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Abstract: In this paper, the topology optimization of continuum structures with design-dependent
loads is studied with a gradient-free topology optimization method in combination with adaptive
body-fitted finite element mesh. The material-field series-expansion (MFSE) model represents the
structural topology using a bounded material field with specified spatial correlation and provides a
crisp structural boundary description. This feature makes it convenient to identify the loading surface
for the application of the design-dependent boundary loads and to generate a body-fitted mesh for
structural analysis. Using the dimension reduction technique, the number of design variables is
significantly decreased, which enables the use of an efficient Kriging-based algorithm to solve the
topology optimization problem. The effectiveness of the proposed method is demonstrated using
several numerical examples, among which a design problem with geometry and contact nonlinearity
is included.

Keywords: design-dependent loads; material-field series-expansion method; Kriging surrogate
model; gradient-free topology optimization

1. Introduction

During the past three decades, topology optimization has been widely applied to
determine the optimal material distribution of various structural and multidisciplinary
design problems [1–7]. Compared with structural topology optimization with invariant
loads, the main feature of the optimization problems with design-dependent loads is that
the load boundaries keep evolving during the optimization procedures. According to the
load direction, design-dependent loads can be generally classified into two categories:
(i) the load direction is always perpendicular to the loading surface, such as the fluid
pressure load on structures in hydrostatics problems; (ii) the load direction is fixed, such
as the soil pressure load on civil structures. The main issues of topology optimization
with design-dependent loads lie in (i) identifying the surface on which a load is applied
during an optimization process and (ii) the difficulty in obtaining the accurate sensitivity
information of design-dependent boundary loads.

In terms of identifying the evolving loading surface in topology optimization, the
commonly used approaches are mainly based on the element-density method. Typically,
Hammer and Olhoff [8] proposed a parameterized isovolumetric density curve to represent
the loading surface, where a load is distributed to nodes using an interpolation function for
FE analysis. To avoid the appearance of an invalid loading surface, Du and Olhoff [9] further
suggested a modified isoline technique, where the loading surface is determined based on
the successive isoline information. Fuchs and Shemesh [10] introduced a parametric loading
surface defined by the polynomial curve or Bezier curve, and the surface parameters were
used as additional design variables of the optimization problem. Zhang et al. [11] proposed
an element-based search scheme, and they used it to identify loading surfaces according to
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the real boundary connection of elements. By introducing fictitious thermal loads, Chen
and Kikuchi [12] proposed a thermal approach to track the loading surface. Besides, many
researchers have made a lot of efforts to determine the loading surface using specific
fluids or multi-physics models within density-based frameworks [13–17]. In addition, the
evolutionary method [18] and the level-set method [19–23] have also been developed to
deal with the topology optimization problems with design-dependent loads.

The above-mentioned gradient-based approaches are relatively complicated in regards
to obtaining the essential sensitivity information of design-dependent loads to design vari-
ables, where approximations are usually adopted. For example, in [8,12], the sensitivities of
pressure loads vanish considering the hypothesis that loads act exactly on the boundaries
of finite elements; in [9], the finite difference approach was used to solve the sensitivities
of pressure loads with respect to design variables. Furthermore, the existing methods can
hardly be extended for complex and highly nonlinear topology optimization problems,
such as material, geometric, or contact nonlinearities.

In gradient-free topology optimization, researchers have conducted a lot of work, in-
cluding the genetic algorithm [24,25], the kriging-assisted level-set method (KG-LSM) [26],
the teaching-learning-based optimization (TLBO) approach [27–29], and the Kriging-based
material-field series expansion (KG-MFSE) method [30–35]. In this study, a general gradient-
free topology optimization framework that combines the material-field series-expansion
(MFSE) model [36–38] and an adaptive body-fitted finite element mesh is proposed. By
providing a threshold dz for the material field in the MFSE model, the load-carrying and
non-load-carrying parts could be easily identified in the design domain. Then, design-
dependent loads were applied to the boundaries of the load-carrying parts. A body-fitted
finite element mesh was applied to complete the finite element analysis. According to
the MFSE method, the design variables used to describe the structural topology were
significantly reduced. The Kriging-based gradient-free optimization algorithm with a self-
adaptive design space adjusting strategy was adopted to solve the topology optimization.

This paper is organized as follows. The minimum compliance topology optimiza-
tion formulation of the structures with design-dependent loads is described in Section 2.
Section 3 details the proposed optimization method, which contains the process of identi-
fying loading surface, and the sequential Kriging-based optimization algorithm is briefly
described in Section 4. In Section 5, five numerical examples were presented to show the
effectiveness of the proposed method in solving the topology optimization problems with
design-dependent loads. Finally, Section 6 summarizes the present work.

2. Minimum Compliance Design Problem of the Structures with
Design-Dependent Loads

When considering the topology optimization problem with design-dependent loads, it
means that the positions or directions of the applied loads keep changing with the evolution
of the structural topologies. Figure 1 shows a schematic representation of design-dependent
loads during the optimization iterations.
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Figure 1. Schematic representation of design-dependent loads. (a) The original design. (b) The op-
timized design. 
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changes, and the locations and directions of the applied pressure load P  changes accord-
ingly (see Figure 1b). 
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Figure 1. Schematic representation of design-dependent loads. (a) The original design. (b) The
optimized design.
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The original design is shown in Figure 1a, and a pressure force P is applied on
the top of the original structure. As the optimization iterations continue, the original
structure changes, and the locations and directions of the applied pressure load P changes
accordingly (see Figure 1b).

In this paper, the topology optimization aimed at minimizing the compliance of a
structure subjected to design-dependent pressure loads with given material usage, and the
formulation is as follows:

find χ

min C = P(χ)Tu(χ)

s.t. K(χ)u = P(χ)∫
χdΩ ≤ V∗

χ = 0 or 1

(1)

where C is the structure mean compliance and the 0/1 discrete function χ denotes
the structural topology, i.e., χ = 0 signifies a void material, while χ = 1 signifies a solid
material. K is the stiffness matrix. u is the structural nodal displacement vector obtained
from the linear or nonlinear equilibrium equation K(χ)u = P(χ). V∗ is the constant
volume of the material constraint.

3. Topology Optimization Based on Material-Field Series Expansion Model and
Adaptive Body-Fitted Mesh
3.1. Bounded Material Field Definition

Here, a bounded material-field function ϕ(x) ∈ [−1, 1] with a certain degree of
correlation behavior was defined in the design domain x ∈ Ωx to describe the structural
topology χ. The mathematical description of the structural topology with the material-field
function was represented as follows:{

χ= 0, if − 1 ≤ ϕ(x) ≤ dz

χ= 1, if dz < ϕ(x) ≤ 1
(2)

where dz is a given threshold which satisfies −1 < dz ≤ 0.
For the material-field function ϕ(x), the spatial correlation at the two points closely

depends on their spatial distance, and an exponential model was used to describe the
correlation as follows:

R(x1, x2) = exp

(
−‖x1 − x2‖2

L2
c

)
(3)

where x1 and x2 are any two points in the design domain x ∈ Ωx, and Lc is the correla-
tion length of the material field. According to Equation (3), the correlation length Lc is
an important factor for determining the correlation between the two points. Therefore,
the correlation length Lc determined the spatial fluctuation degree of the material field.
When the structural topology was represented by the material field ϕ(x), the value of the
correlation length Lc could be used to control the degree of detail of the structures [24]. For
a 2D rectangular design domain with dimensions la and lb, the correlation length was set
to Lc = 0.3 ·min(la, lb) in this study.
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3.2. Reduced Series Expansion of the Material Field

Based on the theory of bounded fields [37–39], the design domain was discretized into
a finite number of regularly arranged material-field observation points xi(i = 1, 2, . . . , NP),
and the series expansion of the material-field ϕ(x) was expressed by

ϕ(x,ξ) =
NP

∑
j=1

(
1
√

αj
ψT

j CP(x)ξ j

)
(4)

where CP(x) =
{

R(x, x1) R(x, x2) . . . R
(
x, xNP

)}
is a vector, that contains the correlation

between x and all the material-field points, and ξ =
{

ξ1 ξ2 . . . ξNP

}T is a vector of uncor-
related MFSE coefficients. αj and ψj are the eigenvalues and eigenvectors of the correction
matrix R, which is expressed as follows:

R =


R(x1, x1) R(x1, x2) · · · R

(
x1, xNP

)
R(x2, x1) R(x2, x2) · · · R

(
x2, xNP

)
...

...
. . .

...

R
(
xNP , x1

)
R
(
xNP , x2

)
· · · R

(
xNP , xNP

)

 (5)

The eigenvalues αj of R are in descending order. The greater the eigenvalues, the
greater the contribution to the corresponding expansion item in Equation (4). Therefore,
considering the question of improving the calculation efficiency without losing sufficient
accuracy, it is efficient to truncate Equation (4) to only a few main M items (M << NP).
The truncation criterion is as follows:

M

∑
m=1

αm ≈ (1− ε) ·
NP

∑
m=1

αm (6)

where ε is a small number. In this paper, we set ε = 0.001.
After the truncation of Equation (4), the material-field ϕ(x) could be approximately

expressed in the vector form, which is

ϕ(x,ξ) ≈ ξTΛ−1/2ΨTCP(x) (7)

where ξ = {ξ1 ξ2 . . . ξM}T contains the M uncertain coefficients. Λ is the diagonal matrix
that consists of M eigenvalues αj, and Ψ consists of M eigenvectors ψj.

According to the range of the material-field ϕ(x,ξ) ∈ [−1, 1] and Equation (7), we
could obtain

− 1 ≤ ξTΛ−1/2ΨTCP(xi) ≤ 1, i = 1, 2, . . . , Np (8)

By squaring the Equation (8), we get

ξTΛ−1/2ΨTCP(xi)CP(xi)
TΨΛ−1/2ξ ≤ 1, i = 1, 2, . . . , Np (9)

By introducing the matrix Wi = Λ−1/2ΨTCP(xi)CP(xi)
TΨΛ−1/2, Equation (8) could

be expressed as follows:
ξTWiξ ≤ 1, i = 1, 2, . . . , Np (10)
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3.3. Identification of the Loading Surface

For topology optimization problems with design-dependent loads, identifying the
loading surface is one of the major tasks. In the MFSE method, it is very convenient to
identify the loading surface as{

non-load-carrying parts, if − 1 ≤ ϕ(x,ξ) ≤ dz

load-carrying parts, if dz < ϕ(x,ξ) ≤ 1
(11)

where the non-load-carrying parts represent the void material, and the load-carrying parts
represent the solid material. In the boundary and topology description of Equation (11),
the different realizations of the bounded material field ϕ(x,ξ) and different thresholds dz
represent different loading surfaces. In this study, the value of the threshold dz is not a
fixed value and the maximum value of dz is 0. The minimum value of dz depends on the
volume constraint V∗ in the optimization formula Equation (1). Generally speaking, the
smaller the volume constraint V∗, the smaller the minimum value of dz. The value of dz
gradually increased with the optimization process.

The schematic diagram for the loading surface and the body-fitted mesh based on the
MFSE is shown in Figure 2. As shown in Figure 2a, we assumed that the design domain is
rectangular with a dimension of la × lb. Initial pressure forces were applied on the top edge
of the design domain, as shown in Figure 2b and the final loading surface is illustrated in
Figure 2c. The whole process mainly consists of three steps as follows:
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parts according to Equation (11). 
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contours of the function value ( )*,ϕ x ξ  in the design domain are obtained. For the case 

Figure 2. Schematic diagram of the loading surface and the body-fitted mesh based on MFSE. (a) A material-field ϕ(x,ξ∗)
in the rectangular design domain. Green plane: the given threshold dz of ϕ(x,ξ∗). (b) The initial rectangular design
domain with an initial pressure applied on the top edge. (c) Red part: load-carrying parts (ϕ(x,ξ∗) ≥ dz). White part:
non-load-carrying parts (ϕ(x,ξ∗) < dz). Blue line: the new loading surface. (d) The body-fitted meshes with triangular
elements. Black points: the triangle element barycenter.
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Step 1: Represent the Material-Field Function Using Series Expansion

Suppose that there are NP observation points evenly distributed in the rectangular
design domain x ∈ Ωx and that the position of the material-field point is represented
by x1, x2, . . . , xNP . According to the correlation formulation in Equation (3), the cor-
rection matrix R containing the correlation information of all the material-field points
can be determined. When a set of uncorrelated MFSE coefficients (design variables)
ξ∗ = {ξ1

∗ ξ2
∗ . . . ξM

∗}T is given, the material-field function value ϕ(x,ξ∗) in the de-
sign domain could be determined using Equation (7). In Figure 2a, a material-field function
ϕ(x,ξ∗) was given, where its upper and lower boundaries are between −1 and 1. The
green plate is the given threshold dz, and it was used to cut the material-field function
ϕ(x,ξ∗) and divide the design domain into load-carrying parts and non-load-carrying
parts according to Equation (11).

Step 2: Determine the Load-Carrying Parts and Update the Loading Surface

After cutting the material-field function ϕ(x,ξ∗) using the given threshold dz, the
contours of the function value ϕ(x,ξ∗) in the design domain are obtained. For the case
ϕ(x,ξ∗) ≥ dz, the load-carrying parts are denoted by the red part. The white part in
Figure 2c represents the non-load-carrying part that satisfies ϕ(x,ξ∗) < dz. There is no
doubt that the loads were applied to the load-carrying parts. The detailed process of
updating the loading surfaces of any structure: (i) When the initial pressure is initially
applied on the front edge of the design domain (e.g., Figure 2b), we choose N discrete
points Xm(m = 1, 2, . . . , N) uniformly distributed on the initial loading surface as shown
in Figure 3a, and we define the distance between adjacent discrete points Xm and Xm+1
is d. (ii) Judging the material-field value from each point Xm along the pressure direction

and searching out the position
^
xm that first satisfies ϕ(

^
xm,ξ∗) ≥ dz (represented by the

yellow dots in Figure 3a). It should be pointed out that if ϕ(
^
xm,ξ∗) ≥ dz does not exist in

the design domain, the loading point
^
xm is marked in the back edge of the design domain.

(iii) Connecting all the points
^
xm to spline curves which are obtained by the cubic spline

interpolation. Based on the above process, the blue curves in Figure 3 for two typical cases
are identified as the loading surfaces.
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^
xm,

^
xm+1) between two

adjacent points
^
xm and

^
xm+1 is greater than a given value D= 5 · d).
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During the proposed gradient-free optimization process, the sample is considered
invalid if the loading surface is discontinuous as shown in Figure 3b. These invalid samples

are easily identified by judging whether the distance dis(
^
xm,

^
xm+1) between two adjacent

discrete points
^
xm and

^
xm+1 on the loading surface is greater than a given value D= 5 · d.

Step 3: Apply the Pressure Loads and Re-Meshing for the Finite Element Analysis

According to the contour obtained in Step 2, the design domain was cut into several
parts: load-carrying parts and non-load-carrying parts. To avoid mesh generation failure
for the cutting design domain, it was reasonable to mesh with irregular triangle elements,
and the process of meshing is shown in Figure 4. The pressure loads were then applied
to the nodes of the triangular elements on the loading surface, as shown in Figure 2d.
Suppose that there were eN triangle elements (e1, . . . , eN) in the design domain and that the
barycenter of the triangle elements is represented by (xe1 , . . . , xeN ), as shown in Figure 2d
by the black points. According to the mapping of the material-field function value ϕ(x,ξ∗),
we could determine the material-field function value ϕ(xe1 ,ξ∗), . . . , ϕ(xeN ,ξ∗) at the el-
emental barycenter xe1 , . . . , xeN . Then, based on the material interpolation function, the
material property of each element in Figure 2d was determined to complete the finite
element analysis.
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3.4. Topology Optimization Formulation for the Structures with Design-Dependent
Boundary Loads

According to Equation (2) and the material-field function ϕ(x,ξ) ∈ [−1, 1], it is
reasonable to use the SIMP interpolation function to map the material-field function ϕ(x,ξ)
to the elastic modulus of the structure. Here, we assumed that there were eN finite elements,
and the interpolation function of the elemental elastic modulus was shown as follows:

Ee = Emin +

(
1 + ϕ̃(xe,ξ)

2

)3

(E0 − Emin), e = 1, 2, . . . , eN (12)

where E0 is the elastic modulus of fully solid materials, Emin is a small positive value
to avoid singularity, and it was assumed that Emin = 10−6E0. ϕ̃(x,ξ) is the Heaviside
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function projection [40] of the material-field function ϕ(x,ξ), which was used to obtain a
clear topology structure, where the function is

ϕ̃(xe,ξ) =

 ϕ(xe,ξ) · e−β + 1− e−β·ϕ(xe ,ξ), if ϕ(xe,ξ) ≥ 0

ϕ(xe,ξ) · e−β − 1 + e−β·ϕ(xe ,ξ), if ϕ(xe,ξ) < 0
(13)

where β denotes the smoothing parameter.
According to Equation (7), the minimum compliance topology optimization problem

using the MFSE method was expressed as follows:

find ξ

min C = P(ξ)Tu(ξ)

s.t. K(ξ)u(ξ) = P(ξ)

eN
∑

e=1
ρe(ξ)Ve ≤ V∗

ξTWeξ ≤ 1, e = 1, 2, . . . , eN

(14)

where Ve denotes the eth elemental volume, and the design variables are the MFSE coeffi-
cients ξ = {ξ1, ξ2, . . . , ξM}T in the ξ-space. Note that the elemental relative density could
be determined using ρe(ξ) =

1+ϕ̃(xe ,ξ)
2 .

4. Sequential Kriging-Based Optimization Algorithm

In this study, we used the sequential optimization algorithm [24] based on the Kriging
surrogate model to complete the MFSE-based topology optimization problem (15) with
design-dependent loads. According to the algorithm, in each sub-domain Ωk, the topology
optimization model in Equation (14) needs to be converted to the unconstrained form,
which is:

min Cobj = P(ξ)Tu(ξ) + p0 ·max

(
max

i

((
eN

∑
e=1

ρe(ξ)Ve −V∗
)

,
(
ξTWeξ− 1

))
, 0

)
(15)

where p0 is the penalty multiplier.
The sequential Kriging-based optimization algorithm consists of several sub-

optimization problems, where each sub-optimization problem contains two steps: (i) choos-
ing initial samples using Latin hypercube sampling to construct a surrogate model [41];
(ii) adding post samples using the EI criterion to obtain a smaller objective function value.
The number of the post sampling Ns is 30 in this paper.

To improve the accuracy of the surrogate model and the searching efficiency as well
as reduce the number of invalid loading surfaces during sampling, it is necessary to use
the self-adaptive strategy of adjusting the design domain to deal with the topology opti-
mization problem with design-dependent pressure loads in the Kriging-based algorithm.
For the specific implementation processes of the self-adaptive strategy, see literature [24].
In this paper, the structural samples of the invalid loading surface will produce poor per-
formance, and it should be pointed out that the Kriging-based optimization algorithm can

effectively avoid the omission of the invalid loading surface (judged by dis(
^
xm,

^
xm+1) > D)

in Section 3.3.
The flow chart of gradient-free topology optimization with design-dependent bound-

ary loads is illustrated in Figure 5. The convergence criterion of the optimization procedure
is that the change of the objective function in two consecutive iterations is less than 0.01.
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5. Numerical Examples

To validate the effectiveness of the proposed method for the topology optimization
with design-dependent pressure loads, we here presented five examples, including an
example with contact supports with friction. In each example, Young’s modulus and
Poisson’s ratio of the material were E0 = 200 GPa, and υ = 0.3, respectively. The initial
value of the smoothing parameter β was zero, and it was gradually increased to 20 during
the optimization process. The plane stress assumption was considered for all the examples.
The finite element re-meshing and analysis were completed in the commercial package
ABAQUS. The number of design variables in Equation (14) is 38 for examples 1, 2, and 3,
53 for example 4, and 63 for example 5.

5.1. Example 1

In this example, a bridge-like rectangular structure with sides lx = 120 mm and
ly = 60 mm was considered, as shown in Figure 6. The structure was clamped at the two
bottom corners and subjected to an initial pressure P = 10 N/mm from its top edge. The
directions of the pressure loads were fixed, and the allowable material volume fraction
was 50%.
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pology in Figures 7 and 9, it can be seen that these two results are very similar. The two 
optimized solutions consist of a global single arch without small columns, and the curva-
ture center of the loading surface is located above the top surface of the structure. In ad-
dition, for the optimal solution of reference [9] (Figure 9), the same load and boundary 
conditions as in Example 1 are applied to the structure, and the compliance of the struc-
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Figure 6. Design domain and boundary conditions of the bridge-like structure.

The optimized design is shown in Figure 7 and its compliance is C = 118.29 Nmm. In
Figure 7, the red part is the load-carrying part, where the new loading surface remained on
the top edge of the load-carrying part. After cutting the design domain with the contour,
we meshed the design domain with the triangle element shown in Figure 8. Based on
the interpolation function in Equation (11), the elemental relative density in Figure 8
could be obtained. Figure 9 shows the optimized solution for the bridge-like structure
example obtained with a gradient-based method by Du [9]. Compare the optimized
topology in Figures 7 and 9, it can be seen that these two results are very similar. The
two optimized solutions consist of a global single arch without small columns, and the
curvature center of the loading surface is located above the top surface of the structure. In
addition, for the optimal solution of reference [9] (Figure 9), the same load and boundary
conditions as in Example 1 are applied to the structure, and the compliance of the structure
is C = 118.82 Nmm, which is almost the same as the compliance of the optimal structure
in this paper (C = 118.82 Nmm vs. C = 118.29 Nmm).
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5.2. Example 2 
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pressure loads perpendicular to the loading surface was considered. Figure 11 shows the 
design domain, boundary conditions, and initial pressure loads =10 N/mmP . The sides 
of the rectangular design domain are 120 mmxl =  and 60 mmyl = , and the allowable 
material volume fraction is 30%. 
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Figure 9. Optimized solution for the bridge-like structure of the literature [9].

The iteration history of the proposed MFSE-based gradient-free method with adaptive
body-fitted meshes for solving the topology optimization problem with design-dependent
loads was plotted in Figure 10. The objective function converged to a stable value dur-
ing the iteration process while adjusting the design domain. The reason for the appear-
ance of the fluctuant objective function is due to the Latin hypercube sampling in each
sub-optimization.
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5.2. Example 2

In this example, the optimization of a cover-like structure with the directions of the
pressure loads perpendicular to the loading surface was considered. Figure 11 shows the
design domain, boundary conditions, and initial pressure loads P = 10 N/mm. The sides
of the rectangular design domain are lx = 120 mm and ly = 60 mm, and the allowable
material volume fraction is 30%.
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The optimized topology for the cover-like structure is shown in Figure 12, and the
final objective function is C = 132.68 Nmm. The elemental relative density of the triangle
element in the design domain is shown in Figure 13. As seen in Figure 12, the optimized
topology for the cover-like structure is an arched structure, which is similar to the optimized
solution obtained by Zhang [12] and Neofytou [23]. Therefore, it can be seen that the
proposed method is effective in solving the topology optimization problem with design-
dependent loads.
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5.3. Example 3

The design domain and boundary conditions of the structure in this example are
similar to those in Section 5.1, while the position and directions of the initial pressure loads
are different. As shown in Figure 14, the bridge-like structure was subjected to constant
initial pressure loads P = 10 N/mm on the top, left, and right edges and the pressure
load direction was perpendicular to the loading surface. The final volume fraction was
set to 50%.
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The bridge-like structure optimum solution and the elemental relative density of
the design domain are shown in Figures 15 and 16, and the final compliance of this
optimum topology is C = 160.88 Nmm. As seen in Figure 15, the curvature center of
the curved loading surface is below the structure. As the spherical shape is theoretically
an ideal structure for a pressure vessel, this optimized structure is also intuitively the
expected solution.
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5.4. Example 4

This piston head structure was introduced in literature [21], as shown in Figure 17.
The design domain is a rectangle whose size 120 mm× 40 mm, and it was subjected to an
initial pressure of P = 10 N/mm applied on its top edge. The direction of the pressure
loads was perpendicular to the loading surface. In Figure 17, the degrees of freedom
along the horizontal direction are constrained on the left and right sides, and the central
point of the bottom edge of the structure is fully constrained. A volume fraction of 40%
was applied.
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Figure 18 shows the structural topology of piston head structure subjected to design-
dependent loads by using the proposed method, where the compliance value of this
optimized design is C = 160.99 Nmm. As shown in Figure 18, from an overall look, the
gradient-free optimized solution in this study is similar to the design from
Emmendoerfer et al. [21]. In addition, the triangle element grid of the design domain
and the elemental relative density are shown in Figure 19.
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5.5. Example 5

The last example considered a two-point supported beam structure, whose sides
were 120 mm × 30 mm, where the friction contact effect and geometrical nonlinearity
were considered. Generally speaking, for large deformation contact problems, the contact
position of a structure changes when a load is applied. Therefore, to ensure the consistency
of the structure in the initial position, we added a non-design domain part, whose sides
were 120 mm× 1 mm, at the bottom of the structure, as shown in Figure 20. The beam
was placed on two semi-circular supports with a radius of r = 30 mm. Both supports were
rigid and had a friction coefficient of fc = 0.15 with the surface of the beam. An initial
pressure P was applied at the top edge of the structure, and the directions of the pressure
loads were fixed. The allowable material volume fraction was 50%.
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sides were 120 mm 1 mm× , at the bottom of the structure, as shown in Figure 20. The 
beam was placed on two semi-circular supports with a radius of 30 mmr = . Both sup-
ports were rigid and had a friction coefficient of 0.15cf =  with the surface of the beam. 
An initial pressure P  was applied at the top edge of the structure, and the directions of 
the pressure loads were fixed. The allowable material volume fraction was 50%.  

 
Figure 20. Design domain and boundary conditions of the two-point supported beam. Figure 20. Design domain and boundary conditions of the two-point supported beam.
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The optimized solutions for the structure subjected to different values of pressure
loads, P = 10 N/mm and P= 3.2 KN/mm, are presented in Figure 21a,b, respectively.
As seen in Figure 21, the two optimized topologies for the cases with the two loads have
distinct differences. The length of the solid material at the bottom of the beam structure in
Figure 21a is significantly greater than that of the structure in Figure 21b. The reason for
this is that with the increase in the pressure load, the contact point between the beam and
the two semi-circular supports changes inwards.
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The deformed configurations of the optimal solutions in Figure 21 for the two cases 
are shown in Figure 22a,b. The deformation of the structure for =3.2 KN/mmP  was sig-
nificantly greater than that of the structure for =10 N/mmP  ( max =3.38 mmu vs.

max =0.027 mmu ). This means that for the topology optimization with design-dependent 
loads, the large pressure loads have an important influence on the optimal material lay-
out. Here, it should be noted that for the geometrical nonlinearity and contact problems 
considering the friction coefficient, it would be difficult to analytically derive the sensitiv-
ity of the objective function. According to the optimized solutions in Figure 21, this reveals 
that it is also effective to implement the gradient-free method to deal with the complex 
topology optimization problem with design-dependent loads. 

 
(a) 

Figure 21. Optimized solutions for the two-point supported beam. (a) P = 10 N/mm,
C = 1221.81 Nmm; (b) P = 3.2 KN/mm, C = 4.56× 106 Nmm.

The deformed configurations of the optimal solutions in Figure 21 for the two cases
are shown in Figure 22a,b. The deformation of the structure for P= 3.2 KN/mm was
significantly greater than that of the structure for P = 10 N/mm (umax= 3.38 mm vs.
umax= 0.027 mm). This means that for the topology optimization with design-dependent
loads, the large pressure loads have an important influence on the optimal material layout.
Here, it should be noted that for the geometrical nonlinearity and contact problems consid-
ering the friction coefficient, it would be difficult to analytically derive the sensitivity of the
objective function. According to the optimized solutions in Figure 21, this reveals that it is
also effective to implement the gradient-free method to deal with the complex topology
optimization problem with design-dependent loads.
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6. Conclusions

In this paper, an effective gradient-free topology optimization strategy is adopted to
deal with continuum structures subjected to design-dependent loads. Based on the MFSE
model, it is convenient to generate a body-fitted finite element mesh and to identify the
loading surface for the application of the design-dependent boundary loads. Furthermore,
the design variables used to describe the structure topology are significantly reduced. The
topology optimization problem is solved by using the sequential Kriging-based optimiza-
tion algorithm with a self-adaptive design space adjusting strategy. Numerical examples
show the validity and effectiveness of the proposed method.

Although more than 2000 finite element analyses are required to complete the pro-
posed gradient-free topology optimization, it will have developing prospect in practical
engineering since the proposed method does not need sensitivity information. With the
rapid development of computer hardware and parallel processing technology, the compu-
tational costs of the proposed method will not be a heavy burden shortly. It can be easily
implemented to solve complex nonlinear problems considering design-dependent loads,
contact effects, and geometrical nonlinearity.
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