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Abstract: We review earlier and recent results on the Markov moment problem and related polyno-
mial approximation on unbounded subsets. Such results allow proving the existence and uniqueness
of the solutions for some Markov moment problems. This is the first aim of the paper. Our solutions
have a codomain space a commutative algebra of (linear) symmetric operators acting from the entire
real or complex Hilbert space H to H; this algebra of operators is also an order complete Banach
lattice. In particular, Hahn–Banach type theorems for the extension of linear operators having a
codomain such a space can be applied. The truncated moment problem is briefly discussed by means
of reference citations. This is the second purpose of the paper. In the end, a general extension theorem
for linear operators with two constraints is recalled and applied to concrete spaces. Here polynomial
approximation plays no role. This is the third aim of this work.

Keywords: extension of linear operators; polynomial approximation; Markov moment problem;
existence of a solution; uniqueness of the solution; quadratic forms; moment determinate measure;
symmetric operators; Mazur–Orlicz theorem

1. Introduction

Originally, the moment problem was formulated by T. Stieltjes in 1894–1895 (see [1]):
find the repartition of the positive mass on the nonnegative semiaxis, if the moments of
arbitrary orders k (k = 0, 1, 2, . . .) are given. Specifically, in the Stieltjes moment problem, a
sequence of real numbers (yk)k≥0 is given, and one looks for a nondecreasing real function
σ(t) (t ≥ 0), which verifies the moment conditions:

∫ ∞
0 tkdσ = yk, (k = 0, 1, 2, . . .). If

such a function σ does exist, the sequence (yk)k≥0 is called a Stieltjes moment sequence. A
Hamburger moment sequence is a sequence (yk)k≥0 for which there exists a positive regular
Borel measure µ on R, such that

∫
R tkdµ = yk, k = 0, 1, . . .. The existence, uniqueness, and

eventually the construction of the solution dσ starting from its moments
∫ ∞

0 tkdσ, k ∈ N
is under attention. The problems stated above have been generalized as follows: being
given a sequence

(
yj
)

j∈Nn of real numbers and a closed subset F ⊆ Rn, n ∈ {1, 2, . . .}, find

a positive regular Borel measure µ on F such that
∫

F tjdµ = yj, j ∈ Nn. This is the full
moment problem. The existence, uniqueness, and construction of the unknown solution µ
are the focus of attention. The numbers yj, j ∈ Nn are called the moments of the measure
µ. When a sandwich condition on the solution is required, we have a Markov moment
problem. The moment problem is an inverse problem since the measure µ is not known. It
must be “found”, starting from its moments. The direct problem could be: being given the
measure µ, find its moments.

We use the following notations:

N = {0, 1, 2, . . .}, R+ = [0, ∞],
ϕj(t) = tj = tj1

1 · · · t
jn
n , j = (j1, . . . , jn) ∈ Nn, t = (t1, . . . , tn) ∈ F, n ∈ N, n ≥ 1.
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P = R[t1, . . . , tn] will be the vector space of all polynomials with real coefficients,
and P+ = P+(F) denotes the convex cone of all polynomials p ∈ P which satisfy the
condition p(t) ≥ 0 for all t ∈ F. If F is closed and unbounded, then we denote by C0(F) the
vector space of all the real valued continuous compactly supported functions defined on
F. If yj, j ∈ Nn are elements of a Banach lattice Y, a solution for the moment problem is a
positive linear operator T : X → Y, satisfying the moment interpolation conditions

T
(

ϕj
)
= yj, j ∈ Nn , (1)

where X is a Banach lattice containing P and C0(F). An important particular case is when
X = L1

ν(F), where ν is a positive regular Borel moment determinate measure on F, with
finite moments of all orders. Recall that ν is called a moment determinate measure if it is
uniquely determined by its moments

∫
F tjdν, j ∈ Nn (or, equivalently, by its values on P).

Y may be a commutative Banach algebra of self-adjoint operators acting on a Hilbert space,
which is also an order complete Banach lattice. In this case, we have an operator valued
moment problem. If we define the linear operator

T0 : P → Y, T0

(
∑
j∈J0

αj ϕj

)
:= ∑

j∈J0

αjyj, (2)

assuming that T0 satisfies the positivity condition:

p ∈ P , p(t) ≥ 0 ∀t ∈ F ⇒ T0(p) ≥ 0, (3)

then the existence of a (positive) solution T for the moment problem defined by (1) is
equivalent to the existence of a positive linear extension T of T0 from P to the entire Banach
lattice X.

For basic notions and terminology used in this paper see the monographs [1–7].
In [8], the main extension result (Kantorovich theorem) on the extension of positive linear
operators is proved. It will be applied in Section 3 below. If Y = R and (3) is verified, the
Haviland theorem [9] ensures the existence of a positive regular Borel measure µ on F, such
that ∫

F
tjdµ = T0

(
ϕj
)
= yj, j ∈ Nn.

If these equalities hold true, then we say that
(
yj
)

j∈Nn is a moment sequence (or a
sequence of moments) on F, and µ is a representing measure for T0 defined by (2). In this
paper, by a measure on F we mean a positive regular Borel measure having finite moments
of all orders on F. Moments appear in physics, probabilities, and statistics, as discussed in
the Introduction of [3]. The papers [10–21] refer to various aspects of the moment problem
or contain related results on polynomial functions. In ref. [22], extension and controlled
regularity of linear operators is applied to characterize the monotone increasing convex
operators on a convex cone. The fact that any positive linear operator acting between two
ordered Banach spaces is continuous is also proved. The papers [23–29] are devoted to
some main aspects of the Markov moment problem or to the extension of linear operators
with two constraints (the extension satisfies a sandwich condition). In the paper [29], such
general theorems are applied to the Markov moment problem and Mazur–Orlicz type
theorems for operators, without using polynomial approximation. On the other hand,
polynomial approximations are reviewed and applied to the existence and uniqueness of
the solution for some full Markov moment problems. The main difference between the one-
dimensional and the multidimensional cases of the moment problem, in terms of a sequence
of numbers

(
yj
)

j∈Nn , can be formulated in the following way: for any n ∈ {1, 2 . . .}, any

moment sequence
(
yj
)

j∈Nn is positive semi-definite; that is:
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∑
i,j∈J0

λiλjyi+j ≥ 0

for any finite subset J0 ⊂ Nn and any
{

λj; j ∈ J0
}
⊂ R. Indeed,

∑
i,j∈J0

λiλjyi+j = ∑
i,j∈J0

λiλj

∫
F

ti+jdµ =
∫

F

(
∑
j∈J0

λjtj

)2

dµ ≥ 0,

For n = 1, the converse is true, since any non-negative polynomial on R is a sum of

(two) squares of polynomials, and a square of a polynomial can be written as
(

∑j∈J0
λj ϕj

)2
=

∑i,j∈J0
λiλj ϕi+j; then, one applies Haviland’s theorem. Thus, for n = 1 a sequence of real

numbers is a moment sequence if, and only if, it is positive semi-definite. For n ≥ 2, there ex-
ist positive semi-definite sequences that are not moment sequences (see [2]). On Rn, n ≥ 2,
there exist nonnegative polynomials which are not sums of squares (see [3,10,12]). The first
example of such a polynomial was discussed in [12]. The rest of the paper is organized as
follows: Section 2 briefly summarizes the methods used in this work. In Section 3, the main
results are stated, and some of them are also proved or discussed. Section 4 discusses the
results mentioned above and concludes the paper.

2. Methods

The methods applied in the paper are partially motivated by the importance of solving
the old and modern aspects of the moment and related problems. Here are the main
methods used in the sequel:

(1) Extension of positive linear operators (see [8] for the operator version). Extension of
linear operators, satisfying a sandwich condition (see [25]). Such results are used in
the existence of a solution for some Markov moment problems and the Mazur–Orlicz
theorem (see [29]).

(2) Elements of determinacy of measures on R and on R+ (the one-dimensional case)
(see [3] and mainly [13] for checkable sufficient conditions on determinacy).

(3) Polynomial approximation of nonnegative continuous compactly supported functions
defined on a closed unbounded subset F ⊆ Rn by dominating polynomials. The
approximation holds in L1

ν(F), where ν is a moment determinate measure on F. If
F = Rn, ν = ν1 × · · · × νn, and νj is moment determinate measure on R, j = 1, . . . , n,
the approximation mentioned above holds by means of finite sums of polynomials
p1 ⊗ · · · × ⊗pn, where pj is a nonnegative polynomial on R, j = 1, . . . , n (see formula
(4) below for the notation p1 ⊗ · · · × ⊗pn). Since each pj is the sum of (two) squares
of polynomials in R[t], we know the expression of such approximating polynomials
in terms of sums of squares. A similar method works when we replace Rn by Rn

+

( p ∈ P+(R+)⇔ p(t) = p2
1(t) + tp2

2(t), t ∈ R+ , for some p1, p2 ∈ R[t]). These results
lead to the characterization of the existence and uniqueness of the solutions for the
multidimensional Markov moment problems in terms of quadratic forms. Moreover,
the positivity of some linear continuous operators in terms of quadratic forms is
obtained as well (see [27]).

(4) Results, comments, and remarks on the truncated moment problem are mentioned in
Section 3.3 (see [20,21,23,24,28]).

3. Results
3.1. On Determinacy: The One-Dimensional Case

In what follows, we review some known aspects of the problem of determinacy of a
measure, in the one-dimensional case. A Hamburger moment sequence is determinate if it
has a unique representing measure, while a Stieltjes moment sequence is called determinate
if it has only one representing measure supported on [0, ∞]. The Carleman theorem (the
next result) contains a powerful sufficient condition for determinacy.
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Theorem 1 (Carleman condition; see [3], Theorem 4.3). Suppose that y = (yn)n∈N is a positive

semi-definite sequence (
n
∑

i,j=0
yi+jλiλj ≥ 0 for all n ∈ N and arbitrary λj ∈ R, j = 0, . . . , n).

(i) If y satisfies the Carleman condition

∞

∑
n=1

y−
1

2n
2n = +∞,

then y is a determinate Hamburger moment sequence.
(ii) If in addition (yn+1)n∈N is positive semi-definite and

∞

∑
n=1

y−
1

2n
n = +∞,

then y is a determinate Stieltjes moment sequence.

The following theorem of Krein consists of a sufficient condition for indeterminacy
(for measures given by densities).

Theorem 2 (Krein condition; see [3], Theorem 4.14). Let f be a nonnegative Borel function on
R. Suppose that the measure µ defined by dµ = f (t)dt is a Radon measure on R and has finite
moments yn :=

∫
R tndµ for all n ∈ N. If

∫
R

−ln( f (x))
1 + x2 dx < +∞,

then the moment sequence y = (yn)n∈N. is M− indeterminate.

Next, we give new checkable sufficient conditions on distributions of random variables
that imply the Carleman condition, ensuring determinacy. Consider two random variables
V ∼ Ψ, V with values in R, W ∼ Φ, W with values in R+. Assume that both Ψ and Φ
have continuous derivatives and let f = Ψ′ and g = Φ′, respectively, be the corresponding
densities. All moments of Ψ, Φ are assumed to be finite. The symbol↗ used below has the
usual meaning of “monotone increasing”.

Theorem 3 (see [16], Theorem 1; Hamburger case). Assume that the density f of Ψ is symmetric
on R and continuous and strictly positive outside an interval [−t0, t0], t0 > 1, such that the
following conditions hold: ∫

|t|≥t0

−ln f (t)
t2 ln(|t|)dt = ∞,

−ln f (t)
lnt ↗ ∞ as t0 ≤ t→ ∞.

Then V ∼ Ψ satisfies Carleman’s condition, and hence it is M−determinate.

Theorem 4 (see [13], Theorem 2; Stieltjes case). Assume that the density g of Φ is continuous
and strictly positive on [a, ∞] for some a > 1 such that the following conditions hold:

∫ ∞

a

−lng
(
t2)

t2lnt
dt = ∞,

−lng(t)
lnt ↗ ∞ as a ≤ t→ ∞.

Under these conditions, W ∼ Φ satisfies Carleman’s condition, and hence it is M−determinate.

Example 1. The distribution function Φ having a density g(u) = exp(−u), u ∈ R+, satisfies
the conditions of Theorem 4, hence it is M-determinate.
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Remark 1. The problem of determinacy of measures on Rn, Rn
+, n ≥ 2, is much more difficult

than that for the case n = 1. In the next subsection, we partially solve this problem (see Lemmas
3–5, Theorem 8, as well as their corollaries stated or proved in Section 3.2).

3.2. Polynomial Approximation and Some of Its Applications

As we have seen in Section 1, characterizing moment sequences in terms of the
existence of a representing measure on Rn, n ≥ 2 is not as simple as in one dimension.
However, important results have been proved for compact subsets with nonempty interiors
in Rn (see [14]) and for semi-algebraic compact subsets in Rn, for arbitrary n ≥ 2, n ∈ N
(see [3,15–17]). For all such compact subsets involved in the papers [14–17], the existence
of a representing measure for a given sequence of numbers has been characterized by
pointing out special nonnegative polynomials on the compact under attention. Moreover,
for any polynomial taking (strictly) positive values at all points of the compact subset,
decomposition theorems were proved. Namely, the explicit form of a positive polynomial
as the sum of special polynomials obtained by the aid of those polynomials that define
the compact subset has been found. In the case of the semi-algebraic compact subset,
this last result is named Schmüdgen’s Positivstellensatz. Its statement involves not only
the polynomials that define the semi-algebraic compact but also sums of squares of other
polynomials. There also exists Putinar’s Positivstellensatz. They were continued and
generalized in [17], where the case of unbounded semi-algebraic sets is studied, using
deep results in operator theory. To solve Markov moment problems on Rn, Rn

+, where the
explicit form of nonnegative polynomials cannot be expressed in terms of sums of squares,
we use the approximation of any nonnegative continuous compactly supported function ψ
by sums of special polynomials of the form

(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) = p1(t1) · · · pn(tn) (4)

where each pj is nonnegative on R (or on R+), j = 1, . . . , n. We recall that

p(t) ≥ 0 ∀t ∈ R⇔ p(t) = p2
1(t) + p2

2(t), t ∈ R,
p(t) ≥ 0 ∀t ∈ R+ ⇔ p(t) = p2

1(t) + tp2
2(t), t ∈ R+

for some p1, p2 ∈ R[t]. Thus we can express approximating polynomials in terms of sums
of squares. This leads to characterizations for the existence and uniqueness of the full
Markov moment problem in terms of quadratic forms. The sums of special nonnegative
polynomials (4) approximate ψ and dominate ψ. The approximation holds in the space
L1

ν(Rn), (respectively in L1
ν

(
Rn
+

)
), where ν = ν1 × · · · × νn, with each νj being a moment

determinate measure on R (respectively on R+), with finite moments of all orders. We
start with polynomial approximation by nonnegative polynomials on R+, for continuous
nonnegative functions. The proof of the next results is based on the Stone-Weierstrass
theorem and the properties of partial sums of the alternate Leibniz series obtained from
the Taylor series expansion of the functions ek(t) = exp(−kt), t ∈ [0, ∞], k ∈ N.

First, we recall the Kantorovich extension result for positive linear operators [8]. Let
X1 be an ordered vector space whose positive cone X1,+ generates X1 (X1 = X1,+ − X1,+).
Recall that in such an ordered vector space X1, a vector subspace S is called a majorizing
subspace if for any x ∈ X1 there exists s ∈ S such that x ≤ s. The following Kantorovich
theorem on the extension of positive linear operators holds true:

Theorem 5 (see [8], Theorem 1.2.1). Let X1 be an ordered vector space whose positive cone
generates X1, X0 ⊂ X1—a majorizing vector subspace, Y an order complete vector space, and
T0 : X0 → Y a positive linear operator. Then, T0 admits a positive linear extension T : X1 → Y .

Another extension type result for linear operators, satisfying a sandwich condition,
formulated in terms of the Markov moment problem is stated as follows:
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Theorem 6 (see [25], Theorem 4). Let X be an ordered vector space, Y an order complete vector
lattice,

{
xj
}

j∈J ,
{

yj
}

j∈J families of elements in X and Y, respectively, and T1, T2 ∈ L(X, Y) two
linear operators. The following statements are equivalent:

(a) There is a linear operator T ∈ L(X, Y), such that

T1(x) ≤ T(x) ≤ T2(x), x ∈ X+, T
(

xj
)
= yj, j ∈ J;

(b) For any finite subset J0 ⊂ J, and any
{

αj
}

j∈J0
⊂ R, the following implication holds true:(

∑
j∈J0

αjxj = ψ2 − ψ1, ψ1, ψ2 ∈ X+

)
⇒ ∑

j∈J0

αjyj ≤ T2(ψ2)− T1(ψ1).

(c) If X is a vector lattice, then assertions (a) and (b) are equivalent to (c), where (c) T1(w) ≤
T2(w) for all w ∈ X+ and for any finite subset J0 ⊂ J and ∀

{
αj; j ∈ J0

}
⊂ R, we have

∑
j∈J0

αjyj ≤ T2

(∑
j∈J0

αjxj

)+
− T1

(∑
j∈J0

αjxj

)−.

Theorem 6 can be obtained from a more general result proved in [26].

Lemma 1 (see [28], Lemma 1). Let ψ : R+ = [0, ∞]→ R+ be a continuous function, such that
lim
t→∞

ψ(t) exists in R+. Then there is a decreasing sequence (hl)l in Span{ek; k ∈ N}, where the

functions ek; k ∈ N are defined as follows:

ek(t) = exp(−kt), t ∈ [0, ∞[ , k ∈ N,

such that hl(t) ≥ ψ(t),t ≥ 0, l ∈ N = {0, 1, 2, . . .}, limhl = ψ uniformly on [0, ∞). There exists
a sequence of polynomial functions ( p̃l)l∈N, p̃l ≥ hl ≥ ψ, lim p̃l = ψ, uniformly on compact
subsets of R+. In particular, such polynomial approximation holds for nonnegative continuous
compactly supported functions ψ : R+ → R+ .

In applications, the preceding lemma could be useful in order to prove a similar type
of result for continuous functions defined only on a compact subset K ⊂ R+, taking values
in R+. For such a function as ϕ : K → R+, one denotes by ϕ0 : R+ → R+ the extension of
ϕ, which satisfies ϕ0(t) = 0 for all t ∈ R+\K. From Lemma 1 we infer the next result. To
this aim, we observe that ϕ0 is dominated by nonnegative continuous compactly supported
functions ψ : R+ → R+, ψ(t) = ϕ0(t) = ϕ(t) for all t ∈ K. Then one applies Lemma 1.

Lemma 2 (see [28], Lemma 2). If K ⊂ R+ is a compact subset, and ϕ : K → R+ a continuous
function, then there exists a sequence ( p̃l)l∈N of polynomial functions, such that p̃l ≥ ϕ0 on
R+, p̃l |K → ϕ, l → ∞ , uniformly on K.

From Lemma 2 and Theorem 5 (where X1 stands for C(K) and X0 stands for the
subspace P of all polynomial functions), the next corollary follows easily. We recall a well-
known important example of an order complete Banach lattice Y of self-adjoint operators
acting on a complex or real Hilbert space H. Let A = A(H) be the ordered vector space of
all of the self-adjoint operators acting on H, and let V ∈ A. The natural order relation on A
is U ≤W if, and only if:

〈Uh, h〉 ≤ 〈Wh, h〉 for all h in H.
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One can prove that A with this ordering is not a lattice. Therefore, it is interesting to
fix A ∈ A and define the following:

Y1(A) = {U ∈ A; UA = AU}, Y = Y(A) = {W ∈ Y1(A); WU = UW, ∀U ∈ Y1(A)}. (5)

Then, Y(A) is an order complete Banach lattice (and a commutative real algebra), as
discussed in [5]. If U ∈ A, we denote by σ(U) the spectrum of U, and by dEU the spectral
measure attached to U. As usual, one denotes ϕj(t) = tj, j ∈ N, t ∈ R+. We recall that any
symmetric linear operator from the entire space H to H is continuous, hence is self-adjoint.
This follows quite easily from the closed graph theorem. Since all symmetric operators
appearing in what follows are defined on the entire Hilbert space H, they are self-adjoint
operators. Conversely, by definition, any self-adjoint operator acting on H is symmetric
and continuous. Therefore, in this paper, there will be no difference between these two
notions. As is well-known, the spectrum of such an operator is a compact subset of the real
line. If H = Rn, n ∈ N, n ≥ 2, then A is isomorphic to the space Sym(n,R) of all n× n
symmetric matrices with real entries. See [29], p. 11 for an example related to this space.

Corollary 1 (see [28], Corollary 1). With the above notations, assume that A is a positive self-
adjoint operator acting on H, Y = Y(A) is the space defined by Equation (5), and

(
Bj
)

j∈N is a
sequence of operators in Y(A). The following statements are equivalent:

(a) There exists a unique positive linear operator T : C(σ(A))→ Y , such that

T
(

ϕj
)
= Bj, j ∈ N, T(ϕ) ≤

∫
σ(A)

ϕ(t)dEA, ϕ ∈ (C(σ(A)))+, ||T|| ≤ 1

(b) For any polynomial ∑m
j=0 αj ϕj ≥ 0 on σ(A), the result is ∑m

j=0 αjBj ≥ 0; if J0 ⊂ N is an
arbitrary finite subset, and

{
λj; j ∈ J0

}
⊂ R, then the following inequalities hold:

∑
i,j∈J0

λiλjBi+j+l ≤ ∑
i,j∈J0

λiλj Ai+j+l , l ∈ {0, 1.}

Proof. (b)⇒ (a) . We define T0 : P → Y(A) by T0( ∑
j∈J0

αj ϕj) := ∑
j∈J0

αjBj, where J0 ⊂ N

is an arbitrary finite subset, αj ∈ R, j ∈ J0. Then, T0 is linear and, according to the first
condition (b), T0(p) ≥ 0 for all polynomials p with p(t) ≥ 0 ∀t ∈ σ(A). On the other hand,
for each g ∈ C(σ(A)), there exists a constant function c, such that g(t) ≤ c for all t ∈ σ(A).
According to Theorem 5, T0 has a linear positive extension T : C(σ(A))→ Y . Next, we
prove that T is continuous (and its norm can be determined). This can be shown for any
positive linear operator, in a more general framework. Namely, any positive linear operator
acting between two ordered Banach spaces is continuous (see [6] and/or [21]). Here, we
are interested only in our problem, when the norm of the involved positive linear operator
can be determined. Indeed, for an arbitrary g ∈ C(σ(A)), we can write:

±T(g) = T(±g) ≤ T(|g|) ≤ T(||g||1) = ||g||T(1)⇒ |T(g)| ≤ ||g||T(1)

Since the norm on Y(A) is solid (|y1| ≤ |y2| ⇒ y1 ≤ y2), the preceding inequality
leads to:

||T(g)|| ≤ ||g||||T(1)||, g ∈ C(σ(A))⇒ ||T|| ≤ ||T(1)|| = ||T0(ϕ0)|| = ||B0||.

On the other hand, clearly ||T(1)|| ≤ ||T||; hence, ||T|| = ||T(1)|| = ||B0||. To fin-
ish the proof of the basic implication (b)⇒ (a), we only have to show that T(ϕ) ≤∫

σ(A) ϕ(t)dEA, ϕ ∈ (C(σ(A)))+, ||T|| ≤ 1.
Let ϕ ∈ (C(σ(A)))+. According to Lemma 2, where K stands for σ(A), there exists a

sequence ( p̃l)l∈N of polynomial functions such that p̃l ≥ ϕ0 ≥ 0 on R+, p̃l |σ(A) → ϕ, l → ∞,
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uniformly on σ(A). The continuity of T and of T2 : C(σ(A))→ Y(A), T2(g) =
∫

σ(A) gdEA ,
also using the last property on the sequence

(
Bj
)

j∈N stated at (b), lead to:

T(ϕ) = lim
l

T( p̃l) ≤ lim
l

T2( p̃l) = T2(ϕ) =
∫

σ(A)
ϕdEA .

In particular, for ϕ = 1, we have: T(1) ≤
∫

σ(A) 1dEA = I ⇒ ||T|| = ||T(1)|| ≤ ||I|| = 1.
Here, I : H → H is the identity operator; this proves (b)⇒ (a). It is worth noting that
we have used the expression of non-negative polynomials on R+ : p(t) ≥ 0 ∀t ∈ R+ ⇔
p(t) = p2

1(t) + tp2
2(t), t ∈ R+ for some p1, p2 ∈ R[t]. The implication (a)⇒ (b) is

obvious. �

Next, we generalize the sandwich condition 0 ≤ T ≤ T2 on X+, appearing in Corollary
1 (where X = C(σ(A))), to the condition T1 ≤ T ≤ T2 on X+, where T1, T2 are two given
linear operators on X, 0 ≤ T1 ≤ T2 on X+. We start with a general result. Let K ⊂ R+ be
an arbitrary compact subset. We denote by X = C(K) the Banach lattice of all real-valued
continuous functions on K, and let Y be an arbitrary order complete Banach lattice.

Theorem 7 (see [28], Theorem 3). Let T1, T2 be two linear operators from X to Y such that
0 ≤ T1 ≤ T2 on the positive cone of X, while (yn)n≥0 is a given sequence of elements in Y. The
following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y , such that

T
(

ϕj
)
= yj, j ∈ N, T1 ≤ T ≤ T2 on the positive cone of X, ||T1|| ≤ ||T|| ≤ ||T2||;

(b) For any polynomial ∑m
j=0 αj ϕj ≥ 0 on K, we have ∑m

j=0 αjT1
(

ϕj
)
≤ ∑m

j=0 αjyj ; if J0 ⊂ N is
a finite subset, and

{
λj; j ∈ J0

}
⊂ R, then the following conditions are satisfied:

∑
i,j∈J0

λiλjyi+j+l ≤ ∑
i,j∈J0

λiλjT2

(
ϕi+j+l

)
, l ∈ {0, 1}

(c) T1 ≤ T2 on X+, and for any polynomial ∑
j∈J0

λj ϕj, the following inequality holds:

∑
j∈J0

λjyj ≤ T2

(∑
j∈J0

λj ϕj

)+
− T1

(∑
j∈J0

λj ϕj

)−.

Proof. According to the notations and assertions of (a), the implication (a)⇒ (b) is clear.
To prove the converse implication, we observe that the first assertion of (b) says that in
defining the following:

T0

(
m

∑
j=0

αj ϕj

)
=

m

∑
j=0

αjyj, m ∈ N, αj ∈ R,

we obtain a linear operator defined on the subspace of polynomial functions, which verifies
the moment conditions:

T0
(

ϕj
)
= yj, j ∈ N,

(T0 ≥ T1 holds on the convex cone P+ of all polynomial functions which are non-negative
on K). On the other hand, any element from X = C(K) is dominated by a constant function,
so that the subspace P of polynomial functions defined on R+ verifies the hypothesis of
Theorem 5, where X1 stands for X, and X0 stands for P . According to Theorem 5, the
linear operator T0 − T1 : P → Y, which is positive on P+ = P ∩ X+, admits a positive
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linear extension U : X → Y. We define T = T1 + U ≥ T1 on X+. In addition, T ∈ L+(X, Y)
verifies the following:

T
(

ϕj
)
= T1

(
ϕj
)
+ U

(
ϕj
)
= T1

(
ϕj
)
+ T0

(
ϕj
)
− T1

(
ϕj
)
= T0

(
ϕj
)
= yj, j ∈ N.

In other words, T : X → Y is a linear extension of T0 : P → Y , which dominates T1
on X+. Next, we prove that T ≤ T2 on X+. To this end, observe that according to the
second assertion of (b), we already know that T ≤ T2 on special polynomial functions,
which are non-negative on the entirety of the semi-axes R+. Indeed, any non-negative
polynomial p = p(t) on R+ has the explicit form p(t) = q2(t) + tr2(t) for some q, r ∈ R[t].
On the other hand, since

T ≥ T1 ≥ 0,

the linear operator T is positive and, hence, is also continuous; T2 is continuous as well,
thanks to its positivity. We now apply Lemma 2 for an arbitrary ϕ ∈ X+. Using the
notations of Lemma 2, and the above-discussed assertions, we infer the following:

0 ≤ T1(ϕ) ≤ T(ϕ) = lim
l→∞

T( p̃l) ≤ lim
l→∞

T2( p̃l) = T2(ϕ), ϕ ∈ X+.

It remains to prove the last relation of (a). If ψ is an arbitrary function in X, then the
preceding inequality yields

T(ψ) ≤ T(|ψ|) ≤ T2(|ψ|)

and, similarly, −T(ψ) = T(−ψ) ≤ T2(|ψ|). These inequalities yield |T(ψ)| ≤ T2(|ψ|)
and, since Y is a Banach lattice, the conclusion is ||T(ψ)|| ≤ ||T2(|ψ|)|| ≤ ||T2|||||ψ||| =
||T2||||ψ||, ψ in X. Thus, ||T|| ≤ ||T2||. Similarly, ||T1|| ≤ ||T||. The equivalence (a)⇔ (c)
follows directly from Theorem 2. This completes the proof. �

Corollary 2. With the notation of Corollary 1, assume that A is a positive self-adjoint operator
acting on H. Let α ∈ [0, ∞] be an arbitrary constant. The following statements are equivalent:

(a) There exists a unique positive linear operator T : C(σ(A))→ Y , such that

T
(

ϕj
)
= Bj, j ∈ N,

∫
σ(A) exp(−αt)ϕ(t)dEA ≤ T(ϕ) ≤

∫
σ(A) ϕ(t)dEA,

∀ϕ ∈ (C(σ(A)))+, ||exp(−αA)|| ≤ ||T|| ≤ 1

(b) For any polynomial
m
∑

j=0
αjtj ≥ 0 ∀t ∈ σ(A), we have

m

∑
j=0

αjBj ≥
(

m

∑
j=0

αj Aj

)
exp(−αA);

if J0 ⊂ N is a finite subset, and
{

λj; j ∈ J0
}
⊂ R, then the following inequalities hold:

∑
i,j∈J0

λiλjBi+j+l ≤ ∑
i,j∈J0

λiλj Ai+j+l , l ∈ {0, 1}.

Proof. One applies Theorem 7, where K stands for σ(A),

T1(ϕ) =
∫

σ(A)
exp(−αt)ϕ(t)dEA, T2(ϕ) =

∫
σ(A)

ϕ(t)dEA, ϕ ∈ C(σ(A)).

We observe that T1(ϕ) = exp(−αA)ϕ(A) ∈ [0, T2(ϕ)], for all ϕ ∈ (C(σ(A)))+, since
t ≥ 0, ϕ(t) ≥ 0, for all t ∈ σ(A), exp(−αA) ∈ [0, I] and the algebra Y(A) is commutative.
Moreover, as in the proof of Corollary 1,
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||T1|| = ||T1(1)|| = ||
∫

σ(A)
exp(−αt)dEA|| = ||exp(−αA)||.

On the other hand, the first condition of (b) says that

∑m
j=0 αjBj ≥∑m

j=0 αjT1
(

ϕj
)
.

The second condition of (b) is exactly the second condition of (b) written in Theorem
7, where yj stands for Bj, j ∈ N. The conclusion follows via Theorem 7. �

Next, we review the key polynomial approximation result of this subsection, which
works on arbitrary closed subsets F ⊆ Rn.

Lemma 3 (see [28]). Let F ⊆ Rn be an unbounded closed subset, and ν an M-determinate measure
on F (with finite moments of all natural orders). Then, for any x ∈ C0(F), x(t) ≥ 0, ∀t ∈ F, there
exists a sequence (pm)m, pm ≥ x, m ∈ N, pm → x in L1

ν(F). In particular, we have

lim
m

∫
F

pm(t)dν =
∫
F

x(t)dν

P+ is dense in
(

L1
ν(F)

)
+, and P is dense in L1

ν(F).

Proof. To prove the assertions of the statement, it is sufficient to show that for any x ∈
(C0(F))+, we have

Q1(x) := in f
{∫

F
p(t)dν; p ≥ x, p ∈ P

}
=
∫

F
x(t)dν.

Obviously, one has

Q1(x) ≥
∫

F
x(t)dν. (6)

To prove the converse, we define the linear form

T0 : X0 := P ⊕ Sp{x} → R, F0(p + αx) :=
∫

F
p(t)dν + αQ1(x), p ∈ P , α ∈ R.

Next, we show that F0 is positive on X0. In fact, for α < 0, one has (from the definition
of Q1, which is a sublinear functional on X1):

p + αx ≥ 0⇒ p ≥ −αx ⇒ (−α)Q1(x) = Q1(−αx) ≤
∫
F

p(t)dν⇒ T0(p + αx) ≥ 0

If a ≥ 0, we infer that:

0 = Q1(0) = Q1(αx− αx) ≤ αQ1(x) + Q1(−αx)⇒∫
F

p(t)dν ≥ Q1(−αx) ≥ −αQ1(x)⇒ T0(p + αx) ≥ 0

where, in both possible cases, we have x0 ∈ (X0)+ ⇒ T0(x0) ≥ 0 . Since X0 contains the
space of the polynomials’ functions, which is a majorizing subspace of X1, there exists
a linear positive extension T : X → R of T0, which is continuous on C0(F) with respect
to the sup-norm. Therefore, T has a representation by means of a positive Borel regular
measure µ on F, such that

T(x) =
∫

F
x(t)dµ, x ∈ C0(F).
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Let p ∈ P+ be a non-negative polynomial function. There is a nondecreasing sequence
(xm)m of continuous non-negative function with compact support, such that xm ↗ p
pointwise on F. Positivity of T and Lebesgue’s dominated convergence theorem for µ yield∫

F
p(t)dν = T(p) ≥ supT(xm) = sup

∫
F

xm(t)dµ =
∫

F
p(t)dµ, p ∈ P+.

Thanks to Haviland’s theorem, there exists a positive Borel regular measure λ on F,
such that

λ(p) = ν(p)− µ(p)⇔ ν(p) = λ(p) + µ(p), p ∈ P .

Since ν is assumed to be M-determinate, it follows that

ν(B) = λ(B) + µ(B)

for any Borel subset B of F. From this last assertion, approximating each x ∈
(

L1
ν(F
)
+, by a

nondecreasing sequence of non-negative simple functions, and also using Lebesgue’s con-
vergence theorem, one obtains firstly for positive functions, then for arbitrary ν-integrable
functions, ϕ : ∫

F
ϕdν =

∫
F

ϕdλ +
∫

F
ϕdµ, ϕ ∈ L1

ν(F).

In particular, we must have∫
F

xdν ≥
∫

F
xdµ = T(x) = T0(x) = Q1(x). (7)

Then, Equations (6) and (7) conclude the proof. �

Remark 2. We recall that the preceding Lemma 3 is no more valid when we replace L1
ν(F) with the

Hilbert space L2
ν(F), F = Rn, n ≥ 2 (see [13], Theorem 4.4, where the authors construct such a

measure ν).

The next theorem follows from Lemma 3. It facilitates proving inequalities on the
entire L1

ν(F) space verifying the involved inequalities only on polynomial functions (here ν
is a moment determinate measure on F).

Theorem 8 (see [27], Theorem 2). Let F be a closed unbounded subset of Rn, Y an order
complete Banach lattice,

(
yj
)

j∈Nn a given sequence in Y, and ν an M−determinate measure on

F. Let T2 ∈ B
(

L1
ν(F), Y

)
be a linear positive (bounded) operator from L1

ν(F) to Y. The following
statements are equivalent:

(a) There exists a unique linear operator T ∈ B
(

L1
ν(F), Y

)
, such that T

(
ϕj
)
= yj, j ∈ Nn,

0 ≤ T ≤ T2 on the positive cone of L1
ν(F), and T ≤ T2;

(b) For any finite subset J0 ⊂ Nn, and any
{

aj
}

j∈J0
⊂ R, we have

∑j∈J0
aj ϕj ≥ 0 F ⇒ 0 ≤∑j∈J0

ajyj ≤∑j∈J0
ajT2

(
ϕj
)
.

Proof. Observe that the assertion (b) says that

0 ≤ T0(p) ≤ T2(p), p ∈ P+, (8)

where T0 : P → Y is the unique linear operator that verifies the interpolation conditions
of Equation (1). Thus, (a)⇒ (b) is obvious. To prove the converse, consider the vector
subspace X1 ⊂ L1

ν(F) of all functions ϕ ∈ L1
ν(F), verifying

|ϕ(t)| ≤ p(t) ∀t ∈ F
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for some polynomial p. Clearly, X1 contains the subspace of polynomials as well as the
subspace of continuous compactly supported real-valued functions. On the other hand,
the subspace of polynomials is a majorizing subspace in X1, and according to the first
inequality of Equation (8), T0 is positive as a linear operator on P . Application of Theorem 5
yields the existence of a positive linear extension T : X1 → Y of T0. Let x be a non-negative
continuous compactly supported function on F, and (pm)m a sequence of polynomials with
the properties specified in Lemma 3. According to the second inequality of Equation (8),
we have

T(pm) = T0(pm) ≤ T2(pm) for all m ∈ N.

Our next goal is to prove that

T(x) ≤ T2(x). (9)

Assuming the contrary, we should have T2(x) − T(x) /∈ Y+. Since Y+ is closed, a
Hahn–Banach separation theorem leads to the existence of a positive linear form y? in the
dual Y? of Y, verifying

y?(T2(x)− T(x)) < 0 (10)

The positive linear form y? ◦ T has a representing positive regular Borel measure µ,
for which Fatou’s lemma can be applied; we infer that

y?(T(x)) ≤ limin fmy?(T(pm)) ≤ limin fmy?(T2(pm)) = y?
(

T2

(
lim

m
pm

))
= y?(T2(x)). (11)

Equations (10) and (11) yield

y?(T2(x)) < y?(T(x)) ≤ y?(T2(x)),

implying the contradiction y?(T2(x)) < y?(T2(x)). Hence, the assumption T2(x)− T(x) /∈
Y+ was false, such that we must have T2(x)− T(x) ∈ Y+, i.e., Equation (9) is proven. Now,
let ϕ ∈ C0(F) be arbitrary. According to the preceding considerations, we obtain

|T(ϕ)| = |T(ϕ+)− T(ϕ−)| ≤ T(ϕ+) + T(ϕ−) ≤ T2(ϕ+) + T2(ϕ−) = T2(|ϕ|).

Since the norm on Y is solid ( |y1| ≤ |y2| ⇒ ||y1|| ≤ ||y2||), we infer that

||T(ϕ)|| ≤ ||T2(|ϕ|)|| ≤ ||T2|| |||ϕ||| 1 = ||T2||||ϕ1||, ∀ϕ ∈ C0(F).

Using the fact that C0(F) is dense in L1
ν(F) (see [9]), the last evaluation leads to the

existence of a linear extension T̃ : L1
ν(F)→ Y of T, such that

||T̃(ϕ)|| ≤ ||T2||||ϕ1||, ||ϕ||1 =
∫
A

|ϕ(t)|dν, ϕ ∈ L1
ν(F).

It follows that ||T̃|| ≤ ||T2||, and the positivity of T̃ is a consequence of the positivity
of T, via continuity of the extension T̃ and the density of (C0(F))+ in

(
L1

ν(F)
)
+. We also

note that
T̃
(

ϕj
)
= T0

(
ϕj
)
= yj, j ∈ Nn.

This concludes the proof. �

Unlike the case of nonnegative polynomials on R2, the nonnegative polynomials on a
strip are expressible in terms of sums of squares, due to the following result of M. Marshall.
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Theorem 9 (see [18]). Supposing that p(t1, t2) ∈ R[t1, t2] is non-negative on the strip F =
[0, 1]×R, then p(t1, t2) is expressible as

p(t1, t2) = σ(t1, t2) + τ(t1, t2)t1(1− t1)

where σ(t1, t2), τ(t1, t2) are sums of squares in R[t1, t2].

Let F = [0, 1] × R, ν a M-determinate measure on F, and X = L1
ν(F), ϕj(t1, t2) :=

tj1
1 tj2

2 , j = (j1, j2) ∈ N2, (t1, t2) ∈ F. Let Y be an order complete Banach lattice, and
(
yj
)

j∈N2

a sequence of given elements in Y. The next result follows directly from Theorems 8 and 9.

Theorem 10. Let T2 ∈ B+(X, Y) be a linear (bounded) positive operator from X to Y. The
following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y , such that T
(

ϕj
)
= yj, j ∈ N2,

where T is between zero and T2 on the positive cone of X, ||T|| ≤ ||T2||;;
(b) For any finite subsetJ0⊂ N2,and any

{
λj; j ∈ J0

}
⊂ R,we have:

0 ≤ ∑
i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλjT2
(

ϕi+j
)
;

0 ≤ ∑
i,j∈J0

λiλj
(
yi1+j1+1, i2+j2 − yi1+j1+2, i2+j2

)
≤

∑
i,j∈J0

λiλj
(
T2
(

ϕi1+j1+1, i2+j2 − ϕi1+j1+2, i2+j2
))

, i = (i1, i2), j = (j1, j2) ∈ J0.

Lemma 4 (see [28], Lemma 4). Let ν = ν1× · · · × νn be a product of n M−determinate measures
on R+ = [0, ∞[ . Then we can approximate any non-negative continuous compactly supported
function in X = L1

ν

(
Rn
+

)
with sums of products

p1 ⊗ · · · ⊗ pn,

pj positive polynomial on the real non-negative semi-axis, in variable tj ∈ R+, j = 1, . . . , n, where

(p1 ⊗ · · · ⊗ pn)(t1, . . . , tn) = p1(t1) · · · pn(tn).

The idea of the proof is to use Bernstein approximating polynomials of n variables, and
then to apply Lemma 3 to the case n = 1, F = R+, for each moment determinate measure
νj, j = 1, . . . , n. By means of the same arguments, the next result holds true as well:

Lemma 5. Let ν = ν1 × · · · × νn be a product of n M−determinate measures on R. Then, we
can approximate any non-negative continuous compactly supported function in X = L1

ν(Rn) with
sums of products

p1 ⊗ · · · ⊗ pn,

pj non-negative polynomial on the entire real line , j = 1, . . . , n.

Corollary 3 (see [28], Theorem 5). Let X be as in Lemma 4,
(
yj
)

j∈Nn a sequence in Y, where Y
is an order complete Banach lattice; and let T2 ∈ B+(X, Y) be a positive bounded linear operator.
The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T ∈ B(X, Y), such that T
(

ϕj
)
= yj, j ∈ Nn;

T is between zero and T2 on the positive cone of X, ||T|| ≤ ||T2||;
(b) For any finite subset J0 ⊂ Nn, and any

{
λj; j ∈ J0

}
⊂ R, we have

∑j∈J0
λj ϕj(t) ≥ 0 ∀t ∈ Rn

+ ⇒∑j∈j0
λjyj ∈ Y+.
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For any finite subsets Jk ⊂ N, k = 1, . . . , n, and any
{

λjk
}

jk∈Jk
⊂ R, k = 1, . . . , n, the

following relations hold:

∑
i1,j1∈J1

(
· · ·
(

∑
in ,jn∈Jn

λi1 λj1 . . . λin λjn yi1+j1+l1,...,,in+jn+ln

)
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in ,jn∈Jn

λi1 λj1 . . . λin λjn T2(ϕi1+j1+l1,...,,in+jn+ln

)
· · ·
)

, (l1, . . . , ln) ∈ {0, 1}n.

Proof. One repeats the proof of Theorem 8, where the convergent sequence of non-negative
polynomials for the continuous non-negative compactly supported function x can be chosen
in terms of sums of tensor products of non-negative polynomials on R+. Such convergent
sequences do exist, as shown by the preceding Lemma 4. The last inequality of (b) in the
present corollary says that on each term p of such a sequence, the second inequality of
Equation (8) holds true, where P+ must be replaced by the convex cone P++ of all special
non-negative polynomials generated by the tensor products emphasized in Lemma 4. The
motivation of the condition (l1, . . . , ln) ∈ {0, 1}n of (b) in the present statement comes
from the fact that pj(t) ≥ 0 for all t ∈ R+ ⇔ pj(t) = q2

j (t) + tr2
j (t), t ∈ R+ , for some

qj, rj ∈ R[t]. This ends the proof. �

Corollary 4. Let ν be an M− determinate measure on R+, with finite moments of all natural
orders, X = L1

ν(R+). Let Y be an order complete Banach lattice, and T2 ∈ B+(X, Y),
(
yj
)

j∈N a
sequence in Y. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T ∈ B(X, Y) that satisfies the conditions

T
(

ϕj
)
= yj, j ∈ N, 0 ≤ T ≤ T2 on X+, ||T|| ≤ ||T2||;

(b) For any finite subset J0 ⊂ N, and any
{

λj; j ∈ J0
}
⊂ R, the following inequalities hold true:

0 ≤ ∑
i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλjT2

(
ϕi+j+k

)
, k ∈ {0, 1}.

Similarly to Corollary 3, also using Lemma 5 and the fact that any non-negative
polynomial on the real axes is the sum of squares of (two) polynomials, if we denote
ϕj(t) := tj1

1 · · · t
jn
n , j = (j1, . . . , jn) ∈ Nn, t = (t1, . . . , tn) ∈ Rn, then the following result

holds true:

Corollary 5 (see [27], Theorem 6). Let X = L1
ν(Rn), where ν = ν1 × · · · × νn is a product

of n M−determinate measures on R; let Y be an order complete Banach lattice, and
(
yj
)

j∈Nn a
sequence in Y, T2 ∈ B+(X, Y). The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T ∈ B(X, Y) , such that T
(

ϕj
)
= yj, j ∈

Nn, 0 ≤ T ≤ T2 on the positive cone of X, ||T|| ≤ ||T2||;
(b) For any finite subset J0 ⊂ Nn, and any

{
λj; j ∈ J0

}
⊂ R, we have

∑
j∈J0

λj ϕj(t) ≥ 0 ∀t ∈ Rn ⇒ ∑
j∈j0

λjyj ∈ Y+.
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For any finite subsets Jk ⊂ N, k = 1, . . . , n, and any
{

λjk
}

jk∈Jk
⊂ R, k = 1, . . . , n, the

following relations hold:

∑
i1,j1∈J1

(
. . .

(
∑

in ,jn∈Jn

λi1 λj1 . . . λin λjn yi1+j1,...,,in+jn

)
· · ·
)
≤

∑
i1,j1∈J1

(
. . .

(
∑

in ,jn∈Jn

λi1 λj1 . . . λin λjn T2(ϕi1+j1,...,,in+jn

)
· · ·
)

.

Corollary 6. Let us consider the hypothesis and notations from Corollary 4, where we replace R+

with R. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T ∈ B(X, Y), which verifies

T
(

ϕj
)
= yj, j ∈ N, 0 ≤ T ≤ T2 on X+, ||T|| ≤ ||T2||;

(b) For any finite subset J0 ⊂ N, and any
{

λj; j ∈ J0
}
⊂ R, the following inequalities hold true:

0 ≤ ∑
i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλjT2
(

ϕi+j
)
.

Theorem 11 (see [27]). Let X be as in Corollary 5, and Y be a Banach lattice. Assume that T is a
linear bounded operator from X to Y. The following statements are equivalent:

(a) T ≥ 0 on the positive cone of X;
(b) For any finite subsets Jk ⊂ N, k = 1, . . . , n, and any

{
λjk
}

jk∈Jk
⊂ R, k = 1, . . . , n, the

following relations hold:

0 ≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T
(
xi1+j1 , . . . ,in+jn

))
· · ·
)

.

Proof. Note that (b) says that T is positive on the convex cone generated by special positive
polynomials p1 ⊗ · · · ⊗ pn, each factor of any term in the sum being non-negative on the
whole real axis. Consequently, (a)⇒(b) is clear. In order to prove the converse, observe that
any non-negative element of X can be approximated by non-negative continuous compactly
supported functions. Such functions can be approximated by the sums of tensor products
of positive polynomials in each separate variable, the latter being sums of squares. The
conclusion is that any non-negative function from X can be approximated in X = L1

ν(Rn)
by the sums of tensor products of squares of polynomials in each separate variable. We
know that on such special polynomials, T admits values in Y+, according to condition (b).
Now, the desired conclusion is a consequence of the continuity of T, also using the fact that
the positive cone of Y is closed. This concludes the proof. �

In what follows, we review some of the results of [28]. If F ⊆ Rn is an arbitrary closed
unbounded subset, then we denote by P+ the convex cone of all polynomial functions
(with real coefficients), taking non-negative values at any point of F. P++ will be a sub-
cone of P+, generated by special non-negative polynomials expressible in terms of sums
of squares.

Theorem 12 (see [28]). Let F ⊆ Rn be a closed unbounded subset; ν a moment-determinate
measure on F, having finite moments of all orders; and X = L1

ν (F), ϕj(t) = tj, t ∈ F, j ∈ Nn. Let
Y be an order complete Banach lattice,

(
yj
)

j∈Nn a given sequence of elements in Y, T1 and T2 two
bounded linear operators from X to Y. Assume that there exists a sub-cone P++ ⊆ P+, such that
each f ∈ (C0(F))+ can be approximated in X by a sequence (pl)l , pl ∈ P++, pl ≥ f for all l.
The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y, T
(

ϕj
)
= yj, j ∈ Nn,

0 ≤ T1 ≤ T ≤ T2 on X+, ||T1|| ≤ ||T|| ≤ ||T2||;
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(b) For any finite subset J0 ⊂ Nn, and any
{

λj; j ∈ J0
}
⊂ R, the following implications hold

true:
∑
j∈J0

λj ϕj ∈ P+ ⇒ ∑
j∈J0

λjT1
(

ϕj
)
≤ ∑

j∈J0

λjyj, (12)

∑
j∈J0

λj ϕj ∈ P++ ⇒ ∑
j∈J0

λjT1
(

ϕj
)
≥ 0, ∑

j∈J0

λjyj ≤ ∑
j∈J0

λjT2
(

ϕj
)
. (13)

Proof. We start by observing that the first condition of Equation (13) implies the positivity of
the bounded linear operator T1, via its continuity. Indeed, if f ∈ (C0(F))+ , pl ∈ P++, pl ≥
f for all l, pl → f in L1

ν (F) then, according to the first condition of Equation (13), T1( pl) ≥
0 for all l ∈ N, and the continuity of T1 yields the following:

T1( f ) = lim
l

T1(pl) ≥ 0

Since (C0(F))+ is dense in X+ as explained by measure theory, the continuity of T1 im-
plies T1 ≥ 0 on X+. Thus, T1 is a positive linear operator. Next, we define
T0 : P → Y, T0(∑j∈J0

λj ϕj) = ∑j∈J0
λjyj , where the sums are finite and the coefficients

λj are arbitrary real numbers. Equation (12) says that T0− T1 ≥ 0 on P+. If we consider the
vector subspace X1 of X formed by all functions ψ ∈ X having the modulus |ψ| dominated
by a polynomial p ∈ P+ on the entire set F, then P is a majorizing subspace of X1, and
T0 − T1 is a positive linear operator on P . The application of Theorem 5 leads to the exis-
tence of a positive linear extension U : X1 → Y of T0 − T1. Clearly, X1 contains C0(F) + P .
Indeed, since ϕ ∈ C0(S)⇒ |ϕ| ∈ (C0(F))+ ⇒ |ϕ| ≤ b1 ∈ P (according to Weierstrass’ the-
orem), we infer that ϕ ∈ X1; here, b < ∞ is a real number. Hence, C0(F) ⊂ X1. Now, if
p ∈ P , we observe the following:

1 + p2 − 2|p| = (1− |p|)2 ≥ 0,

which can be written as follows:

|p| ≤ 1 + p2

2
∈ P .

According to the definition of X1, it results in P ⊂ X1. Consequently, C0(F) +P ⊂ X1.
Going back to the positive linear extension U : X1 → Y of T0 − T1, we conclude that
T̂0 = U + T1 : X1 → Y is an extension of T0, T̂0 ≥ T1 on (X1)+, and T̂0(p) = T0(p) ≤ T2(p)
for all p ∈ P++, according to the last requirement of Equation (13). A first conclusion is as
follows:

T1(p) ≤ T̂0(p) ≤ T2(p) for all p ∈ P++, T̂0(ψ) ≥ T1(ψ) ≥ 0, ψ ∈ (X1)+. (14)

Our next goal is to prove the continuity of T̂0 on C0(S). Let ( fl)l≥0 be a sequence
of non-negative continuous compactly supported functions, such that fl → 0 in X1, and
take a sequence of polynomials pl ≥ fl ≥ 0, pl ∈ P++ for all l, such that the following
convergence result holds: ||pl − fl ||1 → 0, l → ∞ . Then, apply the following:

||pl ||1 ≤ ||pl − fl ||1 + || fl ||1 → 0, l → ∞.

Now, Equation (14) and the continuity of T1, T2 yield the following:

0← T1(pl) ≤ T̂0(pl) ≤ T2(pl)→ 0.

Hence, T̂0(pl)→ 0; this results in the following:

0 ≤ T1( fl) ≤ T̂0( fl) ≤ T̂0(pl)→ 0.
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Hence, T̂0( fl)→ 0 . If (gn)n≥0 is an arbitrary sequence of compactly supported and
continuous functions, such that gn → 0 in X1, then g+n → 0, g−n → 0 . According to what
we already have proven, we can write T̂0(g+n )→ 0 and T̂0(g−n )→ 0, which further yields
T̂0(gn)→ 0 . This proves the continuity of T̂0 on C0(F), and the subspace C0(F) is dense in
X. Hence, there exists a unique continuous linear extension T ∈ B(X, Y) of T̂0. This results
in 0 ≤ T1 ≤ T ≤ T2 on X+, ||T1|| ≤ ||T|| ≤ ||T2||, T

(
ϕj
)
= T0

(
ϕj
)
= yj, j ∈ Nn. Indeed,

T1, T, T2 are linear and continuous, and P++ is dense in (C0(F))+; hence, it is dense in
X+ as well. For an arbitrary ϕ ∈ X, the following inequalities hold true, via the preceding
remarks:

±T(ϕ) = T(±ϕ) ≤ T(|ϕ|) ≤ T2(|ϕ|)⇒

|T(ϕ)| ≤ T2(|ϕ|)⇒ ||T(ϕ)|| ≤ ||T2(|ϕ|)|| ≤ ||T2||||ϕ||.

It follows that ||T|| ≤ ||T2|| and, similarly, ||T1|| ≤ ||T||. The uniqueness of the
solution T follows according to the density of polynomials in X, via the continuity of the
linear operator T and application of Lemma 3. This ends the proof. �

Corollary 7 (see [28]). Let ν = ν1 × · · · × νn, n ≥ 2, νj being an M− determinate (moment-
determinate) measure on R, j = 1, . . . , n, X = L1

ν (Rn), ϕj(t) = tj, t ∈ Rn, j ∈ Nn. Addi-
tionally, assume that νj has finite moments of all orders, j = 1, . . . , n. Let Y be an order complete
Banach lattice,

(
yj
)

j∈Nn a given sequence of elements in Y, and T1 and T2 two bounded linear
operators from X to Y. The following statements are equivalent:

(a) There exists a unique (bounded) linear operator T : X → Y, T
(

ϕj
)
= yj, j ∈ Nn,

0 ≤ T1 ≤ T ≤ T2 on X+, T1 ≤ T ≤ T2;
(b) For any finite subset J0 ⊂ Nn, and any

{
λj; j ∈ J0

}
⊂ R, the following implication holds

true:
∑
j∈J0

λj ϕj ∈ P+ ⇒ ∑
j∈J0

λjT1
(

ϕj
)
≤ ∑

j∈J0

λjyj.

For any finite subsets Jk ⊂ N, k = 1, . . . , n, and any
{

λjk
}

jk∈Jk
⊂ R, the following

inequalities hold true:

0 ≤ ∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T1
(

ϕi1+j1,...,,in+jn
))
· · ·
)

;

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn yi1+j1,...,,in+jn

)
· · ·
)
≤

∑
i1,j1∈J1

(
· · ·
(

∑
in .jn∈Jn

λi1 λj1 · · · λin λjn T2
(

ϕi1+j1,...,,in+jn
))
· · ·
)

.

Proof. One applies Theorem 12 and Lemma 5. �

Corollary 8 (see [28]). Let X = L1
ν(R), where ν is a moment-determinate measure on R. Assume

that Y is an arbitrary order complete Banach lattice, and (yn)n≥0 is a given sequence with its terms
in Y. Let T1, T2 be two linear operators from X to Y, such that 0 ≤ T1 ≤ T2 on X+. The following
statements are equivalent:

(a) There exists a unique bounded linear operator T from XtoY, T1 ≤ T ≤ T2 on X+, ||T1|| ≤
||T|| ≤ ||T2||, such that T(ϕn) = yn for all n ∈ N;;

(b) If J0 ⊂ N is a finite subset, and
{

λj; j ∈ J0
}
⊂ R, then

∑
i,j∈J0

λiλjT1
(

ϕi+j
)
≤ ∑

i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλjT2
(

ϕi+j
)
.
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For Y = R, based on the measure theory arguments discussed in [9], Corollary 8 can
be written as follows:

Corollary 9. Letν be a moment determinate measure on R. Assume that h1, h2 are two functions
in L∞

ν (R) , such that 0 ≤ h1 ≤ h2 almost everywhere. Let (yn)n≥0 be a given sequence of real
numbers. The following statements are equivalent:

(a) There exists h ∈ L∞
ν (R), such that h1 ≤ h ≤ h2 ν− almost everywhere,

∫
R tjh(t)dν = yj

for all j ∈ N;
(b) If J0 ⊂ N is a finite subset, and

{
λj; j ∈ J0

}
⊂ R, then

∑
i,j∈J0

λiλj

∫
R

ti+jh1(t)dν ≤ ∑
i,j∈J0

λiλjyi+j ≤ ∑
i,j∈J0

λiλj

∫
R

ti+jh2(t)dν.

Similarly to Corollary 9, replacing R with R+ we can derive the following:

Corollary 10. Let X = L1
ν(R+), where ν is a moment-determinate measure on R+. Assume that

Y is an arbitrary order complete Banach lattice, and (yn)n≥0 is a given sequence with its terms in
Y. Let T1, T2 be two linear operators from X to Y, such that 0 ≤ T1 ≤ T2 on X+. As usual, we
denote ϕj(t) = tj, j ∈ N, t ∈ R+. The following statements are equivalent:

(a) There exists a unique bounded linear operator T from X to Y, T1 ≤ T ≤ T2 on X+,
T1 ≤ T ≤ T2, such that T(ϕn) = yn for all n ∈ N;;

(b) If J0 ⊂ N is a finite subset, and
{

λj; j ∈ J0
}
⊂ R, then

∑
i,j∈J0

λiλjT1

(
ϕi+j+k

)
≤ ∑

i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλjT2

(
ϕi+j+k

)
, k ∈ {0, 1}

In the scalar-valued case, we derive the following consequence:

Corollary 11. Let ν be a moment-determinate measure on R+. Assume that h1, h2 are two functions
in L∞

ν (R+), such that 0 ≤ h1 ≤ h2 almost everywhere. Let (yn)n≥0 be a given sequence of real
numbers. The following statements are equivalent:

(a) There exists h ∈ L∞
ν (R+), such that h1 ≤ h ≤ h2 ν− almost everywhere,

∫
R+

tjh(t)dν =
yj for all j ∈ N;;

(b) If J0 ⊂ N is a finite subset, and
{

λj; j ∈ J0
}
⊂ R, then:

∑
i,j∈J0

λiλj

∫
R+

ti+j+kh1(t)dν ≤ ∑
i,j∈J0

λiλjyi+j+k ≤ ∑
i,j∈J0

λiλj

∫
R+

ti+j+kh2(t)dν, k ∈ {0, 1}.

3.3. On the Truncated Moment Problem

The truncated moment problem is important in mathematics because it involves
only a finite number of moments (of limited order), which are assumed to be known (or
given, or measurable); therefore, it can be related to optimization problems [20] as well
as to constructive methods for finding solutions to Markov moment problems [23,24].
For the existence of a polynomial solution see [28], where a symmetric positive definite
matrix is naturally involved. Solution in L∞ spaces for the full moment problem as a
weak limit of a sequence of solutions of truncated moment problems are discussed in [21].
The convergence holds in the weak topology of a L∞ space, with respect to the dual pair(

L1, L∞). We start by recalling the truncated (reduced) Markov moment problems on a
closed, bounded, or unbounded subset F of Rn, where n ≥ 1 is an integer. We denote
by Rd[t1, . . . tn] the real vector subspace of all polynomial functions P of n real variables,
with real coefficients, generated by tk = tk1

1 · · · t
kn
n , ki ∈ {0, 1, . . . , d}, i = 1, . . . , n, where

d ≥ 1 is a fixed integer. The dimension of this subspace is clearly equal to N = (d + 1)n.
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Given a finite set {mk} 0 ≤ ki ≤ d,
i = 1, . . . , n

of real numbers, and a positive Borel measure µ on

F, with finite absolute moments
∫

F |t|
kdµ < ∞ for all k = (k1, . . . , kn) ∈ Nn with ki ≤ d.

i = 1, . . . , n), one studies the existence and, eventual construction or approximation of a
Lebesgue measurable real function h ∈ L∞

µ (F), satisfying the moment conditions∫
F

tkh(t)dµ = mk, ki ≤ d i = 1, . . . , n,

and
0 ≤ h ≤ b1,

for some positive number b.

3.4. Extension of Linear Operators, Markov Moment Problem, and Mazur–Orlicz Theorem

The purpose of this section is to prove a result on an operator valued Markov moment
problem whose solution is defined on a space of analytic functions, and an operator valued
Mazur–Orlicz theorem involving the space of all real continuous functions defined on the
spectrum of a self-adjoint operator as the domain space of the solution. Both these results
follow as applications of a general theorem on extension for linear operators, with two
constraints. They do not use any result on polynomial approximation. In the next theorem,
X will be a real vector space, Y an order-complete vector lattice, A, B ⊆ X convex subsets,
Q : A→ Y a concave operator, P : B→ Y a convex operator, M ⊂ X a vector subspace,
and T0 : M→ Y a linear operator. All vector spaces and linear operators are considered
over the real field.

Theorem 13 (see [26]). Assume that T0(x) ≥ Q(x) ∀x ∈ M ∩ A, T0(x) ≤ P(x) ∀x ∈ M ∩ B.
The following statements are equivalent:

(a) There exists a linear extension T : X → Y of the operator T0 such that

T|A ≥ Q, T|B ≤ P;

(b) There exists P1 : A→ Y, convex, and Q1 : B→ Y concave operator such that for all(
ρ, t, λ′, a1, a′, b1, b′, v

)
∈ [0, 1]2 × (0, ∞)× A2 × B2 ×M,

the following implication holds:

(1− t)a1 − tb1 = v + λ′((1− ρ)a′ − ρb′)⇒
(1− t)P1(a1)− tQ1(b1) ≥ T0(v) + λ′((1− ρ)Q(a′)− ρP(b′)).

It is worth noticing that the extension T of Theorem 13 satisfies the following condi-
tions: it is an extension of T0, it is dominated by P on B, and it dominates Q on A. Here
the convex subsets A, B are arbitrary, with no restriction on the existence of relative interior
points or on their position with respect to the subspace M. As a consequence of Theorem 13,
one can prove the next result:

Theorem 14 (see [26]). Let X be a locally convex space, Y an order complete vector lattice with
strong order unit u0, and S ⊂ X a vector subspace. Let C ⊂ X be a convex subset with the
following properties:

(a) There exists a neighborhood D of the origin such that (S + D) ∩ C = ∅ (that is, by
definition, C and S are distanced);

(b) C is bounded.
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Then for any equicontinuous family of linear operators
{

f j
}

j∈J ⊂ L(S, Y) and for any

ỹ ∈ Y+\{0}, there exists an equicontinuous family
{

Tj
}

j∈J ⊂ L(X, Y) such that

Tj(s) = f j(s), s ∈ S, Tj(ψ) ≥ ỹ, ψ ∈ C, j ∈ J.

Moreover, if D is a convex balanced neighbourhood of the origin such that

f j(D ∩ S) ⊂ [−u0, u0], (S + D) ∩ C = ∅

and if α > 0 is such that PD(a) ≤ α ∀a ∈ C and α1 > 0 is large enough such that ỹ ≤ α1u0, then
the following relations hold:

Tj(x) ≤ (1 + α + α1)PD(x), x ∈ X, j ∈ J.

We have denoted by PD the gauge (Minkowski functions) attached to D.
Let (Bk)k∈Nn be a sequence of operators in Y = Y(A) defined by (5) and ||B̃|| ∈

Y+\{0}. On the other hand, let n 6= 0 be a natural number and X be the space of all
absolutely convergent power series h in the unit closed polydisk

D1 = {z = (z1, . . . , zn) : |zi| ≤ 1, i ∈ {1, . . . , n}},

with real coefficients. The norm on X is defined by:

||h||∞ = sup
{
|h(z)| : z ∈ D1

}
.

We denote

hk(z) = zk1
1 · · · z

kn
n , k = (k1, . . . , kn) ∈ Nn, z ∈ D1,|k| = k1 + · · ·+ kn.

Theorem 15 (see [29], Theorem 3.1, p. 178). Assume that A1, . . . , An are elements of Y(A)
such that there exists a real number M > 0, with the property

|Bk| ≤ M
A2k1

1
k1!
· · · A2kn

n
kn!

, ∀k ∈ Nn,
n

∑
p=1

A2
p ≤ I,

where I : H → H is the identity operator. Let {gk}k∈Nn ⊂ X be such that 1 = gk∞ = gk(0), ∀k ∈
Nn. Then there exists a linear bounded operator T ∈ B(X, Y) such that

T(hk) = Bk, |k| ≥ 1, T(gk) ≥ B̃, ∀k ∈ Nn,
T(h) ≤

(
2 + ||B̃||M−1e−1

)
||h||∞u0, ∀h ∈ X, u0 = MeI

In particular, the following evaluation holds: ||T|| ≤ 2Me + ||B̃||.

Proof. One applies Theorem 14, where Y = Y(A) is defined in (5). The subspace generated
by {hk : |k| ≥ 1} stands for S of Theorem 14 and the convex hull of the set of the functions
gk, k ∈ Nn stands for the set C. The following remark is essential

||s− ϕ||∞ ≥ |s(0)− ϕ(0)| = |0− 1| = 1, ∀s ∈ S, ∀ϕ ∈ C.

This proves that (S + B(0, 1)) ∩ C = ∅, so that B(0, 1) stands for D and ||·|| = ||·||∞
stands for PD of Theorem 14. The operator B̃ stands for ỹ. Now let

ϕ = ∑
j∈J0

β jhj ∈ S ∩ B(0, 1),
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where J0 is a finite subset of Nn. The following relations hold:

|∑
j∈J0

β jBj| ≤ ∑
j∈J0

|β j||Bj| ≤ ϕ∞ ∑
j∈J0

1

rj1
1 · · · r

jn
n
|Bj|,

for any 0 < rp < 1, p ∈ {1, . . . , n}, thanks to Cauchy inequalities. Passing to the limit with
rp ↑ 1, p ∈ {1, . . . , n} and using the fact that ϕ ∈ B(0, 1), as well as the hypothesis in the
statement, the preceding relation further yields∣∣∣∣∣ ∑

j∈J0

β jBj

∣∣∣∣∣ ≤ ∑
j∈J0

∣∣Bj
∣∣ ≤ M ∑

j∈J0

A
2j1
1

j1! · · ·
A2jn

n
jn! ≤ M

(
∑

k1∈N

A
2k1
1

k1!

)
· · ·
(

∑
kn∈N

A2kn
n

kn!

)

= Mexp

(
n
∑

p=1
A2

p

)
≤ Mexp(I) = MeI = u0.

The conclusion is that denoting by f : S→ Y the linear operator which satisfies the
moment conditions f (hk) = Bk, k ∈ Nn, |k| ≥ 1, we have

−MeI ≤ f (s) ≤ MeI = u0, ∀s ∈ S ∩ B(0, 1).

On the other hand, the following relations hold:

B̃ ≤ ||B̃||I = ||B̃||M−1e−1u0 = α1u0,

where α1 = ||B̃||M−1e−1. The conditions on the norms of the functions gk, k ∈ Nn lead to

||ϕ|| ≤ 1, ∀ϕ ∈ C.

So, the constant 1 stands for α from Theorem 14. Now all the conditions from the
statement of Theorem 14 are accomplished. According to the latter theorem, there exists a
linear mapping T : X → Y, such that

T(hk) = f (hk) = Bk, k ∈ Nn, |k| ≥ 1, T(gk) ≥ B̃, ∀k ∈ Nn,
T(h) ≤

(
2 + ||B̃||M−1e−1

)
||h||∞ MeI, ∀h ∈ X.

From the last inequality, we derive

|T(h)| ≤
(

2Me + ||B̃||
)
||h||∞ I , ∀h ∈ X.

Since the norm on Y is solid, we infer that

||T(h)|| ≤
(

2Me + ||B̃||
)
||h||∞, ∀h ∈ X ⇒ ||T|| ≤ 2Me + ||B̃||.

This concludes the proof. �

We go on with the Mazur–Orlicz theorem in ordered vector space framework and one
of its operator valued consequences.

Theorem 16 (see [25], Theorem 5). Let X be a preordered vector space, Y an order complete vector
space,

{
xj
}

j∈J ,
{

yj
}

j∈J families of elements in X, respectively in Y, and P : X → Y a sublinear
operator. The following statements are equivalent:

(a) There exists a linear positive operator T : X → Y such that

T
(
xj
)
≥ yj, j ∈ J, T(x) ≤ P(x), x ∈ X;
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(b) For any finite subset J0 ⊂ J and any
{

λj
}

j∈J0
⊂ R+, the following implication holds true:

∑
j∈J0

λjxj ≤ x ∈ X ⇒ ∑
j∈J0

λjyj ≤ P(x).

Corollary 12. Let A be a positive self-adjoint operator acting on a Hilbert space H, let Y = Y(A) be
defined by (5), and X := C(σ(A)). Let

(
Bj
)

j∈N be a sequence in Y, ϕj(t) = tj, j ∈ N, t ∈ σ(A).
The following statements are equivalent:

(a) There exists a linear bounded positive operator T ∈ B+(X, Y) such that

T
(

ϕj
)
≥ Bj, j ∈ N, T(ϕ) ≤

∫
σ(A)

|ϕ(t)|dEA, ∀ϕ ∈ X, ||T|| ≤ 1;

(b) Bj ≤ Aj, j ∈ N.

Proof. The spectrum σ(A) is contained in R+, since A is self-adjoint and positive. The
implication (a)⇒(b) is obvious:

Bj ≤ T
(

ϕj
)
≤

∫
σ(A)

|ϕj|dEA =
∫

σ(A)

ϕjdEA = Aj, j ∈ N;

(we have used the positivity of the operator A which leads to |ϕj| = ϕj on σ(U) ⊂ R+).
For the converse, one applies Theorem 16 (b)⇒(a), where J stands for N, xj stands for
ϕj, ϕj(t) = tj and yj stands for Bj, ∀j ∈ N. Let J0 and

{
λj
}

j∈J0
be as mentioned at point (b)

of Theorem 16. The following implications hold

∑
j∈J0

λj ϕj ≤ ϕ ∈ X ⇒ ∑
j∈J0

λj
∫

σ(A)

ϕjdEA = ∑
j∈J0

λj Aj ≤∫
σ(A)

ϕdEA ≤
∫

σ(A)

|ϕ|dEA := P(ϕ) ≤ ||ϕ||I

The positivity of the spectral measure dEA has been used. On the other hand, hy-
pothesis (b) and the fact that the scalars λj are nonnegative and the preceding evaluation
yield

λjBj ≤ λj Aj ∀j ∈ J0 ⇒ ∑
j∈J0

λjBj ≤ ∑
j∈J0

λj Aj ≤ P(ϕ),

where P(ϕ) was defined above. Thus the implication (b) of Theorem 16 is satisfied. Ap-
plication of the latter theorem leads to the existence of a “feasible solution” T having the
property mentioned at point (a) of the present theorem. The last property is a consequence
of the preceding one, using the fact that the norm on Y is solid. Namely,

±T(ϕ) = T(±ϕ) ≤
∫

σ(A)

|ϕ|dEA = P(ϕ)⇒

|T(ϕ)| ≤ P(ϕ)⇒ ||T(ϕ)|| ≤ ||P(ϕ)|| ≤ ||ϕ||·||I|| = ||ϕ||, ϕ ∈ X.

Thus we have ||T|| ≤ 1. This concludes the proof. �

4. Discussion

This is an up to date paper on polynomial approximation and some of its applications,
complete with recent applications of old general constrained extension theorems for linear
operators. There are two such constraints (sandwich condition) on the linear extension. Old
results have been reviewed without proofs, while results published in the last decade are
accompanied by their proofs. There are some different points of view with respect to the
papers [27,28]. For example, Section 3.4 was added and Section 3.1 was modified. It is worth
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noticing that solving the Markov moment problem is not the only direction for applications
of polynomial approximation (see Theorem 11 proved above). On the other hand, old,
basic results proved in [26], found recent applications in [22], to the characterization of the
isotonic convex operators on convex cones, in terms of their subgradients. Having these all
in mind, we hope that the results of Section 3 could find new applications and bring new
ideas in this area of research.
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