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Abstract: A subset J is a (2-d)-kernel of a graph if J is independent and 2-dominating simultaneously.
In this paper, we consider two different generalizations of the Petersen graph and we give complete
characterizations of these graphs which have (2-d)-kernel. Moreover, we determine the number of
(2-d)-kernels of these graphs as well as their lower and upper kernel number. The property that each
of the considered generalizations of the Petersen graph has a symmetric structure is useful in finding
(2-d)-kernels in these graphs.
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1. Introduction

In general, we use the standard terminology and notation of graph theory (see [1]).
Let G be an undirected, connected, and simple graph with the vertex set V(G) and the
edge set E(G). The order of the graph G is the number of vertices in G. The size of the
graph G is its number of edges. By Pn, n ≥ 1 and Cn, n ≥ 3, we mean a path and a cycle of
order n, respectively.

Let G = (V, E) and G′ = (V′, E′) be two graphs. If V′ ⊆ V and E′ ⊆ E, then G′ is
a subgraph of G, written as G′ ⊆ G. If G′ ⊆ G and G′ contain all the edges xy ∈ E with
x, y ∈ V′, then G′ is an induced subgraph of G and we write G′ := 〈V′〉G. Graphs G and G′

are called isomorphic, and denoted by G ∼= G′, if there exists a bijection φ : V → V′ with
xy ∈ E⇔ φ(x)φ(y) ∈ E′ for all x, y ∈ V. The complement of the graph G is a graph G such
that V(G) = V(G) and two distinct vertices of G are adjacent if and only if they are not
adjacent in G. A graph G is called bipartite if V(G) admits a partition into two classes such
that every edge has its ends in different classes.

A subset D ⊆ V(G) is a dominating set of G if each vertex of G not belonging to D is
adjacent to at least one vertex of D. A subset S ⊆ V(G) is called an independent set of G if
no two vertices of S are adjacent in G. A subset J being independent and dominating is
a kernel of G.

The concept of kernels was initiated in 1953 by von Neumann and Morgenstern in
digraphs with regard to game theory (see [2]). One of the pioneers studying the kernels in
digraphs was C. Berge (see [3–5]). In literature, we can find many types and generalizations
of kernels in digraphs (for results and applications, see, for example, [6–11]). The problem of
the existence of kernels in undirected graphs is trivial because every maximal independent
set is a kernel. Currently, distinct kind of kernels in undirected graphs are being studied
quite intensively and many papers are available. For results and application, see, for
example, [12–18]. Among many types of kernels in undirected graphs, there are kernels
related to multiple domination, introduced by Fink and Jacobson in [19]. Let p ≥ 1 be
an integer. A subset S is said to be p-dominating if every vertex outside S has at least
p neighbors in S. If p = 1, then we obtain a dominating set in the classical sense. If p = 2,
we get a 2-dominating set. A set which is 2-dominating and independent is named a 2-
dominating kernel ((2-d)-kernel in short). The concept of (2-d)-kernels was introduced by
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A. Włoch in [20]. Some properties of (2-d)-kernels were studied in [21–24]. In particular,
in [23], it was proved that the problem of the existence of (2-d)-kernels is NP-complete
for general graphs. In [25], Nagy extended the concept of (2-d)-kernels to k-dominating
kernels. He considered a k-dominating set instead of the 2-dominating set, which he called
k-dominating independent sets. Some properties of these sets were studied in [26,27].

The number of (2-d)-kernels in the graph G is denoted by σ(G). Let G be a graph with
the (2-d)-kernel. The minimum cardinality of the (2-d)-kernel of G is called a lower (2-d)-
kernel number and denoted by γ(2−d)(G). The maximum cardinality of the (2-d)-kernel of
G is called an upper (2-d)-kernel number and is denoted by Γ(2−d)(G).

In this paper, we consider two different generalizations of the Petersen graph. Various
types of domination in the class of generalized Petersen graphs have been extensively
studied in the literature (see [28–32]). Referring to this research, we will consider (2-d)-
kernels for two different generalizations of the Petersen graph. We solve the problem of the
existence of (2-d)-kernels, their number, and their cardinality in these graphs. Moreover,
we determine a lower and an upper kernel number in these graphs. It is worth noting that
each of presented generalizations of the Petersen graph has a symmetric structure. This
property is useful in finding (2-d)-kernels in these graphs.

2. Main Results

In this section, we consider the problem of the existence of (2-d)-kernels in two
different generalizations of the Petersen graph. In particular, we give complete characteri-
zations of these generalizations, which have the (2-d)-kernel. We determine the number of
(2-d)-kernels in these graphs as well as the lower and the upper (2-d)-kernel number.

In the further part of the paper, we will use green color to mark vertices belonging to
the (2-d)-kernel, and red color to indicate vertices that cannot belong to it.

2.1. Generalized Petersen Graph

Let n ≥ 3, k < n
2 be integers. The graph P(n, k) is called the generalized Petersen

graph, if V(P(n, k)) =
n−1⋃
i=0
{ui, vi} and E(P(n, k)) =

n−1⋃
i=0
{uiui+1, uivi, vivi+k}, where sub-

scripts are reduced modulo n. These graphs were first defined by Watkins in [33]. Figure 1
shows generalized Petersen graphs P(10, 3), P(5, 2) and examples of (2-d)-kernels in these
graphs.

P (10, 3) P (5, 2)

Figure 1. Examples of (2-d)-kernels in P(10, 3) and P(5, 2).

We start with the problem of existence of (2-d)-kernels. At the beginning, we give a
sufficient condition, emerging from the property of bipartite graphs. We have the following
complete characterization of bipartite generalized Petersen graphs.

Proposition 1 ([34]). Let n ≥ 3, k < n
2 be integers. The graph P(n, k) is bipartite if and only if n

is even and k is odd.
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From this characterization we directly obtain the sufficient condition for the existence
of (2-d)-kernels.

Proposition 2. Let n ≥ 3, k < n
2 be integers. If n is even and k is odd, then the graph P(n, k) has

at least two (2-d)-kernels which are a partition of the vertex set.

Proof. Let n, k be as in the statement of the proposition. From Proposition 1, it follows that
the graph P(n, k) is a bipartite graph. Thus, there exist two independent sets of vertices
V1, V2 that are a partition of the set V(P(n, k)). Moreover, the graph P(n, k) is a 3-regular
graph. Therefore, sets V1, V2 are (2-d)-kernels of the graph P(n, k).

Now, we improve the above proposition to obtain the complete characterization of
the generalized Petersen graph having (2-d)-kernel.

Theorem 1. Let n ≥ 3, k < n
2 be integers. The graph P(n, k) has a (2-d)-kernel if and only if

(i) n is even and k is odd or
(ii) n ≡ 0(mod 5) and k ≡ 2(mod 5) or
(iii) n ≡ 0(mod 5) and k ≡ 3(mod 5).

Proof. If n = 3, 4, then the result is obvious. Let n ≥ 5, k < n
2 be integers. If n is even

and k is odd, then by Proposition 2, (i) follows. Let n ≡ 0(mod 5), k ≡ j(mod 5), j = 2, 3.
We will show that the set J = {ui; i ∈ {0, 5, . . . , n}} ∪ {ui+2; i ∈ {0, 5, . . . , n}} ∪ {vi+3; i ∈
{0, 5, . . . , n}} ∪ {vi+4; i ∈ {0, 5, . . . , n}} is a (2-d)-kernel of P(n, k). The independence of J
follows from the definition of P(n, k). Let us assume that x ∈ V(P(n, k)) \ J. Then, either
x = us, s ∈ {0, 1, . . . , n − 1}, s ≡ a(mod 5), a = 1, 3, 4 or x = vt, t ∈ {0, 1, . . . , n − 1},
t ≡ b(mod 5), b = 0, 1, 2. We consider two cases.

1. x = us.
If s ≡ 1(mod 5), then {us−1, us+1} ⊆ N(us) and us−1, us+1 ∈ J. If s ≡ 3(mod 5), then
{us−1, vs} ⊆ N(us) and us−1, vs ∈ J. If s ≡ 4(mod 5), then {us+1, vs} ⊆ N(us) and
us+1, vs ∈ J.
2. x = vt.
Let t ≡ 0(mod 5). If k ≡ 2(mod 5), then {ut, vt−2} ⊆ N(vt) and ut, vt−2 ∈ J. If k ≡
3(mod 5), then {ut, vt+3} ⊆ N(vt) and ut, vt+3 ∈ J. If t ≡ 1(mod 5), then {vt−k, vt+k} ⊆
N(vt) and vt−k, vt+k ∈ J, k ≡ j(mod 5), j = 2, 3. Let t ≡ 2(mod 5). If k ≡ 2(mod 5),
then {ut, vt+2} ⊆ N(vt) and ut, vt+2 ∈ J. If k ≡ 3(mod 5), then {ut, vt−3} ⊆ N(vt) and
ut, vt−3 ∈ J.

Summing up all the above cases we obtain that every vertex x ∈ V(P(n, k)) \ J is
2-dominated by J. Hence, J is a (2-d)-kernel of P(n, k).

Conversely, let n ≥ 5, k < n
2 , i ∈ {0, 1, . . . , n− 1} be integers and let J be a (2-d)-kernel

of P(n, k). If ui, ui+1, ui+2 /∈ J, then the vertex ui+1 is not 2-dominated by J. Thus, each

connected component of the graph
〈

n−1⋃
i=0

ui

〉
P(n,k)

\ J is isomorphic to either P1 or P2. We

will show that in the graph P(n, k) having a (2-d)-kernel, the configurations of these paths
P1, P2 on the outer cycle, which are shown in the Figure 2 are forbidden.

ui ui+1 ui+2 ui+3 ui+4 ui+5 ui+6 ui ui+1 ui+2 ui+3 ui+4 ui+5 ui+6 ui+7

Figure 2. Forbidden configurations of the paths P1, P2 for the graph P(n, k) with the (2-d)-kernel.

Let us consider the following cases.
1. First, we will prove that the configuration of the paths P1, P2 shown on the left side of
the Figure 2 is forbidden. Suppose that ui, ui+3, ui+6 ∈ J for some i, as in Figure 3. Then,
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vi+1, vi+2, vi+4, vi+5 ∈ J; otherwise, vertices ui+1, ui+2, ui+4, ui+5 are not 2-dominated by J.
Therefore, for every k vertices vi+1+k, vi+2+k, vi+4+k, vi+5+k /∈ J.

vi vi+1 vi+2 vi+3 vi+4 vi+5 vi+6

ui ui+1 ui+2 ui+3 ui+4 ui+5 ui+6

vi+k vi+1+k vi+2+k vi+3+k vi+4+k vi+5+k vi+6+k

ui+k ui+1+k ui+2+k ui+3+k ui+4+k ui+5+k ui+6+k

Figure 3. The case when ui, ui+3, ui+6 ∈ J.

We have the next two possibilities.
1.1. vi+3+k /∈ J for some i (see Figure 4).
Since vi+3+k /∈ J, the vertex ui+3+k ∈ J and ui+2+k, ui+4+k /∈ J. Then vi+2+2k, vi+3+2k,
vi+4+2k ∈ J. This means that ui+2+2k, ui+3+2k, ui+4+2k /∈ J. Hence, the vertex ui+3+2k is not
2-dominated by J, a contradiction.

+k +2k

Figure 4. The case when ui, ui+3, ui+6 ∈ J (the first subcase).

1.2. vi+3+k ∈ J for some i (see Figure 5).
Then, ui+3+k /∈ J and ui+2+k, ui+4+k ∈ J; otherwise, they are not 2-dominated by J.
Because J is an independent set, ui+1+k, ui+5+k /∈ J. Moreover, ui+k, ui+6+k ∈ J to 2-
dominate ui+1+k, ui+5+k. Hence, vi+k, vi+6+k /∈ J. To 2-dominate vi+1+k, vi+5+k, we must
have vi+1+2k, vi+5+2k ∈ J. Moreover, ui+1+2k, ui+5+2k, vi+3+2k /∈ J. Since vi+k, vi+6+k
have exactly one neighbour in J, vertices vi+2k, vi+6+2k ∈ J and ui+2k, ui+6+2k /∈ J. Next,
ui+2+2k, ui+4+2k ∈ J to 2-dominate ui+1+2k, ui+5+2k and vi+2+2k, vi+4+2k, ui+3+2k /∈ J. Thus,
vi+2+3k, vi+3+3k, vi+4+3k ∈ J to 2-dominate vi+2+2k, vi+3+2k, vi+4+2k. Therefore, ui+2+3k,
ui+3+3k, ui+4+3k /∈ J. This means that ui+3+3k is not 2-dominated, a contradiction.

+k +2k +3k

Figure 5. The case when ui, ui+3, ui+6 ∈ J (the second subcase).

Hence, for each n and k, it is not possible that the vertices ui, ui+3, ui+6 belong to a
(2-d)-kernel of P(n, k).
2. Now, we will prove that the configuration of the paths P1, P2 shown on the right side
of the Figure 2 is forbidden. Suppose that ui, ui+2, ui+4, ui+7 ∈ J for some i, as in Figure 6.
Then, vi+5, vi+6, which causes vi, vi+1, vi+2, vi+3, vi+4, vi+5, vi+6, vi+7 /∈ J.

Figure 6. The case when ui, ui+2, ui+4, ui+7 ∈ J.

We consider four subcases.
2.1. vi+1, vi+3 /∈ J for some i (see Figure 7).
Then, vi+1−k, vi+3−k, vi+1+k, vi+3+k ∈ J. Since vi+2 must be 2-dominated, so vi+2−k ∈ J
or vi+2+k ∈ J. Without loss of generality, assume that vi+2+k ∈ J. Thus, ui+1+k, ui+2+k,
ui+3+k /∈ J. Hence, the vertex ui+2+k is not 2-dominated, a contradiction.

+k

Figure 7. The case when ui, ui+2, ui+4, ui+7 ∈ J (the first subcase).
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2.2. vi+1 /∈ J and vi+3 ∈ J for some i (see Figure 8).
Then, vi+3+k, vi+5+k, vi+6+k /∈ J. Since vi+7 must be 2-dominated, we obtain that vi+7−k ∈ J
or vi+7+k ∈ J. Without loss of generality, assume that vi+7+k ∈ J. Thus, ui+7+k /∈ J
and ui+6+k ∈ J. Because J is an independent set and ui+6+k ∈ J, ui+5+k /∈ J. Therefore,
ui+4+k ∈ J, which causes ui+3+k, vi+4+k /∈ J. Moreover, vi+3+2k, vi+4+2k, vi+5+2k ∈ J,
and finally ui+3+2k, ui+4+2k, ui+5+2k /∈ J. Hence, the vertex ui+4+2k is not 2-dominated, a
contradiction.

+k +2k

Figure 8. The case when ui, ui+2, ui+4, ui+7 ∈ J (the second subcase).

2.3. vi+1 ∈ J and vi+3 /∈ J for some i (see Figure 9).
Then, vi+3+k ∈ J and vi+1+k, vi+5+k, vi+6+k, ui+3+k /∈ J. Since vi+4 must be 2-dominated,
vi+4−k ∈ J or vi+4+k ∈ J. Without loss of generality, assume that vi+4+k ∈ J. Thus,
ui+4+k /∈ J. Moreover, ui+2+k, ui+5+k ∈ J, which causes ui+1+k, ui+6+k, vi+2+k /∈ J. To
2-dominate ui+1+k, we must have ui+k ∈ J. Then, vi+k /∈ J and vi+2k, vi+1+2k, vi+2+2k ∈ J.
From the independence of the set J, we get that ui+2k, ui+1+2k, ui+2+2k /∈ J. Hence, the
vertex ui+1+2k is not 2-dominated, a contradiction.

+k +2k

Figure 9. The case when ui, ui+2, ui+4, ui+7 ∈ J (the third subcase).

2.4. vi+1, vi+3 ∈ J for some i.
Proving analogously as in subcase 2.3., we obtain a contradiction with the assumption that
J is a (2-d)-kernel.
Therefore, for each n and k, it is not possible that the vertices ui, ui+2, ui+4, ui+7 belong to a
(2-d)-kernel of P(n, k).

Hence, for the graph with the (2-d)-kernel, the configurations of P1, P2 shown in the
Figure 10 are the only ones that may be possible. Now, we will show that they are indeed
possible.

ui ui+1 ui+2 ui+3 ui+4 ui ui+1 ui+2 ui+3 ui+4 ui+5

Figure 10. Possible configurations of the paths P1, P2 for the graph P(n, k) with the (2-d)-kernel.

3. Suppose that ui, ui+2, ui+4 ∈ J for some i, as in Figure 11. Then, ui+1, ui+3, vi, vi+2,
vi+4 /∈ J.

Figure 11. The case when ui, ui+2, ui+4 ∈ J.

We consider four subcases.
3.1. vi+1, vi+3 /∈ J for some i (see Figure 12).
Since vi+2 must be 2-dominated, we obtain that vi+2+k ∈ J or vi+2−k ∈ J. Without loss of
generality, assume that vi+2+k ∈ J. Moreover, vi+1+k, vi+3+k ∈ J and ui+1+k, ui+2+k, ui+3+k /∈
J. Hence, the vertex ui+2+k is not 2-dominated, a contradiction.
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+k

Figure 12. The case when ui, ui+2, ui+4 ∈ J (the first subcase).

3.2. vi+1 /∈ J and vi+3 ∈ J for some i (see Figure 13).
Then, vi+1+k ∈ J and vi+3+k /∈ J. Since vi+2 must be 2-dominated, vi+2+k ∈ J or
vi+2−k ∈ J. Without loss of generality, assume that vi+2+k ∈ J. Thus, ui+1+k, ui+2+k /∈ J
and ui+k, ui+3+k ∈ J, which causes vi+k, ui+4+k /∈ J and vi+4+k ∈ J. Moreover, vi+1+2k,
vi+2+2k, vi+4+2k /∈ J, vi+2k ∈ J, ui+2k /∈ J, ui+1+2k ∈ J, ui+2+2k /∈ J, ui+3+2k ∈ J and
ui+4+2k, vi+3+2k /∈ J. Finally, vi+2+3k, vi+3+3k, vi+4+3k ∈ J and ui+2+3k, ui+3+3k, ui+4+3k /∈ J.
Hence, the vertex ui+3+3k is not 2-dominated, a contradiction.

+k +2k +3k

Figure 13. The case when ui, ui+2, ui+4 ∈ J (the second subcase).

3.3. vi+1 ∈ J and vi+3 /∈ J for some i.
Proving analogously as in subcase 3.2., we obtain a contradiction with the assumption that
J is a (2-d)-kernel.
3.4. vi+1, vi+3 ∈ J for some i (see Figure 14).
Then, vi+1+k, vi+3+k /∈ J. First, we will show that vi+k and vi−k must belong to a (2-d)-
kernel J. Suppose on contrary that vi+k /∈ J. Since vi+k must be 2-dominated, ui+k ∈ J.
Thus, ui+1+k /∈ J and ui+2+k ∈ J. Moreover, vi+2k, vi+1+2k, vi+2+2k ∈ J and ui+2k, ui+1+2k,
ui+2+2k ∈ J. Hence, the vertex ui+1+2k is not 2-dominated, a contradiction.

+k +2k

Figure 14. The case when ui, ui+2, ui+4 ∈ J (the fourth subcase).

This means that vi+k, vi−k ∈ J and also vi+2+k, vi+4+k, ui+1+k, ui+3+k belong to a (2-d)-
kernel (see Figure 15).

+k

Figure 15. The case when ui, ui+2, ui+4 ∈ J implies that vi+k, vi+2+k, vi+4+k, ui+1+k, ui+3+k ∈ J.

Hence, n must be even, and from the definition of P(n, k), we conclude that k must be
odd, which proves (i).
4. Suppose that ui, ui+2, ui+5 ∈ J for some i. Then, ui+1, ui+3, ui+4, vi, vi+2, vi+5 /∈ J.
Since ui+3, ui+4 must be 2-dominated, vi+3, vi+4 ∈ J. First, we prove that vi+1 /∈ J. Suppose
on contrary that vi+1 ∈ J, as in Figure 16. Then, vi+1+k, vi+3+k, vi+4+k /∈ J. Since vi
must be 2-dominated, vi−k ∈ J or vi+k ∈ J. Without loss of generality, assume that
vi+k ∈ J. Thus, ui+k /∈ J, ui+1+k ∈ J and ui+2+k /∈ J. Moreover, ui+3+k ∈ J, ui+4+k /∈ J,
ui+5+k ∈ J, vi+5+k /∈ J, and vi+2+k ∈ J. Proving analogously as in subcase 3.3., we obtain a
contradiction with the assumption that J is a (2-d)-kernel.

+k

Figure 16. The case when ui, ui+2, ui+5, vi+1 ∈ J.
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Hence, vi+1 /∈ J (see Figure 17). Moreover, vi+1+k ∈ J and ui+1+k, vi+3+k, vi+4+k /∈ J.
We consider two subcases.

+k

Figure 17. The case when ui, ui+2, ui+5 ∈ J, and vi+1 /∈ J.

4.1. vi+2+k /∈ J for some i (see Figure 18).
Then, ui+2+k ∈ J, ui+3+k /∈ J, ui+4+k ∈ J, ui+5+k /∈ J, and v5+i+k ∈ J. Moreover, vi+k ∈ J
and ui+k /∈ J; otherwise, we obtain the same configuration as in subcase 3.3.

+k

Figure 18. The case when ui, ui+2, ui+5 ∈ J (the first subcase).

Hence, n must be divisible by 5, and from the definition of P(n, k), we conclude that
k ≡ 2(mod 5), which proves (ii).
4.2. vi+2+k ∈ J for some i (see Figure 19).
Then, ui+2+k /∈ J, ui+k, ui+3+k ∈ J and vi+k, ui+4+k /∈ J. Moreover, ui+5+k ∈ J and
vi+5+k /∈ J

+k

Figure 19. The case when ui, ui+2, ui+5 ∈ J (the second subcase).

Hence, n must be divisible by 5, and from the definition of P(n, k), we conclude that
k ≡ 3(mod 5), which proves (iii), which ends the proof.

Basing on the proof of Theorem 1, the following corollaries are obtained. They
concern the number of (2-d)-kernels in the generalized Petersen graph as well as the lower
and upper (2-d)-kernel numbers. By a rotation of configurations shown on Figure 10,
condition (i) of Theorem 1 gives two (2-d)-kernels in generalized Petersen graph and
conditions (ii) and (iii) give five (2-d)-kernels. Therefore, if n and k satisfy more than one
of these conditions, we obtain more (2-d)-kernels. Moreover, the proof of the Theorem 1
presents the constructions of the (2-d)-kernels in the generalized Petersen graph P(n, k).
Figure 20 shows the smallest and the largest (2-d)-kernel in the graph P(20, 7).

P (20, 7) P (20, 7)

Figure 20. The largest (left side) and the smallest (right side) (2-d)-kernel in the graph P(20, 7).
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Corollary 1. Let n ≥ 3, k < n
2 be integers. Then,

σ(P(n, k)) =



7 for n ≡ 0(mod 10) and k ≡ a(mod 10), a = 3, 7

5
for n ≡ 5(mod 10) and k ≡ a(mod 5), a = 2, 3 or
for n ≡ 0(mod 10) and k ≡ a(mod 10), a = 2, 8

2
for n ≡ 0(mod 10) and k ≡ a(mod 10), a = 1, 5, 9 or
for even n, n 6≡ 0(mod 10) and odd k.

Corollary 2. Let n ≥ 3, k < n
2 be integers. If n ≡ 0(mod 10) and k ≡ a(mod 10), a = 3, 7,

then
γ(2−d)(P(n, k)) =

4
5

n and Γ(2−d)(P(n, k)) = n.

Corollary 3. Let n ≥ 3, k < n
2 be integers. If n ≡ 5(mod 10) and k ≡ a(mod 5), a = 2, 3 or

n ≡ 0(mod 10) and k ≡ a(mod 10), a = 2, 8, then

γ(2−d)(P(n, k)) = Γ(2−d)(P(n, k)) =
4
5

n.

Corollary 4. Let n ≥ 3, k < n
2 be integers. If n ≡ 0(mod 10) and k ≡ a(mod 10), a = 1, 5, 9

or n is even, n 6≡ 0(mod 10) and k is odd, then

γ(2−d)(P(n, k)) = Γ(2−d)(P(n, k)) = n.

The above corollaries characterize all possible graphs P(n, k), which have the (2-d)-
kernel.

2.2. The Second Generalization of the Petersen Graph

Now, we consider another generalization of the Petersen graph. Let n ≥ 5 be an
integer. Let Cn be a cycle and Cn its complement such that V(Cn) = {x1, x2, . . . , xn},
V(Cn) = {xc

1, xc
2, . . . , xc

n} with the numbering of vertices in the natural order. Let G(n) be
the graph such that V(G(n)) = V(Cn) ∪V(Cn) and E(G(n)) = E(Cn) ∪ E(Cn) ∪ {xixc

i ; i ∈
{1, 2, . . . , n}}. Figure 21 shows an example of a (2-d)-kernel in G(13). It is easy to check
that if n = 5, then G(5) is isomorphic to the Petersen graph.

G(13)

Figure 21. An example of a (2-d)-kernel in G(13).

The next Theorem shows a complete characterization of graphs G(n) with the (2-d)-
kernel.

Theorem 2. Let n ≥ 5 be integer. The graph G(n) has a (2-d)-kernel if and only if n is odd.

Proof. Let n ≥ 5 be odd. We will show that J = {xc
2, xc

3, x1, x4, x6, . . . , xn−1} is the (2-d)-
kernel of the graph G(n). The independence of J is obvious. It is sufficient to show that J
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is a 2-dominating set. By the definition of the graph G(n), we can assume that xn+1 = x1.
Suppose that y ∈ V(G(n)) \ J. Hence, y ∈ V(Cn) or y ∈ V(Cn). Let y ∈ V(Cn). Thus
y = xk, k ∈ {2, 3, 5, . . . , n}. If xc

k /∈ J, then there exist vertices xk−1, xk+1 ∈ J adjacent to xk.
If xc

k ∈ J, then k = 2 or k = 3. For k = 2, the vertex x2 is adjacent to x1, xc
2 ∈ J. Moreover, if

k = 3, then the vertex x3 is adjacent to x4, xc
3 ∈ J. Hence, every vertex from the set V(Cn)

is 2-dominated by the set J. Let now y ∈ V(Cn). Thus y = xc
k, k ∈ {1, 4, 5, . . . , n}. Then,

the vertex xc
k, k ∈ {5, 6, . . . , n} is adjacent to xc

2, xc
3 ∈ J. If k = 1, then xc

1x1, xc
1xc

3 ∈ E(G(n)).
Moreover, for k = 4 the vertex xc

4 is adjacent to x4, xc
2. Therefore, vertices from the set

V(Cn) are 2-dominated by J and hence J is a (2-d)-kernel of G(n).
Conversely, suppose that a graph G(n) has a (2-d)-kernel J. We will show that n

is odd. By the definition of the graph G(n), we obtain that J ∩ V(Cn) 6= ∅. Otherwise,
vertices from the set V(Cn) are not 2-dominated by the set J. Let xc

1 ∈ J. Then either xc
2 ∈ J

or xc
n ∈ J. Otherwise, xc

2 or xc
n is not 2-dominated. Hence, |J ∩V(Cn)| = 2. Without loss of

generality assume that xc
1, xc

2 ∈ J. This means that xc
i , i ∈ {4, 5, . . . , n− 1} is 2-dominated

by J and xc
3, xc

n are dominated by J. Let J∗ = J \ {xc
1, xc

2}. Then, J∗ ⊂ V(C). Since J is
the (2-d)-kernel, x3, xn ∈ J∗; otherwise, xc

3, xc
n are not 2-dominated by J. Therefore, the

graph 〈{x3, x4, . . . , xn}〉G(n)
∼= Pn−2 must have a (2-d)-kernel to 2-dominate vertices from

V(Cn) \ J∗. This means that n must be odd. Thus, J∗ = {x3, x5, . . . , xn}, which ends the
proof.

Finally, it turns out that if a graph G(n) has (2-d)-kernel, then the number of (2-d)-
kernels depends linearly on the number of vertices. Moreover, each (2-d)-kernel of G(n)
has the same cardinality.

Corollary 5. If n ≥ 5 is odd, then σ(G(n)) = n and

γ(2−d)(G(n)) = Γ(2−d)(G(n)) =
⌊n

2

⌋
+ 2.

Proof. Let n ≥ 5 be odd. From the construction of a (2-d)-kernel described in the proof
of Theorem 2, we conclude that exactly two not adjacent vertices from the set V(Cn) ⊂
V(G(n)) belong to a (2-d)-kernel. The selection of these two vertices will determine the
(2-d)-kernel in G(n). Since two not adjacent vertices can be chosen on n ways, σ(G(n)) = n.
Moreover, from the construction of (2-d)-kernels in G(n), it follows that all of them have
the same cardinality. Hence, γ(2−d)(G(n)) = Γ(2−d)(G(n)) =

⌊ n
2
⌋
+ 2, which ends the

proof.

3. Concluding Remarks

In this paper, we considered two different generalizations of the Petersen graph,
and we discussed the problem of the existence of (2-d)-kernels in these graphs. In
particular, we determined the number of (2-d)-kernels in these graphs and their lower
and upper (2-d)-kernel number. The generalized Petersen graphs considered in this
paper are special cases of I-graphs (see, for example, [35]). The I-graph I(n, j, k) is
a graph with a vertex set V(I(n, j, k)) = {u1, u2, . . . , un, v1, v2, . . . , vn} and an edge set
E(I(n, j, k)) = {uiui+j, uivi, vivi+k; i ∈ {1, 2, . . . , n}}, where subscripts are reduced modulo
n. Because P(n, k) = I(n, 1, k), the results obtained could be a starting point to studying
and counting (2-d)-kernels in I-graphs. It could also be interesting to investigate the
number of (2-d)-kernels in other generalizations of generalized Petersen graphs. For more
generalizations, see, for example, [36].
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