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Abstract: In this paper, we consider the initial-boundary value problem for the two-dimensional
primitive equations of the large-scale oceanic dynamics. These models are often used to predict
weather and climate change. Using the differential inequality technique, rigorous a priori bounds of
solutions and the continuous dependence on the heat source are established. We show the application
of symmetry in mathematical inequalities in practice.
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1. Introduction

Primitive equations are very useful models which are often used to study the climate
and weather prediction. It was Lions, Teman and Wang (see [1-4]) who first started
the mathematical study of the primitive equations of the atmosphere, the ocean and the
coupled atmosphere-ocean. Assuming that all unknown functions are independent of
the latitude y, Petcu et al. [5] obtained the two-dimensional primitive equations of the
ocean from the three-dimensional primitive equations. The existence and uniqueness of
strong solutions of the primitive equations were derived. In a following paper, Huang
and Guo [6] considered the two-dimensional primitive equations of large-scale oceanic
motion. They obtained the the existence and uniqueness of global strong solutions. Huang
etal. [7] studied the two-dimensional primitive equations of large-scale ocean in geophysics
driven by degenerate noise. They proved the asymptotically strong Feller property of the
probability transition semigroups. Due to the importance of primitive equations, there are
many papers to study the problems (see, e.g., [8-14]).

Recently, many authors began to study the structural stability of large-scale primitive
equations. Li [15] obtained the continuous dependence on the viscosity coefficient of
primitive equations of the atmosphere with vapor saturation. By using the energy analysis
methods, Li [16] proved that the primitive equations of the coupled atmosphere-ocean
depended continuously on the boundary parameters. The inspiration of the study came
from the fluid equations. There have been a lot of articles in the literature to study the
stability of fluid equations (for interest, see [17-29]).
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In this paper, we also assume that all the unknown functions are independent of the
latitude y as in [5,6]. We consider the following two-dimensional large-scale primitive
equations with heat source:

ou ou ou ap
§7y1Au+u£+wEffv+g—O,
v ov ov
g—yzAv—kug—i—wg—kfufo,
dp

:0’
5z P8 (1)
aiu_i_aiw =0
ox 9z
oT oT oT
g—ygAT+u$+wg = Q(x,1),

o= po(l - ﬁT(T_ Tref))

The domain is defined as
Q=1(0,1) x (=h,0),

where /1 is the depth of the oceanic which is always assumed to be a positive constant
in this paper. In (1) the unknown functions (u,v), w, p, p, T are the horizontal velocity
field, the vertical velocity, the density, the pressure, the temperature, respectively. Q is
the heat source function which is given. f is a function of the Earth’s rotation which is
taken to be constant here, and p; > 0(i = 1,2, 3) are the viscosity coefficients. pg, Ty, £ are
the reference values of the density and the temperature. S is the expansion coefficient
(constants), A = 92 + 92. We observe that, in the case of ocean dynamics, one has to add
the diffusion-transport equation of the salinity to the system (1). The salinity equation is
not present in (1), but this would raise little additional difficulty to take into account the
salinity.
The boundary of ) is denoted by dQ2 which can be partitioned into

Ih={(x,z) €eQ:0<x<1,z=0},
I ,={(x,z)eQ:0<x<1,z=—h},
Is={(x,z) €Q:x=0,0rx=1,-h <z <0}

The system (1) also has the following boundary conditions:

u 0v oT
E—O,E—O,W—O,E——ﬁ’r, Oﬂro,
u:v:w:O,g—Zzo, onT_y, 2)
u:v:wzo,alzo, onTy,

dz

where f is a positive constant. In addition, the initial conditions can be written as
u(x,z,0) =up(x,z), v(x,z0)=0v9(xz), T(x,20)=To(x,z), inQ. 3)

The aim of this paper is to prove the continuous dependence on the heat source of
problem (1)-(3) by using the energy methods. This type of study is devoted to know
whether a small change in the equation can cause a large change in the solutions. While we
take advantage of the mathematical analysis and the symmetry in mathematical inequalities
to study these equations, it is helpful for us to know their applicability in physics. Since
there will appear some inevitable errors in reality, the study of continuous dependence or



Symmetry 2021, 13, 1961

30f16

Ju z
VlA”*”g_(/,h

v z
—yQAU—I—ua—(/_ha—

convergence results becomes more and more significant. At present, most articles in the
literature mainly focused on the existence and long-time behavior of the solutions of the
primitive equations. Obviously, the structural stability of the primitive equations has not
been paid enough attentions. The research of this paper will bring reference to the study of
structural stability of other types of primitive equations.

The present paper is organized as follows. In next section we give some preliminaries
of the problem and some well-known inequalities which will be used in the whole paper.
We establish rigorous a priori bounds of the solutions in Section 2. In Section 3 we want to
prove that the energy is exponential decay with time. Finally, we show how to derive a
continuous dependence on the the heat source of our problem in Section 4.

2. Preliminaries of the Problem

We formulate the Equations (1)-(3). Since w|,—_j, = 0, we integrate the Equation (1)4
from —h to z to obtain

Z a "Z
w(x,z,t) =w(x,—h,t) — /4{ %u(x, g, Hdg = ~3r /7hu(x, g, bHdg. 4)

In view of w|,—g =0
0 3
/_ha (xgtdg—a/ u(x,g,1)dg = 0. )

This means that f —Oh u(x,{,t)dC is a constant for arbitrary 0 < x < 1. Realizing the
boundary conditions (2)3 we deduce that

0
[ utx g iz =o.
By integrating (1)3 and using (1) we have
0
S pat = opp [ L1, ©®)
where ps = p(x,0, ) is the pressure on the surface of the ocean which is unknown and a

function of the horizontal variable only, and y = pgB. Inserting (4)—(6) into (1)—(3), our
problem can be rewritten as

u(x,, 0dg) 3 — fo 1 9 —y(/ZO 21, 0d) =
4,8, 0)d0) 32 + fu =0,

@)
oT Z 0 oT
usAT + i </—h au(x,é,t)d@)a—
u(x,g,t)dg =0,
with the following boundary conditions
a—u :a—v :O,u = =0, (u,v)| =0,
0z |z=0 0z lz z=—h z=—h Ts (8)
o __ _T
0z |2= P, az z=—h  0zlT ’

and the initial conditions

(M,'U, T)‘ = (Llo,’(’)o, To) (9)
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In this paper, we also use some well-known inequalities. We list them here.

Lemma 1. Ifw(x) € C}(0,h) and w(0) = w(h) = 0, then

h W2t 9wy 2
2
<= — .
/Owdxinzo(ax)dx

For proof of Lemma 2.1 one can see Refs. [30,31].

(10)

Lemma 2. If w(x,z,t) is a sufficiently smooth function in Q3 = (0,1) x (—h,0) and w(0,z,t) =

w(1,z,t) =0, then

(/Qw‘ldA)% gc[(/(')deA)é(/QVw|2dA)%+(/Qw2dA : / |Vw|2dA>%}

or

(/Qa#dA)é < c[/nw2dA+5/Q|vW|2dA},

(11)

where V = (dy,0;), C is a positive computable constant and ¢ is a positive arbitrary constant.

Proof. By the Holder inequality, we then write

1 1
/w4dA§/ / w6dx 2 / de)2dz.
Q

Since w(0,z,t) = w(l,z,t) = 0, we have

w—3/ @’ztﬂ —3/ (& z,1) g{;t)dﬁ.

Therefore

3 /1 dw(x,z,t)
32 2 T\
lw|® < 2/0 w (x,z,t)‘ gy ‘dx.

Then we have

1 1 3
64,2 < 2 /
() er)” <30 I5lex)
Inserting (15) into (12) we get
. 3 0 1
a4 s */ / <
./Qw dA < ’ax‘dx)( dx) dz
1
<3 2 2 / :
<3 pax, {(f i) } [l 5les
Obviously, we have
w —2/ xgt) x€t)d§+w2(x,—h,t)
— _2/ (2,7, 5 2 xé_é W Lt) ot (2(x,0,1),

so,

w </ |w\‘ ‘dz+ w?(x,0,t) + w?(x, —h,t)].

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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To bound the last term of (18), we define a new known function, f(z), satisfying

£(0) >0, f(=h) <0, |f'(z)] <my, |f(z)] < ma, for —h<z<0, (19)
where my, m;, are positive constants. For example, f(z) = % (z + %), mih < 4mjy satisfies

all the conditions in (19). Using the above estimates and employing the divergence theorem
allow us to write

i {0, A 01) e ht]) < FO20.) = FRP e
03 o
= /_h§<fw2>dz:/ fl(z)w 2dz—|—2/ fw—dz 20)
< m /70hw2dz+2m2/ \w|‘ ‘dz

Inserting (20) into (18), we have

w? §m3/70hw2dz—|—m4/ \w|‘ ‘dz (21)
where
" = T 7 0), FCHY "™ = w0, W) 22
Therefore
o () 0e) ) = (m fLeanome el 2fas)’. e

Thus, from (16) and (23), by the Holder inequality we have

/w4dA < é[mg,/ w?dA
o ? . 1 e
+m4(/ wdA)® /]%‘;’M T /w“dA )( /\ ‘dA ).
We have after simplification
(/Qw‘*dA)% gc[(/ﬂwztm % / |ch|2dA>%
+</Qw2dA>4 /Q|Vw|2dA)4].

(25)

O

3. A priori Estimates

Now we derive some a priori estimates for the solutions of (7)—(9).

3.1. Estimates for ||ul3, ||v||3 and ||T|[3
Multiplying Equation (7)3 with T and integrating over () and using (2.5), we find

1d

1
oo QTsz+y3/ |VT|2dA: —#3/ Tzdx|Z:0+/ TQAA

—/ /hax u(x, g, t)dg) }TdA

(26)
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Integrating by parts we have

_/ /h Su(x, t)dg) ]TdA —0. (27)

By the Cauchy-Schwarz inequality and the Holder inequality we deduce
1 2 1 2
/TQdAgf/TdA+f/QdA. (28)
Q 2 Ja 2 Jo
By (26)—-(28) we have
Zdt/ T2dA+y3/ IVT2dA < = / T2dA + - / Q%dA. (29)

By the Gronwall inequality, we have

t t
/ T2dA + 213 / / IVT2dAdy < / T2dA - ¢t + / / e 1Q%d Ady
9] 0 JO Q 0 JQ
= Fi(t).

(30)

Taking the inner product of Equation (7); with u, in L2(Q), we have

%% QuZdAer/Q |Vu|?dA = —f/ uvd A
- ua—u ([ u(x, g, t)dC “ludA (31)
ox —h 8
a;;s udA—i—y/ / —T(x Z, t)dg)udA

An integration leads to

_ /Q / ~u(x,g, t)dC) }udA —0. (32)
Integrating by parts and using (7)4 we get
aps 19ps 1 [0 1 0 Ju
_ 2 = — =0. 33
) ox udA = /0 o (/7;1 udz)dx /0 ps(/% axdz)dx 0 (33)

By the Cauchy-Schwarz inequality we have

u/ /a X€t)dCudA— // thdC)—dA

i hﬂ/ 2
< = .
72/ dA+2y1 T<dA

(34)

By (31)—(34) we get
. / W2dA + yl/ VulPdA < —2f / wod A + / T2dA. (35)
Similarly, we can have from (7),

d 2 ' 2
— < . 36
dt/gv dA+2y2/Q|Vv| dA_Zf/qudA (36)
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Combining (35) and (36) and using (30) we get

d

h2 2
d 2 2 2 204 < 1 37
dt(/ﬂu dA—l—/Qv aA) +y1/0|w| dA+2y2/Q|Vv| A< ZERD. @)

We integrate (37) from 0 to ¢ to find

t t
/u2dA+/ deA+y1/ / |Vu|2dAd17+2y2/ / \Vo2d Ady
@) Q (@)

: ¢ (38)
< / 244 +/ 244 + / Fi(n)dy = Ba(8).
3.2. Estimate for |T|
We multiply (7)3 by TP~!, and integrate by parts to find
_ 1
/ TPdA+ 1y3/ IVT5PdA = —;4313/ TPdx|,_g +/ QTP 1dA
p dt Q Q (39)

_/Q[u%_(/zha (xgt)dé) ]TP LA.

After integrating by parts on the third term of (39) and realizing the boundary condi-

tion (8) we get
oT z
- - _ p—1
| [n5; (/ha u(x,g,0dg) I TP 1dA = (40)
By the Holder inequality and the Cauchy-Schwarz inequality we have
-1 1 P — 1
/ QTP 1dA < f/ QPdA+—/ TPAA. 41)
Q pJa P Ja
Therefore,
d
& [ mraa< [ Qraas+ (p-1) [ 1rda 4
dt /Q - QQ 1) o) 42)
By the Gronwall inequality we have
/TPdA</T”dA (Pt +// D=1 QP g Ay,
Therefore
1 . ot p 1
( / T7dA)" < { / TPAA - Pt 4 / / P DD QraAdy ). (43)
Ja Jo Ja
Letting now p — oo in (43) we can obtain

S‘:}P |T| < Ty, (44)

where T, = sup,{||Q|leo, ||To|oo}-
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3.3. Estimate for ||%HL4(Q)

Using (7)1 we start with

/(;t/g)%{aai;_l_u%_ (/Zhax (&, t)dg)i_f +aps
__H(LoggTQ”@tﬂg)_4MAM}%EdAdq:

Integrating by parts we have

%A@S%Hmf/wadm 2o (52) as

_// axaz /Zhaa uxg, )dg)az}audfldﬂ

/ / v au / / oT au
+f dz az x az
Upon integrating by parts we get

// axaz /zhaa (xm)dé)az}g”dAdq 0.

By (30), (38) and the Holder inequality we have

t 9T du %
—y/()/ggd/ld // dAd // dAd;7

fﬁ(t)fb(f)
uips

Inserting the above bounds into (46) we write

3 [, Ge)anvm [ [958 WM
—2/ auo f//gzgz a1

Fl(t)PZ(t)
2uipz

We now carry out a similar procedure starting from (7), to obtain

RO
)" oo f

0v

/ / axaz /h aax (¢, t)d€> oz 2} oz 5-dAdy

[ oy,

Upon integrating by parts we get

/ _/ axaz /Zh aa u(x, g, t)dé) % 2} gUdAdiy =0.

(45)

(46)

(47)

(48)

(49)

(50)

(51)
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Upon using the Cauchy-Schwarz inequality, (11), (38)

N %%—%% e
_/0/ )dAd1//22‘4dAd;7 // dAd
Lo ([ 2]

/t/ )2dAd;7 // dAdq+51//)V ‘dAd;y
// 2dAd17+52//‘V ‘dAd

// ou dAd // dAd17+53//‘V ‘dAd;y

/ / dAd / / dAd;7+(51 / / ‘v ‘dAd (52)

// dAd;y // dAd;7+§2//‘V ‘dAd;y

// dAd // dAd;y+53/ / \v ‘dAdﬂ
E(f) Fo(t Eo(t
2;12 2#2 2142 Vl 2V2

\/Z //’v “Faady
(320 2] [ [ |5 ana

where 41, Jp, J3 are positive constants which will be given later.
The idea is to insert (51) and (52) into (50) and then choose §, = 2 F ( ) U2, 03 =

IN

+
E

1

iV E (t) H2. We may have

1 80
3 o (52) s z’*z//‘v 2[[aaan
avo avau
/ A-f / A && Ady
1 Bt E(t E(t (53)
2 2]/12 2]/12 2}{2 ]/ll 2]12
1 [K(t) Ju
oo 51'/0 ./Q‘Vaz‘ dAdn.

We add (49) and (53) and choose that 4y = 4/ FZZL(i) y1 to find

[ G aas [ (5) aa
+y1//\v ]dAdnerz/ / ‘v ‘dAd (54)
< F(t),
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where

R0, <a”°>2dA+/ <z°> e
E(t

(55)
(f F(t K (t) B(t)
Zﬂz 2#2 2#2 Hi o M2
Using (11) with § = 1 then we have
t Jun 4 t Jun 2 t du 12 2
/0 /Q (55) aady < c(/o /Q (55) dAdn+/0 /Q‘Vg) dAdn) -

<c( [ B+ ;Fsof))z = Ey(1).

4. Exponential Decay Estimates with Time When Q = 0

In this section we want to prove the following theorem basis on Section 3.

Theorem 1. If (up,vo, Ty) € H(Q), Q = 0, then the global weakly strong solution (u,v, T) for
the system (7)—(9) satisfies

t t t
Il V1ol 1TIR, [ 1o TnIRdn, [ 1assutnPdn, [ 1asy00n)] Py
decay exponentially with time.

Proof. Since T, u and v satisfy the conditions of Lemma 2.1, we have

/‘ ‘dA> /Tsz

/ ‘ \ JA > 7 /Q W24 A, (57)

dA > 71 v*dA.
J |5l aa= =
Q

It follows from (29) with Q = 0 that

1d

' oT |2
2 2 2
i <
T TdA+7r ‘ug'/QTdA—V—"L%/Q‘aZ‘dAiO. (58)

So, by the Gronwall inequality, we get
t oT |2
2 < 2 . 7T1t. 59
/QTdA—i—m/O/Q‘aZ‘dAdq_/QTOdAe (59)

where 71 = nzyg. In view of (35), (36) and (57), we have

d 2 2 2 2 2 2
a(/QudA+/deA)+nyl/nudAJrznyz/QwA
ou |2 v |2
e [ 5] aa e [ [5] aa 0

2.2
h“/TZdA

Letting
T = 11 min{pu, 24z},
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and using (59) we may have from (60)

%(/Qusz—k/()zzsz) +Tz(/0u2dA+/szdA>
+y1/ ‘%‘261A+ﬂ2 / %‘%A ©61)
< hz” i / T2dA e,

By the Gronwall inequality again, we get

t auz t 8'02
2 2 e -

/Qu dA—l—/Qv dA+;41/0 /Q‘az‘ dAd11+y2/ / ’az’ dAdy

) . ) ; hZ 2
< L2 -
<( /Q 12dA + /Q RBdA) e 4 i (Tz—Tl
/ 2dA+/ 24A + /t/ ‘al‘\szd + //‘—’dAd
0 v M 9z | A4+ H2 9z | 44

2 2
/ dA+/ ! hif T2dA - ¢ ®if & < T,
2]11(1'2—1'1

/ 2dA+/ 2dA+y1//‘aZ dAdn+y2//‘ dAd

/ dA+/ oFdA) e h”t/TszeTzfzfrz_rl

/ T3dA-e O if o > 1,

O

5. Continuous Dependence on the Heat Source

Supposing (u*,v*, T*, p¥) also be the solutions of (7)—(9) with the same initial-boundary
conditions as (u, v, T, ps ), but with different heat source Q*. Let

ﬁ:u—u*,ﬁzv—v*,T:T—T*,nszps—p;‘,Q:Q—Q*, (62)
then (i1, 7, 715 ) satisfies the following initial-boundary problem
_ _du z *8171
*VlAM+”£*(/ha (xgt)dg) wes

B (/_Zh %u*(x,é,t)dé)g —fo+ a—xs — (/ZO af(x,@,t)dg) =0,
85 M2A0+ug—v o (/jh aiﬁ(xrért)d€>g% +u*g

—(/fhaa w8, 0d0) 2 fir =, )
TS — ([ Latn g, nag) o +u 33;
T_

ou v

& z=0 - g z=0 - z=—h -0 z=—h =0 (M,ZJ) T =0 (64)
oT ~ oT oT
EZZO__ﬁT,gZ:—h_ ’EFS_OI
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(1,3, T)] = (0,0,0). (65)

We have the following theorem:
Theorem 2. Let (i1, 7, T) be the solutions of (63)~(65) with Q, Ty € L®(Q) and Ty, ug, vy €
L2(Q). Then (i, o, T) satisfy the inequality for & > 0,71 (t) > 0

~ t ~
/ (i + 2% + 0T2)dA + / / (1;41 Vil + o VP + 0pus | VT2 ) d Ay
Q 0 Ja\2 (66)
t T ~ t ~
< m(h)e / / / et MR Adpdr 4 0 / / O2dAd,
0Jo Jo 0 Ja

which is the continuous dependence result on the heat source Q

Proof. Now taking the inner product of the first equation of (63) with i, in L?(Q)

we have

1/ RdA + /t/ \Vil2dAdy = /t/ ii5d Ad —/t/ O 4 Ad
2 Ja m n=f Jo* T= )y Ja ox U

u// / 2 T(x, CW)dC)udAd;y o
_// /haax (xén)dé) }udAdq

// wis /haax (xm)dC) }udAdU

An integration by parts leads to

/ / /haax (%8, ﬂ)dé) }udAd;y 0,

_//an5~dAd17— //187[ / xzn)dz)dxdﬂ—o

By the Holder inequality, Lemma 2.2, (38), Lemma 2.1, (56) and the AG mean inequality,

(68)

(69)

we have
_/ot/n [f‘%‘ /haax u(x, g m)d é)g—}udAdn
// l szd’Y : // 4dAd;7 :
/ / /h —ii(x,¢,)dC ) dAdq]z[/ot/Q(g—z)4dAd;7]

//a‘*dA{;i;yZ
0 JO

S t (70)
< |2 //~2dAd 5// Vill2dAd
o M1 {0 Qu 17+10 Q| i ’7]
VCh , tor9u2 it
+ = w/H(t)[/o/ﬂ(g) dAd;y] [/O/Qu dAdy

t 1

5// Viil2dAdny |’

o [ [ IVaPdady)
t t

<bt//~2dAd bt&// 1124 Ad
_1()00u ’7+2()1OQ|VM| 1

for computable by (), by(t) and positive arbitrary constant J;

1
1
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Applying the Cauchy-Schwarz inequality again we have

y/ / / x o dg)udAdn
_ —y/ / / (x,,1 dg)—dAdq (71)
< thZ/ / TZdAdU+ // dAd;y

Inserting (68)—(”71) into (67) and choosing 6; = y we have

4b ()

hZMZ
/ / T2dAdy + by (1) / / 2dAdy.

Now, taking the inner product of Equation (63), with 7, we have

(72)

;/ﬂa%mwz /t I |Vz7|2dAd17= ~f /t/ a5d Ady
/ / /h aax (% &, 17)d§> }udAd” (73)
/ / /haax (%G, W)dé) }vdAdﬂ

Computing as previous we arrive at

1/, 1 t ~2 b tro,
il i < = 74
2/021 dA+2y2/0 /Q|VU| dAdy < f/o /OuvdAdiy—i-bg,(t)/O /deAdiy (74)

for computable positive function b;(t). A combination of (74) and (78) leads to

t t
~2dA+/~2dA+ // Vill2dAdy + // Val2dAd
| A [ Paas [ |VaPdady+p [ [ [voPaady

2581 Rapay+om ) [ @aady+ 2 [ [ #dad )
< Paniy <) [ [ anay 250 [ [ Panay.

o= ) Paadn van) [ ] @dady+2s(e) [ [ Fdady

We take the inner product of Equation (63)3 with T, we have
1/ T24A + 1 /t/ |VT|2dAd;7
2 Jo 3
0 0T 1~
// - ([ et £one) 3] Taady
(76)

_// /haax (xén)dé) ]TdAd;y
+/0 /QQTdAdry.

On integrating by parts we have

/ / /h aax (x G U)dC) ]TdAdn =0. (77)
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Integrating by parts and using the Holder inequality, (44), Lemma 3.2, the AG mean
inequality we get

// /haax( %, )dg) }TdAdn

_/ / uT—dAd;y // /hax (x4, )d€>TaTdAd;7

ST*” / / dAd % / / szdU % . (78)
(), /hax wac) anin)' ([ [, (GE) aaan)

% 6 / / dAd + 55 Tm / / ZdAdﬂ

+—2n252Tm/O/Q = dAd11+§52Tm/O/Q g “dAdy,

where ¢, is a positive constant.
By the Holder inequality and the AG mean inequality it follows that

b 1t ~ 1t [ ~
TdAdy < ~ / / 24 Adn + = / / 24 Ady. 79
/O/QQ 17_2 0 QQ 17+2 0 Ja g 79)

Inserting (77)—(79) into (76) and choosing 6, = 2T we get

/Tsz—i—yg/ / |VT|2dAd17<—Tm/ / PdAdy + — Tm// a“ dAd;y

(80)
+ / [ Tdady + / | Qaady.
0 Jo 0 Ja
Then, using (75) and (80), we find that for a positive constant 8 = %
=2 ) 2 2
/Q<u + A +6T) dA+// S11 Vi + | VB2 + 03| VT2 ) dAdy
g')q(t)/ / i+ +9T2)dAd17 (81)
0
b
40 / / O%dAdy,
0 Ja
where
2K? T,0
Y1(t) = max{1+ ~— Y: , 2by () + 5”; 2b3(t)}. (82)
Therefore

[ @ or ~ o i: — Jymi(s)ds
E{/o /Q(u +0°+0T")dAdny -e” oM }SG/O /QQ dAdy e Jom _ (83)

An integration of (83) yields that

t - t T ~
/ / (i + 7 + 0T2)d Ady < 0 / / / e g Adyd. (84)
0 JO 0 Jo JO
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Then returning to (81), we obtain
o~ ~ £ 1 - ~ ~
/Q(u2+vz+eT2)dA+/o /Q<§y1|Vu|2+y2|VU\2+6y3|VT|2)dAd;7

(85)
t T . - t ~
< 71 (5)0 /O /0 /Q et 329 Adndr + 0 /O /Q O%d Ady.

6. Conclusions

In this paper, we obtain the continuous dependence of the two-dimensional large-scale
primitive equations in oceanic dynamics, where the depth of the ocean is assumed to be
a positive constant. When the depth of the ocean is positive but not always a constant,
Huang and Guo [32] have obtained the existence and uniqueness of a global strong solution
for the problem. The study of the continuous dependence of the primitive equations in this
case may be more interesting.
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