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Abstract: To compare the variability of two random variables, we can use a partial order relation
defined on a distribution class, which contains the anti-symmetry. Recently, Nair et al. studied
the properties of total time on test (TTT) transforms of order n and examined their applications in
reliability analysis. Based on the TTT transform functions of order n, they proposed a new stochastic
order, the TTT transform ordering of order n (TTT-n), and discussed the implications of order TTT-n.
The aim of the present study is to consider the closure and reversed closure of the TTT-n ordering. We
examine some characterizations of the TTT-n ordering, and obtain the closure and reversed closure
properties of this new stochastic order under several reliability operations. Preservation results of
this order in several stochastic models are investigated. The closure and reversed closure properties
of the TTT-n ordering for coherent systems with dependent and identically distributed components
are also obtained.

Keywords: TTT transform of order n; TTT transform ordering of order n; closure property; reversed
closure property; mixture proportional reversed hazard rate model; coherent system

1. Introduction

“Symmetry” is usually used to refer to an object that is invariant under some trans-
formations; including translation, reflection, etc. (for example, Zee [1]). The opposite of
symmetry is ant-symmetry, which refers to the absence or a violation of symmetry. As we
known, the deterministic, stochastic and fractional mathematical models are widely used
in many different research fields. The research objects of these three models are distinct,
and their research methods and results are also different. In these directions, interested
readers can refer to, for instance, Din and Li [2], Din et al. [3], Kosec et al. [4], Din et al. [5],
and the references therein. In statistics, symmetry also manifests as symmetric probability
distributions, and as skewness—the anti-symmetry of distributions (see Petitjean [6]). Tah-
masebi et al. [7] study the symmetry property of independent random variables with a
joint distribution function. Especially in stochastic models, it is of interest to compare the
variability of random variables, and a nice way is by a partial order relation defined on a
distribution class. Sometimes, we need to infer the properties of individual (or a unit) from
the properties of a population (or a system), then we say this order has closed properly,
whereas, when we do such things from the opposite direction in other times, then reversely
we say this order has reversed closure. If a stochastic order is closed with respect to some
system, but not reversely closed; or a stochastic order is reversely closed with respect to
some system, rather than closed, we can regard this stochastic order to have a kind of
anti-symmetry. Whether a stochastic order has the closure or reversed closure is thus worth
studying. This symmetry or anti-symmetry is conducive to uncertainty management.

Let X be a non-negative and absolutely continuous random variable with distribution
function FX and survival function FX = 1− FX , and density function fX , respectively. The
quantile function of FX is defined by

QX(p) = F−1
X (p) = inf{x| F(x) ≥ p} , for all p ∈ (0, 1). (1)
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The concept of total time on test (TTT) transforms is of significant importance for
its applications in different study fields such as reliability theory and economics. It was
proposed by Barlow et al. [8], and subsequently developed by Barlow and Campo [9],
Klefsjö [10], Bartoszewicz [11–14], Pham and Turkkan [15], Li and Shaked [16], Nanda and
Shaked [17], and among others. The TTT transform function of X is defined as (see Shaked
and Shanthikumar [18])

TX(p) =
∫ F−1

X (p)

0
FX(x)dx, for all p ∈ (0, 1). (2)

Note that TX(1) = E[X], where the expectation E[X] = µX can be finite or infinite.
Barlow and Campo [9] found that the TTT function TX in (2) is increasing in (0, 1), and

hence it can be viewed as the inverse of a distribution function HX of a random variable
with support in (0, TX(1)) = (0, µX), where the mean µX may be finite or infinite. Li
and Shaked [16] investigated this distribution function. Furthermore, based on the TTT
transform function, they defined the observed TTT random variable, written as Xttt, by the
distribution function with support in (0, µX):

HX(y) = P{Xttt ≤ y} = T−1
X (y), y ∈ (0, µX);

the corresponding density function hX = H′X is given by

hX(y) =
1

tX(T−1
X (y))

, y ∈ (0, µX),

where tX(p) = d
dp TX(p) is the TTT density of X.

They also showed that

Xttt = TX(FX(X)) =
∫ X

0
FX(x)dx;

it literally measures the observed total time on test when X is observed (see Franco-Pereira
and Shaked [19]).

The random variable Xttt has some useful applications in reliability theory; see Li and
Shaked [16] and Franco-Pereira and Shaked [19].

By using the TTT transform functions, Kochar et al. [20] established the following TTT
transform ordering and gave this stochastic order a careful study.

Let X and Y be two non-negative random variables with distribution functions FX , GY,
survival functions FX ≡ 1− FX , GY ≡ 1− GY, quantile functions F−1

X , G−1
Y , respectively. X

is said to be smaller than Y in the TTT transform ordering (denoted by X ≤ttt Y) if

∫ F−1
X (p)

0
FX(x)dx ≤

∫ G−1
Y (p)

0
GY(x)dx, for all p ∈ (0, 1). (3)

If FX(x) ≤ GY(x), x ∈ < (equivalently, F−1
X (p) ≤ G−1

Y (p) for all p ∈ (0, 1)), then X is
said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y or FX ≤st GY);
this order is studied, for example, by Shaked and Shanthikumar [18]. Jewitt [21] introduced
the following order. If

∫ F−1
X (p)

−∞
FX(x)dx ≤

∫ G−1
Y (p)

−∞
GY(x)dx, p ∈ (0, 1),

provided that the integrals are finite, then X is said to be smaller than Y in the location
independent riskier order (denoted by X ≤lir Y). Fagiuoli et al. [22] and Kochar et al. [20]
further studied this order.
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It is well-known that if X and Y are non-negative with common left endpoint 0 of
their supports, then

X ≤lir Y =⇒ X ≤st Y =⇒ X ≤ttt Y.

See Shaked and Shanthikumar [18].
A generalization of the TTT ordering is described next. This generalization contains

as special cases the orders ≤st, ≤lir, and ≤ttt.
Li and Shaked [16] introduced and studied a family of univariate stochastic orders

parameterized by a function h. Let H denote the set of all functions h such that h(u) > 0 for
u ∈ (0, 1), and h(u) = 0 for u /∈ [0, 1]. For h ∈ H, denote by

TX(p; h) =
∫ F−1

X (p)

0
h[FX(x)]dx and TY(p; h) =

∫ G−1
Y (p)

0
h[GY(x)]dx,

for all p ∈ (0, 1). TX(p; h) and TY(p; h) are called the generalized TTT (GTTT) transforms
of X and Y with respect to h, respectively. Based on the GTTT transform functions, they
defined the following new stochastic order. Let h be a function as described in Li and
Shaked [16] as above.

Let X and Y be two non-negative random variables. Let h be a function as described in
Li and Shaked [16]. X is said to be smaller than Y in the generalized TTT (GTTT) ordering
with respect to h (denoted by X ≤(h)

ttt Y or FX ≤
(h)
ttt GY) if

∫ F−1
X (p)

0
h[FX(x)]dx ≤

∫ G−1
Y (p)

0
h[GY(x)]dx, for all p ∈ (0, 1). (4)

They showed that if h is a constant function on [0, 1]; that is, h(u) = c, u ∈ [0, 1], for
some c > 0, and h(u) = 0 otherwise. Then, the order ≤(h)

ttt becomes as the order ≤st. If
h(u) = u, u ∈ [0, 1], and h(u) = 0 otherwise. Then, the order ≤(h)

ttt becomes as the order
≤lir. If h(u) = 1− u, u ∈ [0, 1], and h(u) = 0 otherwise. Then, the order ≤(h)

ttt becomes as
the order≤ttt. They also studied some properties of this family, and gave some applications
of it in actuarial science, reliability theory, and statistics. Shaked and Shanthikumar [18]
described a relationship among the orders ≤(h)

ttt Y for different h’s. For more details about
the GTTT ordering, we also refer to Shaked and Shanthikumar [18].

Nair et al. [23] studied the TTT transform functions of order n (see Section 2 below),
based on the TTT transform functions of order n, they introduced the TTT transform
ordering of order n (TTT-n ordering, for short), and studied the properties of this new
order. They also examined the implications between the TTT-n ordering and some other
stochastic orders often used in reliability analysis. The aging properties of the baseline
distribution was compared with those of transformed distributions.

Recently, Bartoszewicz and Benduch [14] studied some properties of the GTTT trans-
forms. They made stochastic comparisons of GTTT transforms in several commonly used
stochastic orders. They defined invariance properties and distances of some stochastic
orders by using the GTTT transforms. Iterations of the GTTT transforms are also studied,
and their relations with exponential mixtures of gamma distributions are established. Nair
and Sankaran [23] presented some new applications of the total time on test transforms.
They presented four applications of TTT in reliability theory. They characterized aging cri-
teria such as IFRA and NBU in terms of TTT. They utilized an iterated version to construct
bathtub shaped hazard quantile functions and corresponding lifetime models. Further, an
index was developed for numerically measuring the extent of IFR-ness of a life distribution.
They also demonstrated how the distributional properties such as kurtosis and skewness
can be derived from the TTT.

More recently, Franco-Pereira and Shaked [19] studied the TTT transform and the
decreasing percentile residual life aging notion. On the basis of the work of Nair and
Sankaran [23], they added two characterizations of the decreasing percentile residual life of
order α (DPRL(α)) aging notion in terms of the TTT function, and in terms of the observed
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TTT when X is observed. Vineshkumar et al. [24] studied the TTT and TTT-n orderings
by using quantile-based reliability functions. They developed new stochastic orders using
the quantile-based reliability measures like the hazard quantile function and the mean
residual quantile function. They also established relationships among the proposed orders
and certain existing orders. Various properties of the orders are also studied.

The following lemma taken from Barlow and Proschan ([25], p. 120) is useful in the
sequel.

Lemma 1. Let W be a measure on the interval (a, b), not necessarily non-negative, where −∞ ≤
a < b ≤ +∞. Let h be a non-negative function defined on (a, b). If

∫ t
a dW(x) ≥ 0 for all t ∈ (a, b)

and if h is decreasing, then ∫ b

a
h(x)dW(x) ≥ 0.

In this paper, we focus our interest on the further properties of the TTT-n ordering,
especially the closure and reversed closure properties of this order. The organization of the
paper is as follows. In Section 2, we explore the characterizations of the TTT-n ordering. In
Section 3, we investigate the closure and reversed closure properties of the TTT ordering.
As applications of a main result Theorem 1, in Section 4, we examine the preservation of
the TTT-n ordering in several stochastic models. In Section 5, we obtain the closure and
reversed closure properties of this order for coherent systems. Section 6 is the conclusion
of this research.

The highlights of our research are: (1) the TTT-n ordering is closed respect to a series
system and a random series system, respectively; (2) the TTT-n ordering is reversely closed
respect to a parallel system and reversely closed respect to a random parallel system,
respectively; (3) the TTT-n ordering is closed under a non-negative, increasing and concave
transform; (4) the TTT-n ordering is reversely closed under a non-negative and increasing
convex transform; (5) the TTT-n ordering is closed and reversely closed, respectively, under
some appropriate conditions in several stochastic models. (6) We summarize the research
results of this article, and obtained 17 results concerning anti-symmetry.

In the paper, the term increasing stands for monotone non-decreasing and decreasing
stands for monotone non-increasing. Assume that all random variables involved are
absolutely continuous and non-negative, and that all integrals appeared are finite and all
ratios are well defined whenever written.

2. Characterizations of the TTT Transform Ordering of Order n

Let X and Y be two absolutely continuous and non-negative random variables with
distribution functions FX and GY, survival functions FX = 1− FX and GY = 1−GY, density
functions fX and gY, and quantile functions F−1

X and G−1
Y of FX and GY, respectively. X

and Y have 0 as the common left endpoint of their supports.
Recently, Nair et al. [26] studied the TTT transforms of order n, and based on the TTT

transforms of order n, they introduced and examined the TTT transform ordering of order
n. They exploited the implications between the TTT transform ordering of order n and
some other stochastic orders often used in reliability analysis. They recursively defined the
TTT transforms of order n of a non-negative continuous random variable X given by

TX
n (p) =

∫ p

0
(1− u)tX

n−1(u)du, n = 1, 2, ..., (5)

with TX
0 (p) = QX(p) and

tX
n (p) =

d
dp

TX
n (p), tX

0 (p) =
d

dp
TX

0 (p) =
d

dp
QX(p) = qX(p) =

1
fX [FX(p)]

,

provided that µX
n−1 =

∫ 1
0 (1− u)tX

n−1(u)du < ∞.
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They denoted by Xn the random variable with quantile function TX
n (p) and mean µX

n .
By differentiating (5), they showed that

tX
n (p) = (1− p)tX

n−1(p)

and
tX
n (p) = (1− p)ntX

0 (p) = (1− p)nqX(p). (6)

From (5) and (6), we have

TX
n (p) =

∫ p

0
(1− u)nqX(u)du, n = 1, 2, . . . (7)

Letting u = FX(x) in the above integral, we thus get

TX
n (p) =

∫ F−1
X (p)

0
[FX(x)]ndx, n = 1, 2, . . . (8)

Definition 1 (Nair et al. [26]). Let X and Y be two non-negative random variable, X is said
to be smaller than Y in the TTT transform of order n, written as X ≤ttt−n Y (or, equivalently,
Xn ≤ttt Yn), if TX

n+1(p) ≤ TY
n+1(p) for all p ∈ (0, 1), where TX

n (p) and TY
n (p) denote the TTT

transforms of order n of X and Y, respectively.

Below, we give a necessary and sufficient condition of the TTT ordering of order n,
which will play a key role in the proofs of the results in the whole paper.

Theorem 1. X ≤ttt−n Y if and only if

∫ t

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (9)

Proof. From Definition 1 and (8) we have X ≤ttt−n Y if and only if

∫ F−1
X (p)

0

[
FX(x)

]n+1dx ≤
∫ G−1

Y (p)

0

[
GY(x)

]n+1dx, for all p ∈ [0, 1]. (10)

Letting GY(x) = FX(y) in the right-hand side of inequality (10) that is, x = G−1
Y [FX(y)],

and dx =
(

fX(y)
/

gY

[
G−1

Y (FX(y))
])

dy , we have, for all p ∈ [0, 1],

∫ G−1
Y (p)

0

[
GY(x)

]n+1dx =
∫ F−1

X (p)

0

[
FX(y)

]n+1 fX(y)

gY

[
G−1

Y (FX(y))
]dy

=
∫ F−1

X (p)

0

[
FX(x)

]n+1 fX(x)

gY

[
G−1

Y (FX(x))
]dx.

Thus, from inequality (10), we have

∫ F−1
X (p)

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all p ∈ [0, 1].
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Now, letting F−1
X (p) = t, we find that

∫ t

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

d x ≥ 0, for all t ≥ 0.

This completes the proof.

On using Q′X(u) = qX(u) = [ fX(F−1
X (x))]−1, Q′Y(u) = qY(u) = [gY(G−1

Y (x))]−1 (also
see Nanda et al. [27], Sunoj and Sankaran [28], Sunoj et al. [29]), as a direct consequence of
Theorem 1, we get the following result immediately.

Corollary 1. X ≤ttt−n Y if and only if∫ p

0
(1− u)n+1[qY(u)− qX(u)]du ≥ 0, for all p ∈ [0, 1]. (11)

Let X be a non-negative continuous random variable with distribution function FX
and mean µX < ∞. Li and Shaked [30] defined the observed total time on test and the
observed excess wealth random variables when X is observed, and denoted by Xttt and
Xew, respectively. They showed that

Xttt = TX(FX(X)) =st TX(U) =
∫ X

0
FX(x)dx

and
Xew = WX(FX(X)) =st WX(U) =

∫ ∞

X
FX(x)dx,

where U is a uniform (0, 1) random variable, and =st denotes equality in distribution. They
also gave that

Xew = µX − Xttt, and

E[Xttt] =
∫ ∞

0
F2

X(x)dx, E[Xew] =
∫ ∞

0
FX(x)FX(x)dx.

Thus, many results about Xew can be derived from results about Xttt, and vice versa.
We call a non-negative random variable with quantile function TX

n (p) the observed
TTT random variable of order n of X, denoted by X(n)

ttt . Evidently, the random variable
Xn in Nair et al. [26] is really the X(n)

ttt , the observed TTT random variable of order n of X.
Hence, from Definition 1, we see that

X ≤ttt−n Y ⇔ Xn ≤ttt Yn ⇔ X(n)
ttt ≤ttt X(n)

ttt ⇔ X(n+1)
ttt ≤st X(n+1)

ttt ,

with
X ≤ttt Y ⇔ X ≤ttt−0 Y ⇔ X0 ≤ttt Y0 ⇔ X(0)

ttt ≤ttt X(0)
ttt ⇔ Xttt ≤st Xttt,

as a special case of X ≤ttt−n Y order, where X0 = X = X(0)
ttt , the observed TTT random

variable of order 0 of X.

Theorem 2. If θ ≥ 1, then X ≤ttt−n θX, and if 0 < θ ≤ 1, then θX ≤ttt−n X.

Theorem 3. Let θ be a positive real number. Assume that X ≤ttt−n Y.

(a) If θ ≥ 1, then X ≤ttt−n θY.
(b) If 0 < θ ≤ 1, then θX ≤ttt−n Y.
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Proof. We give proof for (a); the proof for (b) is similar. Suppose that X ≤ttt−n Y, then,
from Corollary 1, we have∫ p

0
(1− u)n+1[qY(u)− qX(u)]du ≥ 0, for all p ∈ [0, 1]. (12)

Furthermore, from Corollary 1, X ≤ttt−n θY if and only if∫ p

0
(1− u)n+1[qθY(u)− qX(u)]du ≥ 0, for all p ∈ [0, 1]. (13)

It is not hard to see that qθY(u) = θqY(u). On using (13) if θ ≥ 1, we get, for all
p ∈ [0, 1], ∫ p

0
(1− u)n+1[qθY(u)− qX(u)]du ≥

∫ p

0
(1− u)n+1[qY(u)− qX(u)]du. (14)

Making use of (12), we know that (13) holds. Thus, the stated result follows.

From Theorem 3, we have the following corollary.

Corollary 2. Let a and b be any real numbers such that 0 < a ≤ b. If X ≤ttt−n Y, then
aX ≤ttt−n bY.

Now, we recall the dispersive order (see Shaked and Shanthikumar [31]). Assume
that X and Y are two non-negative and continuous random variables with, respectively,
distribution functions FX and GY, density functions fX and gY, quantile functions F−1

X and
G−1

Y . X is said to be smaller than Y in the dispersive order (denoted by X ≤disp Y) if

F−1
X (p2)− F−1

X (p1) ≤ G−1
Y (p2)− G−1

Y (p2), for 0 < p1 ≤ p2 < 1.

That is, ∫ p2

p1

qX(u)du ≤
∫ p2

p1

qY(u)du, for 0 < p1 ≤ p2 < 1.

Equivalently,

fX [F−1
X (p)] ≥ gY[G−1

Y (p)], for all p ∈ (0, 1), (15)

equivalently,
qX(p) ≤ gY(p), for all p ∈ (0, 1), (16)

or equivalently,
fX(x)

gY

[
G−1

Y (FX(x))
] ≥ 1, for all x ≥ 0. (17)

From (16) and Corollary 1, we have the following theorem, which gives a sufficient
condition for the ≤ttt-n order.

Theorem 4. If X ≤disp Y, then X ≤ttt−n Y.

Example 1. Let X and Y be two exponential random variables with respective parameters λ1 > 0
and λ2 > 0. Then, the survival functions functions of X and Y are given by

FX(x) = e−λ1x and GY(x) = e−λ2x, for all x ≥ 0.

One can check that
fX(x)

gY

[
G−1

Y (FX(x))
] =

λ1

λ2
, for all x ≥ 0. (18)
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Then, the TTT-n ordering is determined by the parameters λ1 and λ2:

(1) If λ1 ≥ λ2 > 0, making use of (18) and (17) we have X ≤disp Y. By Theorem 2, we find that
X ≤ttt-n Y.

(2) If 0 < λ1 ≤ λ2, on using a similar manner as above, we have Y ≤disp X. Again, by
Theorem 2, we find that Y ≤ttt-n X.

Example 2. Let X and Y be two Pareto random variables with respective survival functions

FX(x) =
(

λ

λ + x

)α1

and GY(x) =
(

λ

λ + x

)α2

, for all x ≥ 0.

where α1, α2, λ are positive real numbers. It can be verified that

fX(x)

gY

[
G−1

Y (FX(x))
] =

α1

α2

(
1 +

x
λ

) α1
α2
−1

, for all x ≥ 0. (19)

Then, the TTT-n ordering is determined by the shape parameters α1 and α2:

(1) If α1 ≥ α2 > 0, in view of (19) and (17), one can see that X ≤disp Y. By Theorem 2, we find
that X ≤ttt-n Y.

(2) If 0 < α1 ≤ α2, with a similar pattern as above we get Y ≤disp X. By Theorem 2, we find that
Y ≤ttt-n X.

Example 3. Let X and Y be two uniform random variables with distribution functions, respectively,

FX(x) = x for all x ∈ (0, 1) and GY(x) = x/2 for all x ∈ (0, 2).

We can prove that

fX(x)

gY

[
G−1

Y (FX(x))
] = 2, for all x ∈ (0, 1). (20)

In view of (17) and (20), we see that X ≤disp Y. From Theorem 2 we find that X ≤ttt-n Y.

Recall from Shaked and Shanthikumar [31] that X is said to be smaller than Y in the
increasing concave order (denoted by X ≤icv Y) if∫ t

0
FX(x)dx ≤

∫ t

0
GY(x)dx, for all t ≥ 0.

Equivalently, ∫ t

0
[FX(x)− GY(x)]dx ≥ 0, for all t ≥ 0. (21)

Kochar et al. [20] (also see Shaked and Shanthikumar [31]) showed that if X and Y
have zero as the common left endpoint of their supports, then

X ≤ttt Y =⇒ X ≤icv Y. (22)

Nair et al. [26] showed that

X ≤ttt Y =⇒ X ≤ttt−n Y.

The following proposition considers the implication relationships between the orders
≤ttt−n and ≤icv.
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Proposition 1. Let X and Y be two non-negative continuous random variables having 0 as the
common left endpoint of their interval supports. Then, the orders ≤ttt−n and ≤icv do not coincide
with each other. That is,

X ≤ttt−n Y ; X ≤icv Y and X ≤icv Y ; X ≤ttt−n Y.

The following two counterexamples show the correctness of Proposition 1. Counterex-
ample 1 reveals ≤ttt−n;≤icv; Furthermore, Counterexample 2 indicates ≤icv;≤ttt−n.

Counterexample 1. Let X and Y be two non-negative continuous random variables with
distribution functions, respectively,

FX(x) = x, x ∈ (0, 1) and GY(x) =


2
3 x, x ∈ [0, 3

8 ];

3x− 7
8 , x ∈ ( 3

8 , 1
2 ];

3
4 x + 1

4 , x ∈ ( 1
2 , 1].

One can verify by Theorem 1 that X ≤ttt−2 Y. In fact, a straightforward calculation
gives

fX(x)

gY

[
G−1

Y (FX(x))
] =


3
2 , x ∈ [0, 1

4 ];
1
3 , x ∈ ( 1

4 , 5
8 ];

4
3 , x ∈ ( 5

8 , 1].

(23)

Denote the function

I2(t) =
∫ t

0
[FX(x)]3

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx, for all t ≥ 0. (24)

From (24), we find that:

(1) when t ∈ [0, 1
4 ],

I2(t) =
1
2

∫ t

0
(1− x)3dx ≥ 0.

(2) when t ∈ ( 1
4 , 5

8 ],

I2(t) =
1
2

∫ 1
4

0
(1− x)3dx− 2

3

∫ t

1
4

(1− x)3dx =
67

2048
+

1
6
(1− t)4 ≥ 0.

(3) when t ∈ ( 5
8 , 1],

I2(t) = I2(
5
8
) +

1
3

∫ 1

5
8

(1− x)3dx ≥ I2(
5
8
) =

295
8192

> 0.

(4) when t > 1, I2(t) ≥ 0 trivially holds.

Hence, by using Theorem 1, we obtain X ≤ttt−2 Y.
Moreover, denote the function

I1(t) =
∫ t

0
[FX(x)− GY(x)]dx, for all t ≥ 0. (25)

In view of (25), when t = 3
8 ,

I1(
3
8
) =

∫ 3
8

0
[FX(x)− GY(x)]dx =

∫ 3
8

0
(x− 2

3
x)dx =

3
128

> 0;
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when t = 1,

I1(1) =
∫ 1

0
[FX(x)− GY(x)]dx = I1(

3
8
) +

∫ 1
2

3
8

(
7
8
− 2x)dx +

1
4

∫ 1

1
2

(x− 1)dx = − 1
128

< 0.

Making using of Theorem 1, this fact shows that X �icx Y and Y �icx X.

Counterexample 2. Let X and Y be two non-negative continuous random variables with
distribution functions, respectively,

FX(x) = x, x ∈ [0, 1] and GY(x) =


1
5 x, x ∈ [0, 5

8 ];

6x− 29
8 , x ∈ ( 5

8 , 3
4 ];

1
2 x + 1

2 , x ∈ ( 3
4 , 1].

Denote the function

I1(t) =
∫ t

0
[FX(x)− GY(x)]dx, for all t ≥ 0. (26)

In view of (26), when t ∈ [0, 5
8 ],

I1(t) =
∫ t

0
[FX(x)− GY(x)]dx =

∫ t

0
(x− 1

5
x)dx =

2
5

t2 ≥ 0;

when t ∈ ( 5
8 , 3

4 ],

I1(t) = I1(
5
8
) +

∫ t

3
4

[FX(x)− GY(x)]dx =
5

32
+
∫ t

5
8

(
29
8
− 5x)dx =

29
8

t− 5
2

t2 − 165
128
≥ 0;

when t ∈ ( 3
4 , 1],

I1(t) = I1(
3
4
) +

∫ t

3
4

[FX(x)− GY(x)]dx =
3

128
+

1
2

∫ t

3
4

(x− 1)dx =
33
128

+
1
4

t2 − 1
2

t ≥ 0.

By means of (21) we obtain X ≤icv Y.
Furthermore, denote the function

I2(t) =
∫ t

0
[FX(x)]3

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx, for all t ≥ 0. (27)

From (27) we have, when t = 1
8 ,

I2(
1
8
) = 4

∫ 1
8

0
(1− x)3dx =

1695
4096

> 0. (28)

When t = 7
8 ,

I2(
7
8
) = I2(

1
8
)− 5

6

∫ 7
8

1
8

(1− x)3dx =
1695

16, 384
− 5

6

∫ 7
8

1
8

(1− x)3dx = − 305
16, 384

< 0. (29)

By using Theorem 1, this fact shows that X �ttt−2 Y and Y �ttt−2 X.
Nair et al. [26] showed that

X ≤ttt Y ⇒ X ≤ttt−n Y.
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The following remark considers whether the inverse of this proposition holds. The
answer is negative.

Remark 1. Let X and Y be two non-negative continuous random variables having a common left
endpoint of their interval supports. Then

X ≤ttt−n Y ; X ≤ttt Y.

This is so, because if X ≤ttt−n Y⇒ X ≤ttt Y, from (22) we have X ≤ttt−n Y⇒ X ≤icv Y.
However, this result contradicts Proposition 1.

A random variable X is said to be smaller than another random variable Y in the con-
vex transform order (denoted by X ≤c Y) if the function G−1

Y [FX(x)] is convex, equivalently,

fX(x)
/

gY

[
G−1

Y (FX(x))
]

is increasing in x ≥ 0.

Theorem 5. Let X and Y be two absolutely continuous non-negative random variables with 0 as
the common left endpoint of their supports. Assume that fX(x) ≥ gY(0) > 0. If X ≤c Y, then
X ≤ttt−n Y.

Proof. In view of (9), X ≤ttt−n Y if and only if

∫ t

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (30)

If X ≤c Y, then, the function fX(x)
/

gY

[
G−1

Y (FX(x))
]

is increasing in x ≥ 0, and
FX(0) = GY(0), hence

fX(x)

gY

[
G−1

Y (FX(x))
] ≥ fX(0)

gY

[
G−1

Y (FX(0))
] =

fX(0)
gY(0)

, for all x ≥ 0. (31)

Since fX(x) ≥ gY(0), on using (31) we obtain that fX(x)
/

gY

[
G−1

Y (FX(x))
]
≥ 1. Thus,

we know that (30) holds. That is, X ≤ttt−n Y.

Theorem 6. The orders X ≤ttt−n Y and Y ≤ttt−n X hold simultaneously if and only if X =disp Y,
here, X =disp Y means that X =st Y + k, where k is constant.

Proof. From (9) we have that X ≤ttt−n Y and Y ≤ttt−n X hold simultaneously, if and only if

∫ t

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≡ 0, for all t ≥ 0.

That is,
fX(x)

gY

[
G−1

Y (FX(x))
] = 1, almost surely,

which is equivalent to that X =disp Y. This completes the proof.

3. Closure and Reversed Closure Properties of the TTT-n Ordering
3.1. Closure and Reversed Closure Properties of the TTT-n Ordering with Respect to Series and
Parallel Systems

Let X and Y be two non-negative and continuous random variables with distribution
functions FX and GY, right-continuous inverse functions F−1

X and G−1
Y , survival functions
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FX and GY, and density functions fX and gY, respectively, X1, . . . , Xm and Y1, . . . , Ym are
independent and identically distributed (i.i.d.) copies of X and Y, respectively, denote by

X1:m = min{X1, . . . , Xm}, Xm:m = max{X1, . . . , Xm}.

Similarly, Y1:m and Ym:m denote the survival function and the density function of X1:m
by FX1:m and fX1:m , respectively; denote the distribution function and the density function
of Xm:m by FXm:m and fXm:m ,, respectively. Similarly, GY1:m , gY1:m , GYn:m , and gYm:m .

A series system is such a system that functions if and only if each component functions.
A parallel system is such a system that functions if and only if at least one component
functions. Then, a series system composed of m i.i.d. components has its lifetime X1:m; a
parallel system composed of m i.i.d. components has its lifetime Xm:m.

Below, we consider the reversed closure property of a parallel system for TTT-n
ordering, we have the following result.

Theorem 7. If Xm:m ≤ttt−n Ym:m, then X ≤ttt−n Y.

Proof. Suppose that Xm:m ≤ttt−n Ym:m. Then, from (9) we obtain

∫ t

0
[FXm:m(x)]n+1

 fXm:m(x)

gYm:m

[
G−1

Ym:m
(FXm:m(x))

] − 1

dx ≥ 0, for all t ≥ 0. (32)

Since FXm:m(x) = [FX(x)]m, by noting that Shaked and Shanthikumar [18] showed that

G−1
Ym:m

[FXm:m(x)] = G−1
Y [FX(x)], for all x ≥ 0,

it can be proven that

fXm:m(x)

gYm:m

[
G−1

Ym:m
(FXm:m(x))

] =
fX(x)

gY

[
G−1

Y (FX(x))
] , for all x ≥ 0. (33)

It is easy to see that FXm:m(x) = FX(x)
[
∑m

i=1[FX(x)]i−1]. On using (32) and (33), we
find that

∫ t

0

[
FX(x)

]n+1
[

m

∑
i=1

[FX(x)]i−1

]n+1
 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (34)

Obviously, the function
[
∑m

i=1[FX(x)]i−1]−(n+1) is non-negative and decreasing in
x ≥ 0, making use of (34) and Lemma 1, we have

∫ t

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0.

Again, by (9), this completes the proof.

Remark 2. Theorem 7 indicates that the TTT-n ordering has the reversed closure property under
the formation of parallel systems. Theorem 7 also says that the parallel systems reversely preserve
the TTT-n ordering.

Remark 3. The inverse of Theorem 7 is not necessarily true. That is,

X ≤ttt−n Y ; Xm:m ≤ttt−n Ym:m.
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To see this relationship, we give the following counterexample.

Counterexample 3. Let X and Y be two non-negative continuous random variables with
distribution functions, respectively,

FX(x) = x, x ∈ (0, 1) and GY(x) =


2
3 x, x ∈ [0, 3

8 ];

3x− 7
8 , x ∈ ( 3

8 , 1
2 ];

3
4 x + 1

4 , x ∈ ( 1
2 , 1].

A simple computation yields

fX(x)

gY

[
G−1

Y (FX(x))
] =


3
2 , x ∈ [0, 1

4 ];
1
3 , x ∈ ( 1

4 , 5
8 ];

4
3 , x ∈ ( 5

8 , 1].

From Counterexample 1, we know that X ≤ttt−2 Y.
Furthermore, one can easily testify that

fXm:m(x)

gYm:m

[
G−1

Ym:m
(FXm:m(x))

] =
fX(x)

gY

[
G−1

Y (FX(x))
] , for all x ≥ 0. (35)

Note that when m = 2, FX2:2(x) = 1− [FX(x)]2 = 1− x2, x ∈ [0, 1]. From (9), when
n = 2, denote the function

Ip(t) =
∫ t

0
[FX2:2(x)]2+1

 fX2:2(x)

gY2:2

[
G−1

Y2:2
(FX2:2(x))

] − 1

dx, for all t ≥ 0

=


∫ t

0 (1− x2)3
[

fX(x)
gY[G−1

Y (FX(x))]
− 1
]

dx, x ∈ [0, 1];

Ip(1), x ∈ (1,+∞).
(36)

Hence, from (36), we find that

(1) when t ∈ [0, 1
4 ], since 1− x2 ≥ 0, x ∈ [0, 1

4 ], therefore

Ip(t) =
1
2

∫ t

0

[
1− x2

]3
dx ≥ 0.

(2) when t ∈ ( 1
4 , 5

8 ],

Ip(t) = Ip(
1
4
)− 2

3

∫ t

1
4

[1− x2]3dx.

A direct calculation shows that Ip(
5
8 ) = −1.4394× 10−2 < 0. Making use of Theorem 1,

this fact shows that X2:2 �ttt−n Y2:2 and Y2:2 �ttt−n X2:2. Thus, we conclude that X ≤ttt−n
Y ; Xm:m ≤ttt−n Ym:m.

Nair et al. ([26], p. 1137, Theorem 5.1) showed the following result, for the ease of
citation we list as a lemma, and we give a new proof. Here, we point out that the component
numbers of systems are not the same as the order n of the TTT-n ordering generally.

Lemma 2 (Nair et al. [26]). If X ≤ttt−n Y, then X1:n ≤ttt−n Y1:n.

Theorem 8. If X ≤ttt−n Y, then X1:m ≤ttt−n Y1:m.
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Proof. Suppose that X ≤ttt−n Y. Then, from (9) we have,

∫ t

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (37)

Note that FX1:m(x) =
[
FX(x)

]m and GY1:m(x) =
[
GY(x)

]m. It is easy to prove that

G−1
Y1:m

(
FX1:m(x)

)
= G−1

Y (FX(x)).

Differentiating both sides of this equation, we find that

fX1:m(x)

gY1:m

[
G−1

Y1:m

(
FX1:m(x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] , for all x ≥ 0. (38)

Since the function

h(x) =

[
FX1:m(x)
FX(x)

]n+1

=
[(

FX(x)
)m−1

]n+1
(39)

is non-negative and decreasing in x ≥ 0, by (37)–(39) and Lemma 1, we find that

∫ t

0
[FX1:m(x)]n+1

 fX1:m(x)

gY1:m

[
G−1

Y1:m

(
FX1:m(x)

)] − 1

dx ≥ 0, (40)

again, by using Theorem 1, which is equivalent to X1:m ≤ttt−n Y1:m. This completes the
proof.

Remark 4. Theorem 8 indicates that the series systems preserve the TTT-n ordering. Theorem 7
also says that the TTT-n ordering has the closure property with respect to the series systems.

Remark 5. The inverse of Theorem 8 is not necessarily true. To see this relationship, we give the
following counterexample.

Counterexample 4. Let X and Y be two non-negative continuous random variables with
distribution functions, respectively,

FX(x) = x, x ∈ (0, 1) and GY(x) =

{
1
2 x, x ∈ [0, 1

8 ];
3
2 x− 1

8 , x ∈ ( 1
8 , 3

4 ].

On using (38), we have

fX1:2(x)

gY1:2

[
G−1

Y1:2

(
FX1:2(x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] , for all x ≥ 0. (41)

One can testify by Theorem 1 that X1:2 ≤ttt−2 Y1:2. In fact, a direct computation yields

fX(x)

gY

[
G−1

Y (FX(x))
] =

{
2, x ∈ [0, 1

16 ];
2
3 , x ∈ ( 1

16 , 1].
(42)
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Note that FX1:2(x) = [FX(x)]2. Due to (9), when n = 2, let

Is(t) =
∫ t

0
[FX1:2(x)]2+1

 fX1:2(x)

gY1:2

[
G−1

Y1:2
(FX1:2(x))

] − 1

dx

=
∫ t

0
[FX(x)]6

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx, for all t ≥ 0. (43)

From (43), we get
(1) When t ∈ [0, 1

16 ],

Is(t) =
1
2

∫ t

0
(1− x)6dx =

1
7

[
1− (1− t)7

]
≥ 0.

(2) When t ∈ ( 1
16 , 1],

Is(t) = Is(
1
16

)− 1
3

∫ t

0
(1− x)6dx =

1
7
− 4

21
(

15
16

)7 +
1
12

(1− t)7

≥ 1
7
− 4

21
(

15
16

)7 ≈ 2. 1619× 10−2 > 0.

When t > 1, Is(t) ≥ 0 trivially holds. Hence, by using Theorem 1, we find that
X1:2 ≤ttt−2 Y1:2.

Moreover, also from (9), when n = 2, let

I(t) =
∫ t

0

[
FX(x)

]3 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx, for all t ≥ 0. (44)

In view of (42), when t = 1
16 ,

I(
1
16

) =
∫ 1

16

0
[FX(x)]3dx =

∫ 1
16

0
(1− x)3dx =

1
4

[
1− (

15
16

)4
]
> 0;

when t = 1,

I(1) = I(
1

16
)− 1

3

∫ 1

1
16

(1− x)3dx =
1
4
− 1

3
(

15
16

)4 ≈ −7. 4921× 10−3 < 0.

Making use of Theorem 1, this fact shows that X �ttt−2 Y and Y �ttt−2 X. Therefore,
we conclude that X1:m ≤ttt−n Y1:m ; X ≤ttt−n Y.

3.2. Closure and Reversed Closure Properties of the TTT-n Ordering with Respect to Random
Series and Parallel Systems

Let X1, X2, . . . and Y1, Y2, . . . be sequences of i.i.d. copies of random variables X and
Y, respectively. Let M be a positive integer-valued random variable with the probability
mass function pM(m) = P{M = m}, m = 1, 2, . . .. Assume that M is independent of Xi’s
and Yi’s. Denote by

X1:M = min{X1, . . . , XM}, Y1:M = min{Y1, . . . , YM};

and
XM:M = max{X1, . . . , XM}, YM:M = max{Y1, . . . , YM}.

For the ease of proofs of upcoming results, we give the following lemma, the proof is
straightforward and hence omitted here.
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Lemma 3. Let X and Y be two absolutely continuous non-negative random variables with distri-
bution functions FX and GY, right-continuous inverse functions F−1

X and G−1
Y , survival functions

FX and GY, and density functions fX and gY, respectively. Then, for all x ≥ 0,

fX1:M (x)

gY1:M

[
G−1

Y1:M

(
FX1:M (x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] , (45)

and
fXM:M (x)

gYM:M

[
G−1

YM:M

(
FXM:M (x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] . (46)

Now we consider to extend the results in Theorems 7 and 8 from a finite number m to
a random number M of the component numbers of systems.

The following theorem can be viewed as an extension of Theorem 8.

Theorem 9. If X ≤ttt−n Y, then X1:M ≤ttt−n Y1:M.

Proof. Suppose that X ≤ttt−n Y. Then, from (9) we have,

∫ t

0
[FX(x)]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (47)

The survival function of X1:M is given by

FX1:M (x) =
∞

∑
m=1

[
FX(x)

]m pM(m) = FX(x)
∞

∑
m=1

[
FX(x)

]m−1 pM(m).

Thus, we know that the function

h(x) =
[FX1:M (x)]n+1

[FX(x)]n+1
=

[
∞

∑
m=1

[
FX(x)

]m−1 pM(m)

]n+1

(48)

is non-negative and decreasing in x ≥ 0.
Making use of (45), (47), (48) and Lemma 1, we find that

∫ t

0
[FX1:M (x)]n+1

 fX1:M (x)

gY1:M

[
G−1

Y1:M

(
FX1:M (x)

)] − 1

dx ≥ 0, for all t ≥ 0. (49)

Again, by means of (49) and Theorem 1, we see that X1:M ≤ttt−n Y1:M. This is the
desired result.

Remark 6. Theorem 9 indicates that random series systems preserve the TTT-n ordering. Theorem 8
also says that the TTT-n ordering has closure property with respect to random series systems.

The following Theorem 10 can be viewed as an extension of Theorem 7. The proof is
similar to that of Theorem 9 and hence omitted here.

Theorem 10. If XM:M ≤ttt−n YM:M, then X ≤ttt−n Y.

The following is an illustrative example of Theorem 10.
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Example 4. Let X and Y be two exponential random variables with respective survival functions

FX(x) = e−2x and GY(x) = e−x, for all x ≥ 0.

Let M be a positive integer-valued random variable with probability function

P(M = 1) = P(M = 1) =
1
2

.

One can testify that

fX(x)

gY

[
G−1

Y (FX(x))
] = 2, for all x ≥ 0,

and
fXM:M (x)

gYM:M

[
G−1

YM:M

(
FXM:M (x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] , for all x ≥ 0.

We have that XM:M and YM:M have distribution functions, respectively,

FXM:M (x) =
1
2

(
e−2x + e−4x

)
, GYM:M (x) =

1
2

(
e−x + e−2x

)
, for all x ≥ 0.

Thus,

FXM:M (x) = 1− 1
2

(
e−2x + e−4x

)
, for all x ≥ 0.

When n = 2, denote the function

Ip(t) =
∫ t

0
[FXM:M (x)]2+1

 fXM:M (x)

gYM:M

[
G−1

YM:M
(FXM:M (x))

] − 1

dx

=
∫ t

0

[
1− 1

2

(
e−2x + e−4x

)]3
dx, for all t ≥ 0.

Since
[
1− 1

2
(
e−2x + e−4x)]3

≥ 0, hence Ip(t) ≥ 0, for all t ≥ 0. Utilizing Theorem 1 we
obtain that XM:M ≤ttt−2 YM:M. Therefore, by Theorem 10 we have X ≤ttt−2 Y. In fact, from
Example 1, we see that this result is really correct.

Remark 7. Theorem 10 shows that random parallel systems reversedly preserve the TTT-n ordering.
Theorem 10 also states that the TTT-n ordering has reversed closure property with respect to random
parallel systems.

Remark 8. The inverse of Theorem 10 is not necessarily true. To see this relationship, we give a
counterexample below.

Counterexample 5. Let X and Y be two non-negative continuous random variables with
distribution functions, respectively,

FX(x) = x, x ∈ [0, 1] and GY(x) =

{
1
2 x, x ∈ [0, 1

4 ];
7
2 x− 3

4 , x ∈ ( 1
4 , 1

2 ].

Denote the function

I(t) =
∫ t

0

[
FX(x)

]3 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx, for all t ≥ 0.
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A direct computation yields

fX(x)

gY

[
G−1

Y (FX(x))
] =

{
2, x ∈ [0, 1

8 ];
2
7 , x ∈ ( 1

8 , 1].

For t ∈ [0, 1
8 ], we have

I(t) =
∫ t

0
(1− x)3dx =

1
4
[1− (1− t)4] ≥ 0.

For t ∈ [ 1
8 , 1], we have

I(t) = I(
1
8
)− 5

7

∫ t

1
8

(1− x)3dx =
1
4
− 3

7
(

3
4
)4 +

5
28

(1− t)4 ≥ 1
4
− 3

7
(

3
4
)4 =

205
1792

≥ 0.

Hence, I(t) ≥ 0 for all t ≥ 0. By using Theorem 1 we find that X ≤ttt−2 Y.
Now, let M be a geometric random variable with probability function

P(M = m) = pqm−1, m = 1, 2, . . . .

Then, XM:M has its distribution function FXM:M (x) = FX(x)
2−FX(x) . Thus, the survival

function of XM:M is given by FXM:M (x) = 2 · 1−FX(x)
2−FX(x) . Denote the function

Ip(t) =
∫ t

0

[
FXM:M (x)

]3 fXM:M (x)

gYM:M

[
G−1

YM:M

(
FXM:M (x)

)] − 1

dx, for all t ≥ 0.

Making use of (46), we have

Ip(
1
8
) = 8

∫ t

0

(
1− x
2− x

)3
dx ≈ 0.1133 > 0;

and

Ip(1) = Ip(
1
8
)− 8× 5

7

∫ t

1
8

(
1− x
2− x

)3
dx = −6.6109× 10−2 < 0.

Again, by using Theorem 1, we know that XM:M �ttt−n YM:M and YM:M �ttt−n XM:M.
That is,

X ≤ttt−n Y ; XM:M ≤ttt−n YM:M.

3.3. Closure and Reversed Closure Properties of the TTT-n Ordering under Increasing Convex and
Concave Transforms

By means of a method used in Kochar et al. [20] we can prove the following
Theorems 11 and 12, the details of proofs are omitted here.

Theorem 11. Let φ(·) be a non-negative and increasing concave function defined on <+ = [0, ∞)
such that φ(0) = 0. If X ≤ttt−n Y, then φ(X) ≤ttt−n φ(Y).

Remark 9. Theorem 11 indicates that the TTT-n ordering has closure property under the concave
generalized scale transform. Theorem 11 also says that the TTT-n ordering has closure property
under risk aversion transform.

Remark 10. In Theorem 11, the condition “φ(·) is concave” is only a sufficient condition, but not
necessary; see the following counterexample.
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Counterexample 6. Let X and Y be two non-negative continuous random variables with
distribution functions, respectively,

FX(x) = x, x ∈ [0, 1] and GY(x) =

{
2
3 x, x ∈ [0, 3

4 ];

4x− 5
2 , x ∈ ( 3

4 , 7
8 ].

One can calculate that

fX(x)

gY

[
G−1

Y (FX(x))
] =

{
3
2 , x ∈ [0, 1

2 ];
1
4 , x ∈ ( 1

2 , 1].

In view of (9), when n = 2, let the function

I(t) :=
∫ t

0
[FX(x)]3

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx

=
∫ t

0
(1− x)3

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx, for all t ≥ 0.

When t ∈ [0, 1
2 ],

I(t) =
∫ t

0

1
2
(1− x)3dx =

1
8
[1− (1− t)4] ≥ 0.

When t ∈ ( 1
2 , 1],

I(t) = I(
1
2
)− 3

4

∫ t

1
2

(1− x)3dx = I(
1
2
) +

3
16

[
(1− t)4 − (

1
2
)4
]
≥ I(1) =

27
256

,

where the inequality is due to the decreasing property of I(t). When t > 1, I(t) ≥ 0 trivially
holds. Hence, we get that I(t) ≥ 0 for all t ≥ 0. By using Theorem 1, we see that X ≤ttt-2 Y.

Now, take

φ(x) =


2
3 x, x ∈ [0, 3

4 ];

4x− 5
2 , x ∈ ( 3

4 , 7
8 ];

x + 1
8 , x ∈ ( 7

8 , ∞).

One gets that

φ′(x) =


2
3 , x ∈ [0, 3

4 ];

4, x ∈ ( 3
4 , 7

8 ];

1, x ∈ ( 7
8 , ∞).

By Theorem 1, we also have

φ(X) ≤ttt-2 φ(Y)⇔
∫ t

0
[Fφ(X)(x)]3

 fφ(X)(x)

gφ(Y)

[
G−1

φ(Y)

(
Fφ(X)(x)

)] − 1

dx ≥ 0, for all t ≥ 0.

Equivalently,

Iφ(t) :=
∫ t

0
φ′(x)[FX(x)]3

 fX(x)

gY

[
G−1

Y (FX(x))
] φ′[α(x)]

φ′(x)
− 1

dx, for all t ≥ 0, (50)
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where

α(x) := G−1
Y [FX(x)] =

{
3
2 x, x ∈ [0, 1

2 ];
1
4 x + 5

8 , x ∈ ( 1
2 , 1].

Note that

φ′[α(x)] =


2
3 , x ∈ [0, 1

2 ];

4, x ∈ ( 1
2 , 1];

1, x ∈ (1, ∞).

In view of (50), when t ∈ [0, 1
2 ], then

Iφ(t) =
1
3

∫ t

0
(1− x)3dx =

1
12

[1− (1− t)4] ≥ 0; Iφ(
1
2
) =

5
64

.

When t ∈ ( 1
2 , 3

4 ], then

Iφ(t) = Iφ(
1
2
) +

1
3

∫ t

1
2

(1− x)3dx =
1

12
[1− (1− t)4] ≥ 0; Iφ(

3
4
) =

85
1024

.

When t ∈ ( 3
4 , 7

8 ], then

Iφ(t) = Iφ(
3
4
)− 3

∫ t

3
4

(1− x)3dx =
1
12
− 5

6
(

1
4
)4 +

3
4
(1− t)4] ≥ 0; Iφ(

3
4
) =

85
1024

.

When t ∈ ( 7
8 , 1], then

Iφ(t) = Iφ(
7
8
) =

1
12
− 5

6
(

1
4
)4 +

3
4
(

1
8
)4 ≥ 0.

When t > 1, Iφ(t) ≥ 0 trivially holds. Thus, again making use of Theorem 1 we
find that

φ(X) ≤ttt−2 φ(Y).

Clearly, the function φ(·) is neither concave nor convex on <+. Hence, the condition
“φ(·) is concave” in Theorem 11 is only a sufficient condition, but not necessary.

Theorem 12. Let φ(·) be a non-negative and increasing convex function defined on <+ = [0, ∞)
such that φ(0) = 0. If φ(X) ≤ttt−n φ(Y), then X ≤ttt−n Y.

Remark 11. In Theorem 12, the condition “φ(·) is convex” is only a sufficient condition, but not
necessary. The above Counterexample 6 proves this assertion.

4. Preservation of the TTT-n Ordering in Several Stochastic Models

Marshall and Olkin [32], Sankaran and Jayakumar [33] and Navarro et al. [34] studied
the following proportional odds models. Let X be a non-negative continuous random
variable with the distribution function FX and density function fX . The proportional odds
random variable, denoted by Xp, is defined by the distribution function

FXp(x) =
θFX(x)

1− (1− θ)FX(x)

for θ > 0, where θ is a proportional constant. Let Y be another non-negative continuous
random variable with distribution function GY and density function gY. Similarly, define
the proportional odds random variable Yp of Y by the distribution function

GYp(x) =
θGY(x)

1− (1− θ)GY(x)
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for θ > 0, where the proportional constant θ is the same as above.
For the proportional odds models, we obtain the following result.

Theorem 13. Let X, Y, Xp and Yp be as described above.

(a) Assume 0 < θ < 1. If X ≤ttt−n Y, then Xp ≤ttt−n Yp.
(b) Assume θ > 1. If Xp ≤ttt−n Yp, then X ≤ttt−n Y.

Proof. We only give the proof for (a), the proof of (b) is similar and hence is omitted here.
Denote the function

h(u) =
θu

1− (1− θ)u
, u ∈ [0, 1], (51)

for any θ > 0. It is easy to see that

(i) If 0 < θ < 1, then h(u) is increasing convex on [0, 1].
(ii) If θ > 1, then h(u) is increasing concave on [0, 1].

From the definition of Xp and Yp, we have

FXp(x) = h[FX(x)] and GYp(x) = h[GY(x)], for all x ≥ 0.

Hence, the density functions of Xp and Yp are, respectively,

fXp(x) = h′[FX(x)] fX(x) and gYp(x) = h′[GY(x)]gY(x), for all x ≥ 0. (52)

It can be proven that G−1
Yp

[FXp(x)] = G−1
Y [FX(x)], by differentiating this equation

we have
fXp(x)

gYp

[
G−1

Yp

(
FXp(x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] . (53)

If X ≤ttt-n Y, from Theorem 1, we find that

∫ t

0

[
FX(x)

]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (54)

Since h(u) is increasing convex on [0, 1] when 0 < θ ≤ 1, hence h(u)/u is non-negative
and increasing in x. Thus, we find that the function[

h[FX(x)]/FX(x)
]n+1 is non-negative and decreasing. (55)

Making use of (53)–(55) and Lemma 1, we have

∫ t

0

[
h[FX(x)]

]n+1

 fXp(x)

gYp

[
G−1

Yp

(
FXp(x)

)] − 1

dx ≥ 0, for all t ≥ 0,

again, by Theorem 1 in turn, which states that

Xp ≤ttt−n Yp.

This completes the proof.

Remark 12. Theorem 13 (a) says that the TTT-n ordering is closed with respect to the proportional
odds model when the proportional constant 0 < θ < 1. Theorem 13 (b) says that the TTT-n ordering
has the reversed closure property with respect to the proportional odds model when the proportional
constant θ > 1.
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In the following, we investigate the preservation of the TTT-n ordering in a record
values model. Chandler [35] introduced and studied some basic properties of records. Fur-
thermore, much progress on stochastic orderings of record values refer to Khaledi et al. [36],
Kundu et al. [37], Zhao and Balakrishnan [38], Zarezadeh and Asadi [39], Li and Zhang [40],
Kang [41–43], Kang and Yan [44], Yan [45], and the references therein.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed random
variables from an absolutely continuous non-negative random variable X, where X has its
probability density function fX and the survival function FX , and let k be a positive integer.
The random variables TX

k (m), defined recursively by TX
k (1) = 1 and

TX
k (m + 1) = min{j > TX

k (m) : Xj:j+k−1 > XTX
k (m):TX

k (m)+k−1}, m ≥ 1,

are called the mth k-record times, and the quantities XTX
k (m):TX

k (m)+k−1, written as RX
m,k,

are called the mth k-record values. For k = 1, the k-record values model reduces to
the well-known ordinary record values model, and TX

k (m) and RX
m,k are abbreviated to

TX(m) and RX
m for all m ≥ 1. For more details, readers can refer to Ahsanullah [46] and

Arnold et al. [47].
The sequence of k-record values was introduced by Dziubdziela and Kopociński [48]

through observing successive kth largest values in a sequence. They actually called them
kth record values. It is easy to prove that the probability density function and the survival
function of RX

m,k can be expressed as, respectively,

fRX
m,k
(x) =

km

Γ(m)
Λm−1

X (x)Fk−1
X (x) fX(x), (56)

and

FRX
m,k
(x) = Fk

X(x)
m−1

∑
j=0

(kΛX(x))j

j!
= Γm(kΛX(x)), (57)

for all x ≥ 0, where Γm(·) is the survival function of a gamma random variable with a
shape parameter m and a scale parameter λ > 0, and ΛX(x) = − ln FX(x) is the cumulative
hazard rate function of X.

Let X and Y be two non-negative random variable with the survival functions FX(x)
and GY(x), the probability density functions fX(x) and gY(x), and the hazard rate functions
λX(x) and λY(x), respectively. The following stochastic orderings are useful in the proof
of the following theorem (see Shaked and Shanthikumar [18]).

• X is said to be smaller than Y in the likelihood ratio order if gY(x)/ fX(x) is increasing
in x, denoted by X ≤lr Y.

• X is said to be smaller than Y in the hazard rate order if λX(x) ≥ λY(x) for all x,
equivalently, if GY(x)/FX(x) is increasing in x, denoted by X ≤hr Y.

It is well known (also see Shaked and Shanthikumar [18]) that

X ≤lr Y =⇒ X ≤hr Y. (58)

By using (56), we easily find that the function

fRX
m,k
(x)

fRX
m,l
(x)

=

(
k
l

)m
[FX(x)]k−l (59)

is increasing in x ≥ 0 when l > k ≥ 1. From the above definition of the likelihood ratio
order, we immediately get that

RX
m,l ≤lr RX

m,k whenever l > k ≥ 1. (60)
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We easily obtain the following lemma.

Lemma 4. The function FRX
m,l
(x)/FRX

m,k
(x) is decreasing in x ≥ 0 whenever l > k ≥ 1.

Proof. The proof is immediate by using (58), (60), and the above definition of the hazard
rate order.

Now we consider the preservation of the TTT-n ordering in the record values model.

Theorem 14. Let X and Y be two absolutely continuous and non-negative random variables,
j, k, l, m, and n be positive integers. Then,

(a) RX
m,k ≤ttt−n RY

m,k =⇒ RX
m,l ≤ttt−n RY

m,l , for all m ≥ 1, l > k ≥ 1.
Particularly, RX

m,k−1 ≤ttt−n RY
m,k−1 =⇒ RX

m,k ≤ttt−n RY
m,k, for all m ≥ 1, k ≥ 2.

(b) RX
m,k ≤ttt−n RY

m,k =⇒ RX
j,k ≤ttt−n RY

j,k, for all m > j ≥ 1, k ≥ 1.

Particularly, RX
m,k ≤ttt−n RY

m,k =⇒ RX
m−1,k ≤ttt−n RY

m−1,k, for all m ≥ 2, k ≥ 1.
(c) RX

m,k ≤ttt−n RY
m,k =⇒ RX

j,l ≤ttt−n RY
j,l , for all m > j ≥ 1, l > k ≥ 1.

Particularly, RX
m+1,k−1 ≤ttt−n RY

m+1,k−1 =⇒ RX
m,k ≤ttt−n RY

m,k, for all m ≥ 1, k ≥ 2.

Proof. (a) Suppose that RX
m,k ≤ttt−n RY

m,k. Then, from Theorem 1, we find that

∫ t

0

[
FRX

m,k
(x)
]n+1

 fRX
m,k
(x)

gRY
m,k

[
G−1

RY
m,k

(
FRX

m,k
(x)
)] − 1

dx ≥ 0, for all t ≥ 0. (61)

By using (56) and (57) and noticing that

G−1
RY

m,k

(
FRX

m,k
(x)
)
= G−1

RY
m,k

(
FRX

m,k
(x)
)

and G−1
RY

m,l

(
FRX

m,l
(x)
)
= G−1

RY
m,l

(
FRX

m,l
(x)
)

,

one can prove that, for all positive integers m, l, k and real x ≥ 0,

fRX
m,k
(x)

gRY
m,k

[
G−1

RY
m,k

(
FRX

m,k
(x)
)] =

fX(x)

gY

[
G−1

Y (FX(x))
] =

fRX
m,l
(x)

gRY
m,l

[
G−1

RY
m,l

(
FRX

m,l
(x)
)] . (62)

Furthermore, by Theorem 1, we see that RX
m,l ≤ttt−n RY

m,l if and only if the inequality

∫ t

0

[
FRX

m,l
(x)
]n+1

 fRX
m,l
(x)

gRY
m,l

[
G−1

RY
m,l

(
FRX

m,l
(x)
)] − 1

dx ≥ 0, for all t ≥ 0. (63)

Making use of (61), together with (62), Lemmas 1 and 4, we find that inequality (63) is
valid at once. This completes the proof of part (a).

(b) By means of a similar method of part (a), the required result of part (b) follows.
(c) By using the results of parts (a) and (b) simultaneously, the desired result follows

immediately.

The following theorem deals with the preservation of the TTT-n ordering in a propor-
tional reversed hazard rate model. For more details about this model, one may refer to
Gupta and Gupta [49], and Di Crescenzo and Longobardi [50].

Let X and Y be two absolutely continuous non-negative random variables with
respective distribution functions FX and GY. For a real constant θ > 0, let X(θ) and Y(θ)
denote another two random variables with respective distribution functions (FX)

θ and
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(GY)
θ . Suppose that X and Y have 0 as the common left endpoint of their supports. Then,

we have the following results.

Theorem 15. Let X, Y, X(θ) and Y(θ) be as described above.

(a) Assume that 0 < θ < 1. If X ≤ttt−n Y, then X(θ) ≤ttt−n Y(θ).
(b) Assume that θ > 1. If X(θ) ≤ttt−n Y(θ), then X ≤ttt−n Y.

Proof. Assume that X, Y, X(θ) and Y(θ) have respective distribution functions FX, GY,
FX(θ) and GY(θ), the density functions fX, gY, fX(θ) and gY(θ), and the quantile functions
F−1

X , G−1
Y , F−1

X(θ)
and G−1

Y(θ), respectively.
(a) Suppose that X ≤ttt−n Y. Then, from Theorem 1 we have

∫ t

0
[FX(x)]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (64)

From the definition of the above proportional reversed hazard rate model, we find
that the distribution functions of X(θ) and Y(θ) are given, respectively, by

FX(θ)(x) = [FX(x)]θ , GY(θ)(x) = [GY(x)]θ , x ≥ 0, (65)

By using (65) we find that

G−1
Y(θ)[FX(θ)(x)] = G−1

Y [FX(x)], x ≥ 0. (66)

Differentiating (66), we have

fX(θ)(x)

gY(θ)

[
G−1

Y(θ)

(
FX(θ)(x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] . (67)

Moreover, it is easy to see that the density function of X(θ) is given by

fX(θ)(x) = θ fX(x)[FX(x)]θ−1,

then,
fX(θ)(x)

fX(x) = θ[FX(x)]θ−1. Thus,

d
dx

(
fX(θ)(x)

fX(x)

)
= θ(θ − 1) fX(x)[FX(x)]θ−2, x ≥ 0.

Hence, we find that:

(i) The function
fX(θ)(x)

fX(x) is decreasing in x when 0 < θ < 1.

(ii) The function fX(x)
fX(θ)(x) is decreasing in x when θ > 1.

By using the definitions of the orders≤lr and≤hr and using the implication relation (58),
we find that:

(iii) The function
FX(θ)(x)

FX(x)
is decreasing in x when 0 < θ < 1.

(iv) The function FX(x)
FX(θ)(x)

is decreasing in x when θ > 1.

Making use of this fact (iii), together with (64), (67) and Lemma 1 we find that

∫ t

0
[FX(θ)(x)]n+1

 fX(θ)(x)

gY(θ)

[
G−1

Y(θ)

(
FX(θ)(x)

)] − 1

dx ≥ 0, for all t ≥ 0,
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which, in turn by Theorem 1, asserts that X(θ) ≤ttt−n Y(θ). This proves (a).
(b) The proof is similar to that of (a). Thus, the proof is complete.

Remark 13. Theorem 15 (a) says that the TTT-n ordering is closed with respect to the proportional
reversed hazard rate model when the proportional constant 0 < θ < 1. Theorem 15 (b) says that the
TTT-n ordering has the reversed closure property with respect to the proportional reversed hazard
rate model when the proportional constant θ > 1.

Remark 14. In Theorem 15 (b), when the proportional constant θ > 1 takes a natural number m ≥ 1,
then, Theorem 16 (b) becomes Theorem 7. Hence, Theorem 7 is a special case of Theorem 16 (b).

Then, we consider the preservation of the TTT-n ordering in a proportional hazard
rate model. For more details on the proportional hazard rate model, we refer to Nanda and
Paul [51], Gupta and Gupta [49], Di Crescenzo and Longobardi [50], Abbasnejad et al. [52],
and Shaked and Shanthikumar [18].

Let X and Y be two absolutely continuous non-negative random variables random
variables with survival functions FX and GY, respectively. For a positive real constant
θ > 0, let X(θ) and Y(θ) denote another two non-negative random variables with survival
functions [FX(x)]θ and [GY(x)]θ , respectively. Suppose that X and Y have 0 as the common
left endpoint of their supports. Nair et al. ([26], p. 1137, Theorem 5.2) considered the
preservation of the TTT-n ordering in this proportional hazard rate model. They obtained
the following results. For the convenience of citation, we list these results here.

Theorem 16 (Nair et al. [26]). Let X, Y, X(θ) and Y(θ) be as described above.

(a) Assume that θ > 1. If X ≤ttt−n Y, then X(θ) ≤ttt−n Y(θ).
(b) Assume that 0 < θ < 1. If X(θ) ≤ttt−n Y(θ), then X ≤ttt−n Y.

Remark 15. Theorem 16 (a) says that the TTT-n ordering is closed with respect to the proportional
hazard rate model when the proportional constant θ > 1. Theorem 16 (b) says that the TTT-n
ordering has the reversed closure property with respect to the proportional hazard rate model when
the proportional constant 0 < θ < 1.

Remark 16. In Theorem 16 (a), when the proportional constant θ > 1 takes a natural number
m ≥ 1, then, Theorem 16 (a) becomes Theorem 8.

In the following, we investigate the preservations of the TTT-n ordering in the mixture
model of proportional hazard rate which can be viewed as a generalization of Theorem 5.2
in Nair et al. [26].

Let X and Y be two absolutely continuous non-negative random variables random
variables with survival functions FX and GY, respectively. For a positive-valued random
variable Θ, let X(Θ) and Y(Θ) denote another two non-negative random variables with
survival functions E[(FX(x))Θ] and E[(GY(x))Θ], respectively. Suppose that X and Y have
0 as the common left endpoint of their supports. For this mixture proportional hazard rate
model we obtain the following results.

Theorem 17. Let X, Y, X(Θ), and Y(Θ) be as described above.

(a) Assume that Θ > 1 almost surely. If X ≤ttt−n Y, then X(Θ) ≤ttt−n Y(Θ).
(b) Assume that 0 < Θ < 1 almost surely. If X(Θ) ≤ttt−n Y(Θ), then X ≤ttt−n Y.

Proof. Assume that X, Y, X(Θ) and Y(Θ) have respective survival functions FX , GY, FX(Θ)

and GY(Θ), the density functions fX, gY, fX(Θ) and gY(Θ), and the quantile functions F−1
X ,

G−1
Y , F−1

X(Θ)
and G−1

Y(Θ)
, respectively.
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(a) Suppose that X ≤ttt−n Y. Then, from Theorem 1, we have

∫ t

0
[FX(x)]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (68)

In view of the above definition of the mixture model of proportional hazard rate, we
find that the survival functions of X(Θ) and Y(Θ) are given, respectively, by

FX(Θ)(x) = E[(FX(x))Θ] = LΘ(ΛX(x)), GY(Θ)(x) = E[(GY(x))Θ] = LΘ(ΛY(x)), x ≥ 0, (69)

where LΘ(·) is the Laplace transform of Θ, ΛX(·) and ΛY(·) are the cumulative hazard rate
functions of X and Y, respectively. By using (69) we get that

G−1
Y(Θ)[FX(Θ)(x)] = G−1

Y(Θ)
[FX(Θ)(x)] = Λ−1

X [ΛY(x)] = G−1
Y [FX(x)], x ≥ 0.

That is,
G−1

Y(Θ)
[FX(Θ)(x)] = G−1

Y [FX(x)], x ≥ 0. (70)

Differentiating (70) we have

fX(Θ)(x)

gY(Θ)

[
G−1

Y(Θ)

(
FX(Θ)(x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] . (71)

Furthermore, also from (69) we have

FX(Θ)(x)

FX(x)
= E[(FX(x))Θ−1], x ≥ 0.

Thus,

d
dx

(
FX(Θ)(x)

FX(x)

)
= − fX(x)E[(Θ− 1)(FX(x))Θ−2] ≤ 0, x ≥ 0.

Hence, the function
FX(Θ)(x)

FX(x)
is decreasing in x ≥ 0 when Θ > 1 almost surely and

is increasing in x ≥ 0 when 0 < Θ < 1 almost surely. Making use of this fact, together
with (68), (71) and Lemma 1, we find that

∫ t

0
[FX(Θ)(x)]n+1

 fX(Θ)(x)

gY(Θ)

[
G−1

Y(Θ)

(
FX(θ)(x)

)] − 1

dx ≥ 0, for all t ≥ 0,

which, by Theorem 1 in turn, asserts that X(Θ) ≤ttt−n Y(Θ). This proves (a).
(b) The proof is similar to that of (a). Thus, the proof is complete.

Remark 17. Theorem 17 (a) says that the TTT-n ordering is closed with respect to the mixture
proportional hazard rate model under the condition of the proportional random variable Θ > 1
almost surely. Theorem 17 (b) says that the TTT-n ordering has the reversed closure property
with respect to the mixture proportional hazard rate model under the condition of the proportional
random variable 0 < Θ < 1 almost surely.

Remark 18. In Theorem 17, when the proportional random variable Θ is degenerated as a pos-
itive constant θ, then, Theorem 17 becomes Theorem 5.2 in Nair et al. [26]. Furthermore, in
Theorem 17 (a), when the proportional random variable Θ is degenerated as a natural number m ≥ 1,
then Theorem 17 (a) becomes Theorem 8. Hence, Theorem 8 is a special case of Theorem 17 (a).
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We now deal with the preservation of the TTT-n ordering in the mixture proportional
reversed hazard rate model.

Let X and Y be two absolutely continuous non-negative random variables with
distribution functions FX and GY, respectively. For a positive-valued random variable
Θ, let X(Θ) and Y(Θ) denote another two non-negative random variables with survival
functions E[(FX(x))Θ] and E[(GY(x))Θ], respectively. Suppose that X and Y have 0 as the
common left endpoint of their supports. Then, we have the following results. The proofs
are similar to that of Theorem 15 and the details are omitted here.

Theorem 18. Let X, Y, X(Θ), and Y(Θ) be as described above.

(a) Assume that 0 < Θ < 1 almost surely. If X ≤ttt−n Y, then X(Θ) ≤ttt−n Y(Θ).
(b) Assume that Θ > 1 almost surely. If X(Θ) ≤ttt−n Y(Θ), then X ≤ttt−n Y.

Remark 19. Theorem 18 (a) says that the TTT-n ordering is closed with respect to the mixture
proportional reversed hazard rate model under the condition of the proportional random variable
0 < Θ < 1 almost surely. Theorem 18 (b) says that the TTT-n ordering has the reversed closure
with respect to the mixture proportional reversed hazard rate model under the condition of the
proportional random variable Θ > 1 almost surely.

Remark 20. In Theorem 18 (b), when the proportional random variable Θ is degenerated as a
natural number m > 1, then, Theorem 18 (b) becomes Theorem 7. Hence, Theorem 7 is a special
case of Theorem 18 (b).

5. Closure and Reversed Closure Properties of the TTT-n Ordering for Coherent
Systems with Dependent and Identically Distributed Components

Navarro et al. [53] gave a convenient representation of a coherent system reliability FT .
They proved the following result. For the ease of citation, we give this result as a lemma.

Lemma 5 (Navarro et al. [53]). Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system based
on possibly dependent components with lifetimes X1, . . . , Xn, having a common reliability function
FX(t) = Pr(Xi > t). Assume that h is a distortion function. Then, the system reliability function
can be written as

FT(t) = h(FX(t)), (72)

where h only depends on φ and on the survival copula of (X1, . . . , Xn).

Making use of (72), the distribution function of the coherent system lifetime T is
given by

FT(t) = 1− FT(t) = 1− h(1− FX(t)) = g(FX(t)),

where g(u) = 1− h(1− u), u ∈ (0, 1). Then, we obtain the following result.

Theorem 19. Let X and Y be two non-negative continuous random variables with survival
functions FX(t) and GY(t), respectively. Let T1 = φ(X1, . . . , Xn) and T2 = φ(Y1, . . . , Yn) be the
lifetimes of two coherent systems with common structure function φ and with identically distributed
component lifetimes X1, . . . , Xn and Y1, . . . , Yn, having common continuous survival functions
FX(t) = Pr(Xi > t) and GY(t) = Pr(Yi > t) for i = 1, . . . , n, respectively. Let h be the common
domination function of these two coherent systems.

(a) Assume h(x)/x is increasing in x > 0. If X ≤ttt−n Y, then T1 ≤ttt−n T2.
(b) Assume h(x)/x is decreasing in x > 0. If T1 ≤ttt−n T2, then X ≤ttt−n Y.

Proof. Suppose that T1 and T2 have survival functions FT1(x) and GT2(x), distribution
functions FT1(x) and GT2(x), density functions fT1(x) and gT2(x), and quantile functions
F−1

T1
(x) and G−1

T2
(x), respectively.
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By (72), it can be proven that G−1
T2

[FT1(x)] = G−1
T2

[FT1(x)] = G−1
Y [FX(x)], by differenti-

ating this equation, we obtain

fT1(x)

gT2

[
G−1

T2

(
FT1(x)

)] =
fX(x)

gY

[
G−1

Y (FX(x))
] , for all x > 0. (73)

In view of Theorem 1, we find that X ≤ttt−n Y if, and only if,

∫ t

0
[FX(x)]n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0; (74)

Furthermore, that T1 ≤LQE T2 if, and only if,

∫ t

0
[FT1(x)]n+1

 fT1(x)

gT2

[
G−1

T2

(
FT1(x)

)] − 1

dx ≥ 0, for all t ≥ 0, (75)

or, by using (72), equivalently,

∫ t

0

(
h[FX(x)]

)n+1

 fX(x)

gY

[
G−1

Y (FX(x))
] − 1

dx ≥ 0, for all t ≥ 0. (76)

(a) Assume that X ≤ttt−n Y. If h(x)/x is increasing in x > 0, then, the function

h[FX(x)]/FX(x)

is non-negative and decreasing in x > 0. By Lemma 1, (73) and (74), we see that the
inequality (76) holds, which asserts by Theorem 1 that T1 ≤ttt−n T2.

(b) Assume that T1 ≤ttt−n T2. If h(x)/x is decreasing in x > 0, then, the function

FX(x)/h[FX(x)]

is non-negative and decreasing in x > 0. By Lemma 1 and (76), we see that the
inequality (74) holds, which asserts by Theorem 1 that X ≤ttt−n Y.

Remark 21. In Theorem 19, if X1, . . . , Xn and Y1, . . . , Yn are i.i.d., respectively, then, Theorem 19 (a)
becomes as Theorems 8 and 19 (b) becomes as Theorem 7. Hence Theorems 8 and 7 are special cases
of Theorem 19.

Similarly, if X1, X2, . . . and Y1, Y2, . . . are i.i.d., respectively, then, Theorem 19 (a) be-
comes as Theorems 9 and 19 (b) becomes as Theorem 10. Hence Theorems 9 and 10 are
also special cases of Theorem 19.

6. Conclusions

The concept of TTT transform is of great significance in engineering and technologies,
experiment science, and other related scientific research fields. The TTT ordering compares
two random lifetimes, hence the TTT ordering is also of important meanings. It takes a
central position, and plays a key role in the stochastic order theory and in the reliability
theory. Similarly, the TTT-n ordering is also of the same functions and positions in stochastic
order theory as the TTT ordering is. Hence, we focus our attention on the research of the
TTT-n ordering.
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In this paper, we examine some characterizations of the TTT-n ordering. Firstly, we
obtain the closure and reversed closure properties of this new stochastic order under several
reliability operations. Secondly, we investigate preservation results of this order in several
stochastic models. Finally, we also consider the closure and reversed closure properties
of the TTT-n ordering for coherent systems with dependent and identically distributed
components. We get that the TTT-n ordering is:

(1) Closed respect to a series system; but not closed respect to a parallel system. This case
can be viewed as a kind of anti-symmetry.

(2) Closed respect to a random series system; but not closed respect to a random parallel
system. This case can be viewed as a kind of anti-symmetry.

(3) Reversely closed respect to a parallel system; but not reversely closed respect to a
series system. This case can be viewed as a kind of anti-symmetry.

(4) Reversely closed respect to a random parallel system; but not reversely closed respect
to a random series system. This case can be viewed as a kind of anti-symmetry.

(5) Closed under a non-negative, increasing and concave transform; but not closed under
a non-negative, increasing and convex transform. This case can be viewed as a kind
of anti-symmetry.

(6) Reversely closed under a non-negative, increasing and convex transform; but not
closed under a non-negative, increasing and concave transform. This case can be
viewed as a kind of anti-symmetry.

(7) Closed but not reversely closed under some appropriate conditions in the proportional
odds models. This case can be viewed as a kind of anti-symmetry.

(8) Reversely closed but not closed under other appropriate conditions in the proportional
odds models. This case can be viewed as a kind of anti-symmetry.

(9) Closed but not reversely closed under some appropriate conditions in the proportional
reversed hazard rate models. This case can be viewed as a kind of anti-symmetry.

(10) Reversely closed but not closed under other appropriate conditions in the proportional
reversed hazard rate models. This case can be viewed as a kind of anti-symmetry.

(11) Closed but not reversely closed under some appropriate conditions in the proportional
hazard rate and mixture proportional hazard rate models. These cases can be viewed
as a kind of anti-symmetry.

(12) Reversely closed but not closed under other appropriate conditions in the proportional
hazard rate and mixture proportional hazard rate models. These cases can be viewed
as a kind of anti-symmetry.

(13) Closed and reversely closed, respectively, under some appropriate conditions in the
record-value models; the cases are more complex. This case can be viewed as a kind
of anti-symmetry.

(14) Closed but not reversely closed under some appropriate conditions in the mixture
proportional reversed hazard rate models. This case can be viewed as a kind of
anti-symmetry.

(15) Reversely closed but not closed under other appropriate conditions in the mixture
proportional reversed hazard rate models. This case can be viewed as a kind of
anti-symmetry.

(16) Closed but not reversely closed under some appropriate conditions in the coherent
systems with dependent and identically distributed components. This case can be
viewed as a kind of anti-symmetry.

(17) Reversely closed but not closed under other appropriate conditions in the coherent
systems with dependent and identically distributed components. This case can be
viewed as a kind of anti-symmetry.
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