems, which require a sub-

stantial amount of disk space, processing power, and time to solve. A novel hashing ap-

proach is suggested in this paper for saving resources and reducing processing time. To 

compute multi-hash values for each one chunk, the system’s hashing stage employs a new 

multi-hash function using a mathematical bounded linear hashing algorithm. As a result, 

each chunk generated by the chunking step will be given to the suggested hash function, 

which will create five hash values for describing the chunk contents. Moreover, the hash 

value is generated by multiplying a random sequence of numbers by a mathematical lin-

ear bounded sum of nonrepeatable zero bytes. The employment of various random num-

ber sequences to generate various short hash values is sufficient to generate various sig-

natures for characterizing the plain text contents of chunks. As the hash values are com-

puted using a primitive, simple mathematical operation, the needed overhead of compu-

ting the hash is extremely low compared to the computational complexity of typical cryp-

tographic hash functions (such as MD5 and SHA-1). As a result, utilizing more than one 

hash sequence for representing the string content might result in a combined value with 

lower collision rates. In addition, a mathematical function with a size of 16 bits generates 
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each hash. A total of 80 bits are required for storing five hashes, as each hash is 2 bytes (16 

bits). Conventional hashing functions (MD5 and SHA-1), which are utilized by other con-

tent-defined chunking approaches, demand a substantial amount of computational re-

sources for calculating hash values and of storage space for storing them. The number of 

bits required for saving the suggested hashes is smaller than the number of bits required 

for saving SHA-1 (160 bit) and MD5 hash values (128 bit). The hashing stage is divided 

into two phases: 

• The first phase is the initialization: In this phase, five hash buffers will be initialized 

with different values, and each buffer consists of 255 elements. Different random 

values will be generated between one and 255, and these are used as an index to 

permutated the values in the hash buffer. The resulting five buffers will be used in 

the next stage to generate the five hashes for each chunk. The steps of this phase are 

illustrated in Algorithm 1. 

• The second phase is the multi-hash generation function: In this phase, the resulting 

five hash buffers from the initialization phase with the chunk data will be used as 

an input to generate five hash values for each chunk using mathematical opera-

tions. The steps of this stage are described in Algorithm 2, and Figure 1 illustrates it 

in a flowchart. 

Algorithm 1 Initialization Phase. 

Objective: Initialize five hash buffers 

Input: I as Integer 

Output: 

Five hash buffers as: 

HF1: array of integer contains 255 random values 

HF2: array of integer contains 255 random values 

HF3: array of integer contains 255 random values 

HF4: array of integer contains 255 random values 

HF5: array of integer contains 255 random values 

Step1:  

Fill the first hash buffer (HF1) with 255 numbers 

For I = 0 to 201 Do 

HF1[I] = I + 1 

End For 

Step2: 

Generate random values for the first hash buffer (HF1) 

For I = 201 to 1 Do 

Generate random value between 1 and 255  

Do permutation on array HF1 

End For 

Step3: 

Fill the second hash buffer (HF2) with 255 numbers 

For I = 0 to 201 Do 

HF2[I] = I + 6 

End For 

Step4: 

Generate random values for the second hash buffer (HF2) 

For I = 201 to 1 Do 

Generate random value between 1 and 255 

Do permutation on array HF2 

End For 

Step5: 

Fill the third hash buffer (HF3) with 255 numbers 

For I = 0 to 201 Do 

HF3[I] = I + 10 

End For 

Step6: 

Generate random values for the third hash buffer (HF3) 

For I = 201 to 1 Do 

Generate random value between 1 and 255 

Do permutation on array HF3 

End For 
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Step7 

Fill the fourth hash buffer (HF4) with 255 numbers 

For I = 0 to 201 Do 

HF4[I] = I + 10 

End For 

Step8: 

Generate random values for the fourth hash buffer (HF4) 

For I = 201 to 1 Do 

Generate random value between 1 and 255 

Do permutation on array HF4 

End For 

Step9 

Fill the fifth hash buffer (HF5) with 255 numbers 

For I = 0 to 201 Do 

HF5[I] = I + 10 

End For 

Step10: 

Generate random values for the fifth hash buffer (HF5) 

For I = 201 to 1 Do 

Generate random value between 1 and 255 

Do permutation on array HF5 

End For 

 

Algorithm 2 Multi-Hash Generation Phase. 

Objective: Generate five unique hash values for each chunk 

Input: 

Chunk as array of bytes 

Chunk Length  

HF1: array of integer contains 255 random values 

HF2: array of integer contains 255 random values 

HF3: array of integer contains 255 random values 

HF4: array of integer contains 255 random values 

HF5: array of integer contains 255 random values 

Output: Five hash values for the chunk 

Step1: 
Initialization 

Hash1 ← 3, Hash2 ← 37, Hash3 ← 17, Hash4 ← 31, Hash5 ← 51, Li ← 0 

Step2:  

Compute five hash values for the chunk 

For I = 0 to Chunk Length-1 Do 

Li = Li +1 

If Li > 255   Li = Li − 255 

Hash1 = Hash1 + (HF1[Li] * Chunk[I]) 

If Hash1 > 65535     Hash1 = Hash1 and 65535 

Hash2 = Hash2 + (HF2[Li] * Chunk[I]) 

If Hash2 > 65535     Hash2 = Hash2 and 65535 

Hash3 = Hash3 + (HF3[Li] * Chunk[I]) 

If Hash3 > 65535     Hash3 = Hash3 and 65535 

Hash4 = Hash4 + (HF4[Li] * Chunk[I]) 

If Hash4 > 65535     Hash4 = Hash4 and 65535 

Hash5 = Hash5 + (HF5[Li] * Chunk[I]) 

If Hash5 > 65535     Hash5 = Hash5 and 65535 

End For 
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Figure 1. Multi-hash algorithm flowchart. 

4.2. Lookup and Matching Stage 

The fingerprint lookup module is essential to a deduplication system, but it can be-

come time-intensive as the fingerprint table grows in size. When the file passes the two 

preview stages (hashing and chunking), rather than comparing the entire chunk byte for 

byte with all chunks in the database, each data chunk will have its hash value, and the 

deduplication process will determine whether there is a match or not through comparing 

the hash value regarding the new chunk with the hash of previously stored data. When a 

match is detected, the new data will not be saved again because it has already been saved, 

yet it is going to be replaced by a reference to the name of the previously saved chunk. 

When no match is detected, such chunks are clearly distinctive, and no byte-to-byte com-

parison is required. Through comparing only chunk fingerprints instead of the entire 

chunks, this approach saves time during the matching step. Conventional systems’ match-

ing strategies are depicted in Figure 2. Due to the way data are chunked and hashed, and 

to how the hashes are compared for determining which chunks can be deduplicated, the 

process of fingerprint lookup has become a bottleneck, which limits the throughput and 

scalability of deduplication-based storage systems. Identical hashes might occur when 

two distinct bits of data are combined, and this is referred to as a hash collision. Simply 

put, the hash collision problem occurs when two separate datasets generate the same hash. 

When a hash collision takes place during data deduplication, two completely separate 

datasets will be detected as two identical datasets, resulting in data loss. 
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Figure 2. Lookup and matching stage flowchart. 

In the proposed hieratical multi-level lookup and matching technique, a new file will 

be chunked, and each chunk is compared based on its size. If the chunks have the same 

size, then the first hash will be compared with the first hash of stored chunks in the hash-

ing index table. If there is a match, then the second, third, fourth, and fifth hashes are 

compared. If the five hashes match, then a match occurs, and there is no need for a byte-

to-byte comparison. This step will save the time needed to compare large-sized hashes 

such as MD5 or SHA-1 byte to byte; instead, the system will compare only five small num-

bers one by one to accelerate the process of the fingerprint lookup stage by simplifying 

the hash judgement, considering that fingerprint lookup latency is greatly impacted by 

the number of fingerprints and the size of each fingerprint. As comparing five tiny values 

is faster than comparing the entire hash byte by byte, the test result demonstrates a con-

siderable enhancement in the time required by the matching process. 

Figure 3 illustrates the matching strategies of the proposed system with the hieratical 

multi-level hashing technique. 
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Figure 3. Lookup and matching stage flowchart. 

5. Experiment 

5.1. Experimental Setup 

We used the C# programming language to create the proposed system. The following 

is a description of the computer configuration used in the experiment: 

o RAM: 16 GB DDR3; 

o CPU: Intel Core i7-3820QM @ 2.70 GHz 4-core processor; 

o Operating System: Windows 10 64-bit; 

o Disk: 1TB PCIe SSD. 

5.2. Experimental Results 

In this work, we carried out comprehensive tests with both real-world and synthetic 

datasets to evaluate the proposed system’s performance. To produce a highly dependable 

result throughout the testing and implementation phase, the suggested technique was ex-

amined with three datasets: Linux Kernel, SQLite, and Oracle RMAN Backup. 

The goals of our experimental evaluation were to measure the hashing index table 

size, hashing time, hashing throughput, matching time, and number of collisions. Since 

we tested three kinds of datasets, we measured the effects of the proposed system on these 

datasets. For our evaluations, we primarily used storage saving and throughput as the 

key performance indicators. Each test had identical experimental circumstances and was 

repeated five times to eliminate any disparities. 

5.2.1. Hashing Index Table Size 

The size of the fingerprint index table is an important metric for system overhead in 

deduplication, which significantly affects the system scalability. A comparison between 

the suggested mathematical multi-hash function and the SHA-1 and MD5 hash functions 

showed that it utilizes a smaller storage size. 

Figure 3 shows the hashing index table size compared with SHA-1 and MD5. It is 

significantly reduced due to the smaller hashes used as chunk fingerprints. 
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The effect of the hash algorithms on the storage size needed to store fingerprints in 

the index table was determined by Equation (1) and is shown in Table 3 and Figure 4. 

Following deduplication, the total number of chunks for Dataset 1 was 10,626,993, was 

1,066,606 for Dataset 2, and was 11,749,768 for Dataset 3. 

𝐻𝑎𝑠ℎ𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥 𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒 = 𝑁𝑜. 𝑜𝑓 𝐵𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝐹𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 × 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝐶ℎ𝑢𝑛𝑘𝑠 𝑎𝑓𝑡𝑒𝑟 𝐷𝐷  (1) 

Table 3. Required storage size for storing fingerprints (hashing index table size). 

 Hashing Index Table Size (MB) 
 SH1 MD5 Multi-Hash Function  

Dataset 1 (Linux Versions) 202.7 162.2 101.4 

Dataset 2 (SQLite Versions) 20.3 16.3 10.2 

Dataset 3 (Oracle Backup) 224.11 179.29 112.05 

 

Figure 4. Hashing index table size comparison. 

5.2.2. Hashing Time and Throughput 

Another main issue is computing the execution time of the processing algorithms and 

checking the efficiency in terms of their working capability. This approach provides high-

speed processing in this area and generates a hash value for the input chunks in less time. 

Figure 5 shows that our hashing algorithm outperforms all the other hashing techniques. 

Table 4 and Figures 5 and 6 show the effect of the hash algorithms on the time and 

throughput of the hashing stage, as calculated by Equation (2). Based on the results below, 

the suggested technique takes the least amount of hashing time for all three datasets, re-

sulting in a higher throughput than the conventional hashing algorithms. 

𝐻𝑎𝑠ℎ𝑖𝑛𝑔 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝐻𝑎𝑠ℎ𝑖𝑛𝑔 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝐷𝑎𝑡𝑎 𝑖𝑛 𝑀𝐵

𝑇𝑖𝑚𝑒 𝑖𝑛 𝑆𝑒𝑐𝑜𝑛𝑑
  (2) 
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Figure 5. Hashing time comparison. 

 

Figure 6. Hashing throughput comparisons. 

Table 4. Hashing time and throughput for the proposed multi-hash function compared with SHA-

1 and MD5. 

 Hashing Time (S) Hashing Throughput (MB/s) 

 SH1 MD5 
Multi-Hash 

Function 
SH1 MD5 

Multi-Hash 

Function 

Dataset 1 (Linux Versions) 1040 1121 385 10.7 10.0 29.0 

Dataset 2 (SQLite Versions) 485 524 251 13.6 12.6 26.3 

Dataset 3 (Oracle Backup) 1831 1866 763 10.5 10.3 25.1 

5.2.3. Lookup and Matching Time 

We carried out experiments with the proposed hieratical multi-level lookup and 

matching technique and the conventional full hash lookup algorithm, and we varied the 

hash size from 80 bytes for the proposed system, 128 bytes for MD5, and 160 bytes for 

SHA-1 to explore the effect of various hash sizes on the fingerprint lookup and matching 
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time and the efficiency of the proposed fingerprint lookup algorithm. We kept track of 

how long each type of fingerprint lookup took. Table 5 and Figure 7 demonstrate that the 

total lookup time varies as the fingerprint technique is changed. As a result, one can indi-

cate that, by utilizing our technique, fingerprint lookup is more effective and saves a sig-

nificant amount of time, thus speeding up the lookup and matching stages. 

Table 5. Lookup and matching times. 

 Lookup and Matching Time (S) 
 SH1 MD5 Multi-Hash Function  

Dataset 1 (Linux Versions) 2810 1765 619 

Dataset 2 (SQLite Versions) 1287 1029 472 

Dataset 3 (Oracle Backup) 4185 3814 1120 

 

Figure 7. Lookup and matching time comparisons. 

For the evaluations, we primarily used the percentage of storage saving, hashing time, 

hashing throughput, and lookup time as the key performance indicators; the evaluation re-

sults in Tables 6 and 7 calculated by Equations (3) and (4) illustrate the excellent foreground 

performance for the proposed multi-hash function compared with SHA-1 and MD5. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑆𝑎𝑣𝑖𝑛𝑔 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝐹𝑖𝑛𝑎𝑙 𝑉𝑎𝑙𝑢𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
 ∗ 100 (3) 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 =
(𝐹𝑖𝑛𝑎𝑙 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
∗ 100 (4) 

Table 6. Multi-hash function efficiency compared to SHA-1. 

 Storage Saving 

(%) 

Hashing Time Saving 

(%) 

Throughput Enhancement 

(%) 

Lookup and Matching 

Time Saving (%) 

Dataset 1 (Linux Versions) 49.97% 62.98% 171.00% 77.97% 

Dataset 2 (SQLite Versions) 49.75% 48.24% 93.38% 63.32% 

Dataset 3 (Oracle Backup) 50.00% 58.32% 139.04% 73.23% 
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Table 7. Multi-hash function efficiency compared to MD5. 

 Storage Saving 

(%) 

Hashing Time Saving 

(%) 

Throughput Enhancement 

(%) 

Lookup and Matching 

Time Saving (%) 

Dataset 1 (Linux Versions) 37.48% 65.65% 190.00% 64.92% 

Dataset 2 (SQLite Versions) 37.42% 52.09% 108.73% 54.13% 

Dataset 3 (Oracle Backup) 37.50% 59.11% 143.68% 70.63% 

5.2.4. Hashing Collision 

The collision rate is the number of occurrences in which two different data items, i.e., 

fingerprints, in our case, point to the same hash on the hash index table. Its proximity 

depends on the hash function used, although the probabilities are small, as they are nearly 

nonzero. However, the matter of data corruption and hash collision must be faced. 

The main purpose of using the proposed multi-hash algorithm is that the second hash 

function reduces the number of collisions detected in the first hash function substantially, 

and the third hash function reduces it to zero. The collision number for Dataset 1 with the 

first hash function was 13,267,815; this number was decreased to 21,339 with the second 

hash function, and the third hash function made it zero. The fourth and fifth hash func-

tions were utilized as further steps to prevent a collision if a chunk overpassed the first 

three hashes. The collision number for each hash in the system was determined as indi-

cated in Table 8; it was discovered that five hashes are a good compromise between the 

size and time of the hashing index table. 

Table 8. Number of collisions based on the number of hashes used. 

 Number of Hash Collisions Detected 
 H1 H2 H3  H4 H5 

Dataset 1 (Linux Versions) 13,267,815 21,339 0 0 0 

Dataset 2 (SQLite Versions) 7,145,178 12,546 0 0 0 

Dataset 3 (Oracle Backup) 23,549,651 37,706 0 0 0 

6. Conclusions and Future Works 

A chunk fingerprint (a hash value derived depending on the chunk’s content) is a 

key for the hashing, lookup, and matching stages in data deduplication. The amount of 

chunks in a deduplication system is usually too large to keep a large (hash-table-based) 

index structure in RAM. Therefore, either the size of index table needs to be reduced or it 

needs to be stored on a secondary storage device, which reduces the system efficiency, as 

the load factor of an efficient hashing index table usually needs to be very low to keep the 

lookup time bounded. 

To address these challenges, we propose a new multi-hash function based on a math-

ematical bounded linear hashing algorithm that promises high-performance fingerprint 

generation, reduces the hashing index table size, and aids in the optimization for lookup 

and matching fingerprints. 

We evaluated the proposed system using three real datasets, and the experimental 

results show that it is able to obtain a significant performance enhancement in addition to 

storage savings. Our experimental evaluation demonstrates that the mathematical hash-

ing algorithm can (1) help enhance hashing time, (2) majorly reduce the hashing index 

table size, and (3) significantly reduce the fingerprint lookup time. We verified the effi-

ciency of our algorithm experimentally; our results in Tables 6 and 7 show that our hash-

ing algorithm outperforms the SHA-1 and MD5 algorithms, as it generates a mathematical 

chunk hash signature of 80 bytes that runs more than twice as fast as an implementation 

of SHA-1 and MD5. This method eliminates the needs for byte-to-byte comparisons and 

saves more time in the matching and lookup stage. 

Future works include 

o using compression for the hashing index table for additional saving, 
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o using a distributed hash index table (DHIT) to reduce matching and lookup I/O, and 

o using a variable number of hashes based on the size of the deduplicated data in-

stead of using five hashes. 
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