

Paweł Bednarz *^{,†}^(D) and Natalia Paja [†]^(D)

The Faculty of Mathematics and Applied Physics, Rzeszów University of Technology,

al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland; nbednarz@prz.edu.pl

* Correspondence: pbednarz@prz.edu.pl

+ These authors contributed equally to this work.

Abstract: A subset *J* is a (2-d)-kernel of a graph if *J* is independent and 2-dominating simultaneously. In this paper, we consider two different generalizations of the Petersen graph and we give complete characterizations of these graphs which have (2-d)-kernel. Moreover, we determine the number of (2-d)-kernels of these graphs as well as their lower and upper kernel number. The property that each of the considered generalizations of the Petersen graph has a symmetric structure is useful in finding (2-d)-kernels in these graphs.

Keywords: domination; independence; (2-d)-kernel; generalized Petersen graphs

1. Introduction

In general, we use the standard terminology and notation of graph theory (see [1]). Let *G* be an undirected, connected, and simple graph with the vertex set V(G) and the edge set E(G). The order of the graph *G* is the number of vertices in *G*. The size of the graph *G* is its number of edges. By P_n , $n \ge 1$ and C_n , $n \ge 3$, we mean a path and a cycle of order *n*, respectively.

Let G = (V, E) and G' = (V', E') be two graphs. If $V' \subseteq V$ and $E' \subseteq E$, then G' is a subgraph of G, written as $G' \subseteq G$. If $G' \subseteq G$ and G' contain all the edges $xy \in E$ with $x, y \in V'$, then G' is an induced subgraph of G and we write $G' := \langle V' \rangle_G$. Graphs G and G'are called isomorphic, and denoted by $G \cong G'$, if there exists a bijection $\phi : V \to V'$ with $xy \in E \Leftrightarrow \phi(x)\phi(y) \in E'$ for all $x, y \in V$. The complement of the graph G is a graph \overline{G} such that $V(G) = V(\overline{G})$ and two distinct vertices of \overline{G} are adjacent if and only if they are not adjacent in G. A graph G is called bipartite if V(G) admits a partition into two classes such that every edge has its ends in different classes.

A subset $D \subseteq V(G)$ is a dominating set of *G* if each vertex of *G* not belonging to *D* is adjacent to at least one vertex of *D*. A subset $S \subseteq V(G)$ is called an independent set of *G* if no two vertices of *S* are adjacent in *G*. A subset *J* being independent and dominating is a kernel of *G*.

The concept of kernels was initiated in 1953 by von Neumann and Morgenstern in digraphs with regard to game theory (see [2]). One of the pioneers studying the kernels in digraphs was C. Berge (see [3–5]). In literature, we can find many types and generalizations of kernels in digraphs (for results and applications, see, for example, [6–11]). The problem of the existence of kernels in undirected graphs is trivial because every maximal independent set is a kernel. Currently, distinct kind of kernels in undirected graphs are being studied quite intensively and many papers are available. For results and application, see, for example, [12–18]. Among many types of kernels in undirected graphs, there are kernels related to multiple domination, introduced by Fink and Jacobson in [19]. Let $p \ge 1$ be an integer. A subset *S* is said to be *p*-dominating if every vertex outside *S* has at least *p* neighbors in *S*. If p = 1, then we obtain a dominating set in the classical sense. If p = 2, we get a 2-dominating set. A set which is 2-dominating and independent is named a 2-dominating kernel ((2-*d*)-kernel in short). The concept of (2-*d*)-kernels was introduced by

Citation: Bednarz, P.; Paja, N. On (2-*d*)-Kernels in Two Generalizations of the Petersen Graph. *Symmetry* **2021**, *13*, 1948. https://doi.org/10.3390/ sym13101948

Academic Editors: Markus Meringer and Juan Alberto Rodríguez Velázquez

Received: 5 August 2021 Accepted: 7 October 2021 Published: 16 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

A. Włoch in [20]. Some properties of (2-d)-kernels were studied in [21–24]. In particular, in [23], it was proved that the problem of the existence of (2-d)-kernels is \mathcal{NP} -complete for general graphs. In [25], Nagy extended the concept of (2-d)-kernels to k-dominating kernels. He considered a k-dominating set instead of the 2-dominating set, which he called k-dominating independent sets. Some properties of these sets were studied in [26,27].

The number of (2-*d*)-kernels in the graph *G* is denoted by $\sigma(G)$. Let *G* be a graph with the (2-*d*)-kernel. The minimum cardinality of the (2-*d*)-kernel of *G* is called a lower (2-*d*)-kernel number and denoted by $\gamma_{(2-d)}(G)$. The maximum cardinality of the (2-*d*)-kernel of *G* is called an upper (2-*d*)-kernel number and is denoted by $\Gamma_{(2-d)}(G)$.

In this paper, we consider two different generalizations of the Petersen graph. Various types of domination in the class of generalized Petersen graphs have been extensively studied in the literature (see [28–32]). Referring to this research, we will consider (2-d)-kernels for two different generalizations of the Petersen graph. We solve the problem of the existence of (2-d)-kernels, their number, and their cardinality in these graphs. Moreover, we determine a lower and an upper kernel number in these graphs. It is noting that each of presented generalizations of the Petersen graph has a symmetric structure. This property is useful in finding (2-d)-kernels in these graphs.

2. Main Results

In this section, we consider the problem of the existence of (2-d)-kernels in two different generalizations of the Petersen graph. In particular, we give complete characterizations of these generalizations, which have the (2-d)-kernel. We determine the number of (2-d)-kernels in these graphs as well as the lower and the upper (2-d)-kernel number.

In the further part of the paper, we will use green color to mark vertices belonging to the (2-d)-kernel, and red color to indicate vertices that cannot belong to it.

2.1. Generalized Petersen Graph

Let $n \ge 3$, $k < \frac{n}{2}$ be integers. The graph P(n,k) is called the generalized Petersen graph, if $V(P(n,k)) = \bigcup_{i=0}^{n-1} \{u_i, v_i\}$ and $E(P(n,k)) = \bigcup_{i=0}^{n-1} \{u_i u_{i+1}, u_i v_i, v_i v_{i+k}\}$, where subscripts are reduced modulo n. These graphs were first defined by Watkins in [33]. Figure 1 shows generalized Petersen graphs P(10,3), P(5,2) and examples of (2-d)-kernels in these graphs.

Figure 1. Examples of (2-*d*)-kernels in *P*(10, 3) and *P*(5, 2).

We start with the problem of existence of (2-d)-kernels. At the beginning, we give a sufficient condition, emerging from the property of bipartite graphs. We have the following complete characterization of bipartite generalized Petersen graphs.

Proposition 1 ([34]). Let $n \ge 3$, $k < \frac{n}{2}$ be integers. The graph P(n,k) is bipartite if and only if n is even and k is odd.

From this characterization we directly obtain the sufficient condition for the existence of (2-d)-kernels.

Proposition 2. Let $n \ge 3$, $k < \frac{n}{2}$ be integers. If *n* is even and *k* is odd, then the graph P(n,k) has at least two (2-d)-kernels which are a partition of the vertex set.

Proof. Let *n*, *k* be as in the statement of the proposition. From Proposition 1, it follows that the graph P(n, k) is a bipartite graph. Thus, there exist two independent sets of vertices V_1 , V_2 that are a partition of the set V(P(n, k)). Moreover, the graph P(n, k) is a 3-regular graph. Therefore, sets V_1 , V_2 are (2-d)-kernels of the graph P(n, k). \Box

Now, we improve the above proposition to obtain the complete characterization of the generalized Petersen graph having (2-d)-kernel.

Theorem 1. Let $n \ge 3$, $k < \frac{n}{2}$ be integers. The graph P(n, k) has a (2-d)-kernel if and only if

- *(i) n* is even and *k* is odd or
- (ii) $n \equiv 0 \pmod{5}$ and $k \equiv 2 \pmod{5}$ or

(iii) $n \equiv 0 \pmod{5}$ and $k \equiv 3 \pmod{5}$.

Proof. If n = 3, 4, then the result is obvious. Let $n \ge 5, k < \frac{n}{2}$ be integers. If n is even and k is odd, then by Proposition 2, (i) follows. Let $n \equiv 0 \pmod{5}, k \equiv j \pmod{5}, j = 2, 3$. We will show that the set $J = \{u_i; i \in \{0, 5, ..., n\}\} \cup \{u_{i+2}; i \in \{0, 5, ..., n\}\} \cup \{v_{i+3}; i \in \{0, 5, ..., n\}\} \cup \{v_{i+4}; i \in \{0, 5, ..., n\}\} \cup \{v_i, k\}$. The independence of J follows from the definition of P(n, k). Let us assume that $x \in V(P(n, k)) \setminus J$. Then, either $x = u_s, s \in \{0, 1, ..., n-1\}, s \equiv a \pmod{5}, a = 1, 3, 4$ or $x = v_t, t \in \{0, 1, ..., n-1\}, t \equiv b \pmod{5}, b = 0, 1, 2$. We consider two cases.

1.
$$x = u_s$$

If $s \equiv 1 \pmod{5}$, then $\{u_{s-1}, u_{s+1}\} \subseteq N(u_s)$ and $u_{s-1}, u_{s+1} \in J$. If $s \equiv 3 \pmod{5}$, then $\{u_{s-1}, v_s\} \subseteq N(u_s)$ and $u_{s-1}, v_s \in J$. If $s \equiv 4 \pmod{5}$, then $\{u_{s+1}, v_s\} \subseteq N(u_s)$ and $u_{s+1}, v_s \in J$.

2.
$$x = v_t$$
.

Let $t \equiv 0 \pmod{5}$. If $k \equiv 2 \pmod{5}$, then $\{u_t, v_{t-2}\} \subseteq N(v_t)$ and $u_t, v_{t-2} \in J$. If $k \equiv 3 \pmod{5}$, then $\{u_t, v_{t+3}\} \subseteq N(v_t)$ and $u_t, v_{t+3} \in J$. If $t \equiv 1 \pmod{5}$, then $\{v_{t-k}, v_{t+k}\} \subseteq N(v_t)$ and $v_{t-k}, v_{t+k} \in J$, $k \equiv j \pmod{5}$, j = 2, 3. Let $t \equiv 2 \pmod{5}$. If $k \equiv 2 \pmod{5}$, then $\{u_t, v_{t+2}\} \subseteq N(v_t)$ and $u_t, v_{t+2} \in J$. If $k \equiv 3 \pmod{5}$, then $\{u_t, v_{t-3}\} \subseteq N(v_t)$ and $u_t, v_{t+2} \in J$. If $k \equiv 3 \pmod{5}$, then $\{u_t, v_{t-3}\} \subseteq N(v_t)$ and $u_t, v_{t-3} \in J$.

Summing up all the above cases we obtain that every vertex $x \in V(P(n,k)) \setminus J$ is 2-dominated by *J*. Hence, *J* is a (2-*d*)-kernel of P(n,k).

Conversely, let $n \ge 5$, $k < \frac{n}{2}$, $i \in \{0, 1, ..., n-1\}$ be integers and let J be a (2-d)-kernel of P(n,k). If $u_i, u_{i+1}, u_{i+2} \notin J$, then the vertex u_{i+1} is not 2-dominated by J. Thus, each connected component of the graph $\left\langle \bigcup_{i=0}^{n-1} u_i \right\rangle_{P(n,k)} \setminus J$ is isomorphic to either P_1 or P_2 . We will show that in the graph P(n,k) having a (2-d)-kernel, the configurations of these paths P_1 , P_2 on the outer cycle, which are shown in the Figure 2 are forbidden.

Figure 2. Forbidden configurations of the paths P_1 , P_2 for the graph P(n,k) with the (2-*d*)-kernel.

Let us consider the following cases.

1. First, we will prove that the configuration of the paths P_1 , P_2 shown on the left side of the Figure 2 is forbidden. Suppose that u_i , u_{i+3} , $u_{i+6} \in J$ for some *i*, as in Figure 3. Then,

 $v_{i+1}, v_{i+2}, v_{i+4}, v_{i+5} \in J$; otherwise, vertices $u_{i+1}, u_{i+2}, u_{i+4}, u_{i+5}$ are not 2-dominated by *J*. Therefore, for every *k* vertices $v_{i+1+k}, v_{i+2+k}, v_{i+4+k}, v_{i+5+k} \notin J$.

$$\underbrace{u_{i} \ u_{i+1} \ u_{i+2} \ u_{i+3} \ u_{i+4} \ u_{i+5} \ u_{i+6}}_{v_{i} \ v_{i+1} \ v_{i+2} \ v_{i+3} \ v_{i+4} \ v_{i+5} \ v_{i+6}} \qquad \underbrace{u_{i+k} \ u_{i+1+k} \ u_{i+2+k} \ u_{i+3+k} \ u_{i+4+k} \ u_{i+5+k} \ u_{i+6+k}}_{v_{i+6+k} \ v_{i+1+k} \ v_{i+2+k} \ v_{i+3+k} \ v_{i+4+k} \ v_{i+5+k} \ v_{i+6+k}}$$

Figure 3. The case when $u_i, u_{i+3}, u_{i+6} \in J$.

We have the next two possibilities.

1.1. $v_{i+3+k} \notin J$ for some *i* (see Figure 4).

Since $v_{i+3+k} \notin J$, the vertex $u_{i+3+k} \in J$ and $u_{i+2+k}, u_{i+4+k} \notin J$. Then $v_{i+2+2k}, v_{i+3+2k}, v_{i+4+2k} \in J$. This means that $u_{i+2+2k}, u_{i+3+2k}, u_{i+4+2k} \notin J$. Hence, the vertex u_{i+3+2k} is not 2-dominated by J, a contradiction.

Figure 4. The case when $u_i, u_{i+3}, u_{i+6} \in J$ (the first subcase).

1.2. $v_{i+3+k} \in J$ for some *i* (see Figure 5).

Then, $u_{i+3+k} \notin J$ and $u_{i+2+k}, u_{i+4+k} \in J$; otherwise, they are not 2-dominated by *J*. Because *J* is an independent set, $u_{i+1+k}, u_{i+5+k} \notin J$. Moreover, $u_{i+k}, u_{i+6+k} \in J$ to 2-dominate u_{i+1+k}, u_{i+5+k} . Hence, $v_{i+k}, v_{i+6+k} \notin J$. To 2-dominate v_{i+1+k}, v_{i+5+k} , we must have $v_{i+1+2k}, v_{i+5+2k} \in J$. Moreover, $u_{i+1+2k}, u_{i+5+2k} \notin J$. Since v_{i+k}, v_{i+6+k} have exactly one neighbour in *J*, vertices $v_{i+2k}, v_{i+6+2k} \in J$ and $u_{i+2k}, u_{i+6+2k} \notin J$. Next, $u_{i+2+2k}, u_{i+4+2k} \in J$ to 2-dominate u_{i+1+2k}, u_{i+5+2k} and $v_{i+2+2k}, v_{i+4+2k}, u_{i+3+2k} \notin J$. Thus, $v_{i+2+3k}, v_{i+3+3k}, v_{i+4+3k} \in J$ to 2-dominate $v_{i+2+2k}, v_{i+3+2k}, v_{i+4+2k}$. Therefore, $u_{i+2+3k}, u_{i+3+3k}, u_{i+4+3k} \notin J$. This means that u_{i+3+3k} is not 2-dominated, a contradiction.

Figure 5. The case when $u_i, u_{i+3}, u_{i+6} \in J$ (the second subcase).

Hence, for each *n* and *k*, it is not possible that the vertices u_i, u_{i+3}, u_{i+6} belong to a (2-*d*)-kernel of P(n,k).

2. Now, we will prove that the configuration of the paths P_1 , P_2 shown on the right side of the Figure 2 is forbidden. Suppose that $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$ for some *i*, as in Figure 6. Then, v_{i+5}, v_{i+6} , which causes $v_i, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}, v_{i+5}, v_{i+6}, v_{i+7} \notin J$.

Figure 6. The case when $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$.

We consider four subcases.

2.1. $v_{i+1}, v_{i+3} \notin J$ for some *i* (see Figure 7).

Then, $v_{i+1-k}, v_{i+3-k}, v_{i+1+k}, v_{i+3+k} \in J$. Since v_{i+2} must be 2-dominated, so $v_{i+2-k} \in J$ or $v_{i+2+k} \in J$. Without loss of generality, assume that $v_{i+2+k} \in J$. Thus, $u_{i+1+k}, u_{i+2+k}, u_{i+3+k} \notin J$. Hence, the vertex u_{i+2+k} is not 2-dominated, a contradiction.

Figure 7. The case when $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$ (the first subcase).

2.2. $v_{i+1} \notin J$ and $v_{i+3} \in J$ for some *i* (see Figure 8).

Then, v_{i+3+k} , v_{i+5+k} , $v_{i+6+k} \notin J$. Since v_{i+7} must be 2-dominated, we obtain that $v_{i+7-k} \in J$ or $v_{i+7+k} \in J$. Without loss of generality, assume that $v_{i+7+k} \in J$. Thus, $u_{i+7+k} \notin J$ and $u_{i+6+k} \in J$. Because J is an independent set and $u_{i+6+k} \in J$, $u_{i+5+k} \notin J$. Therefore, $u_{i+4+k} \in J$, which causes u_{i+3+k} , $v_{i+4+k} \notin J$. Moreover, v_{i+3+2k} , v_{i+4+2k} , $v_{i+5+2k} \in J$, and finally u_{i+3+2k} , u_{i+4+2k} , $u_{i+5+2k} \notin J$. Hence, the vertex u_{i+4+2k} is not 2-dominated, a contradiction.

Figure 8. The case when $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$ (the second subcase).

2.3. $v_{i+1} \in J$ and $v_{i+3} \notin J$ for some *i* (see Figure 9).

Then, $v_{i+3+k} \in J$ and v_{i+1+k} , v_{i+5+k} , v_{i+6+k} , $u_{i+3+k} \notin J$. Since v_{i+4} must be 2-dominated, $v_{i+4-k} \in J$ or $v_{i+4+k} \in J$. Without loss of generality, assume that $v_{i+4+k} \in J$. Thus, $u_{i+4+k} \notin J$. Moreover, u_{i+2+k} , $u_{i+5+k} \in J$, which causes u_{i+1+k} , u_{i+6+k} , $v_{i+2+k} \notin J$. To 2-dominate u_{i+1+k} , we must have $u_{i+k} \in J$. Then, $v_{i+k} \notin J$ and v_{i+2k} , v_{i+1+2k} , $v_{i+2+2k} \notin J$. From the independence of the set J, we get that u_{i+2k} , u_{i+1+2k} , $u_{i+2+2k} \notin J$. Hence, the vertex u_{i+1+2k} is not 2-dominated, a contradiction.

Figure 9. The case when $u_i, u_{i+2}, u_{i+4}, u_{i+7} \in J$ (the third subcase).

2.4. $v_{i+1}, v_{i+3} \in J$ for some *i*.

Proving analogously as in subcase 2.3., we obtain a contradiction with the assumption that J is a (2-d)-kernel.

Therefore, for each *n* and *k*, it is not possible that the vertices u_i , u_{i+2} , u_{i+4} , u_{i+7} belong to a (2-*d*)-kernel of P(n,k).

Hence, for the graph with the (2-d)-kernel, the configurations of P_1 , P_2 shown in the Figure 10 are the only ones that may be possible. Now, we will show that they are indeed possible.

Figure 10. Possible configurations of the paths P_1 , P_2 for the graph P(n,k) with the (2-*d*)-kernel.

3. Suppose that $u_i, u_{i+2}, u_{i+4} \in J$ for some *i*, as in Figure 11. Then, $u_{i+1}, u_{i+3}, v_i, v_{i+2}, v_{i+4} \notin J$.

Figure 11. The case when $u_i, u_{i+2}, u_{i+4} \in J$.

We consider four subcases.

3.1. $v_{i+1}, v_{i+3} \notin J$ for some *i* (see Figure 12).

Since v_{i+2} must be 2-dominated, we obtain that $v_{i+2+k} \in J$ or $v_{i+2-k} \in J$. Without loss of generality, assume that $v_{i+2+k} \in J$. Moreover, v_{i+1+k} , $v_{i+3+k} \in J$ and u_{i+1+k} , u_{i+2+k} , $u_{i+3+k} \notin J$. Hence, the vertex u_{i+2+k} is not 2-dominated, a contradiction.

Figure 12. The case when $u_i, u_{i+2}, u_{i+4} \in J$ (the first subcase).

3.2. $v_{i+1} \notin J$ and $v_{i+3} \in J$ for some *i* (see Figure 13).

Then, $v_{i+1+k} \in J$ and $v_{i+3+k} \notin J$. Since v_{i+2} must be 2-dominated, $v_{i+2+k} \in J$ or $v_{i+2-k} \in J$. Without loss of generality, assume that $v_{i+2+k} \in J$. Thus, $u_{i+1+k}, u_{i+2+k} \notin J$ and $u_{i+k}, u_{i+3+k} \in J$, which causes $v_{i+k}, u_{i+4+k} \notin J$ and $v_{i+4+k} \in J$. Moreover, $v_{i+1+2k}, v_{i+2+2k}, v_{i+4+2k} \notin J$, $v_{i+2k} \notin J$, $u_{i+2k} \notin J$, $u_{i+1+2k} \notin J$, $u_{i+2+2k} \notin J$, $u_{i+3+2k} \notin J$ and $u_{i+4+2k}, v_{i+3+2k} \notin J$. Finally, $v_{i+2+3k}, v_{i+3+3k}, v_{i+4+3k} \notin J$ and $u_{i+2+3k}, u_{i+3+3k}, u_{i+4+3k} \notin J$. Hence, the vertex u_{i+3+3k} is not 2-dominated, a contradiction.

Figure 13. The case when $u_i, u_{i+2}, u_{i+4} \in J$ (the second subcase).

3.3. $v_{i+1} \in J$ and $v_{i+3} \notin J$ for some *i*.

Proving analogously as in subcase 3.2., we obtain a contradiction with the assumption that J is a (2-d)-kernel.

3.4. $v_{i+1}, v_{i+3} \in J$ for some *i* (see Figure 14).

Then, v_{i+1+k} , $v_{i+3+k} \notin J$. First, we will show that v_{i+k} and v_{i-k} must belong to a (2-*d*)kernel *J*. Suppose on contrary that $v_{i+k} \notin J$. Since v_{i+k} must be 2-dominated, $u_{i+k} \in J$. Thus, $u_{i+1+k} \notin J$ and $u_{i+2+k} \in J$. Moreover, v_{i+2k} , v_{i+1+2k} , $v_{i+2+2k} \in J$ and u_{i+2k} , u_{i+1+2k} , $u_{i+2+2k} \in J$. Hence, the vertex u_{i+1+2k} is not 2-dominated, a contradiction.

Figure 14. The case when $u_i, u_{i+2}, u_{i+4} \in J$ (the fourth subcase).

This means that $v_{i+k}, v_{i-k} \in J$ and also $v_{i+2+k}, v_{i+4+k}, u_{i+1+k}, u_{i+3+k}$ belong to a (2-*d*)-kernel (see Figure 15).

Figure 15. The case when $u_i, u_{i+2}, u_{i+4} \in J$ implies that $v_{i+k}, v_{i+2+k}, v_{i+4+k}, u_{i+1+k}, u_{i+3+k} \in J$.

Hence, *n* must be even, and from the definition of P(n,k), we conclude that *k* must be odd, which proves (i).

4. Suppose that $u_i, u_{i+2}, u_{i+5} \in J$ for some *i*. Then, $u_{i+1}, u_{i+3}, u_{i+4}, v_i, v_{i+2}, v_{i+5} \notin J$. Since u_{i+3}, u_{i+4} must be 2-dominated, $v_{i+3}, v_{i+4} \in J$. First, we prove that $v_{i+1} \notin J$. Suppose on contrary that $v_{i+1} \in J$, as in Figure 16. Then, $v_{i+1+k}, v_{i+3+k}, v_{i+4+k} \notin J$. Since v_i must be 2-dominated, $v_{i-k} \in J$ or $v_{i+k} \in J$. Without loss of generality, assume that $v_{i+k} \in J$. Thus, $u_{i+k} \notin J$, $u_{i+1+k} \in J$ and $u_{i+2+k} \notin J$. Moreover, $u_{i+3+k} \in J$, $u_{i+4+k} \notin J$, $u_{i+5+k} \notin J$, and $v_{i+2+k} \in J$. Proving analogously as in subcase 3.3., we obtain a contradiction with the assumption that J is a (2-d)-kernel.

Figure 16. The case when $u_i, u_{i+2}, u_{i+5}, v_{i+1} \in J$.

Hence, $v_{i+1} \notin J$ (see Figure 17). Moreover, $v_{i+1+k} \in J$ and u_{i+1+k} , v_{i+3+k} , $v_{i+4+k} \notin J$. We consider two subcases.

Figure 17. The case when $u_i, u_{i+2}, u_{i+5} \in J$, and $v_{i+1} \notin J$.

4.1. $v_{i+2+k} \notin J$ for some *i* (see Figure 18).

Then, $u_{i+2+k} \in J$, $u_{i+3+k} \notin J$, $u_{i+4+k} \in J$, $u_{i+5+k} \notin J$, and $v_{5+i+k} \in J$. Moreover, $v_{i+k} \in J$ and $u_{i+k} \notin J$; otherwise, we obtain the same configuration as in subcase 3.3.

Figure 18. The case when $u_i, u_{i+2}, u_{i+5} \in J$ (the first subcase).

Hence, *n* must be divisible by 5, and from the definition of P(n,k), we conclude that $k \equiv 2 \pmod{5}$, which proves (ii).

4.2. $v_{i+2+k} \in J$ for some *i* (see Figure 19).

Then, $u_{i+2+k} \notin J$, u_{i+k} , $u_{i+3+k} \in J$ and v_{i+k} , $u_{i+4+k} \notin J$. Moreover, $u_{i+5+k} \in J$ and $v_{i+5+k} \notin J$

Figure 19. The case when $u_i, u_{i+2}, u_{i+5} \in J$ (the second subcase).

Hence, *n* must be divisible by 5, and from the definition of P(n,k), we conclude that $k \equiv 3 \pmod{5}$, which proves (iii), which ends the proof. \Box

Basing on the proof of Theorem 1, the following corollaries are obtained. They concern the number of (2-d)-kernels in the generalized Petersen graph as well as the lower and upper (2-d)-kernel numbers. By a rotation of configurations shown on Figure 10, condition (i) of Theorem 1 gives two (2-d)-kernels in generalized Petersen graph and conditions (ii) and (iii) give five (2-d)-kernels. Therefore, if *n* and *k* satisfy more than one of these conditions, we obtain more (2-d)-kernels. Moreover, the proof of the Theorem 1 presents the constructions of the (2-d)-kernels in the generalized Petersen graph P(n, k). Figure 20 shows the smallest and the largest (2-d)-kernel in the graph P(20,7).

Figure 20. The largest (left side) and the smallest (right side) (2-d)-kernel in the graph P(20,7).

Corollary 1. Let $n \ge 3$, $k < \frac{n}{2}$ be integers. Then,

$$\sigma(P(n,k)) = \begin{cases} 7 & \text{for } n \equiv 0 \pmod{10} \text{ and } k \equiv a \pmod{10}, a = 3, 7 \\ 5 & \text{for } n \equiv 5 \pmod{10} \text{ and } k \equiv a \pmod{5}, a = 2, 3 \text{ or} \\ \text{for } n \equiv 0 \pmod{10} \text{ and } k \equiv a \pmod{10}, a = 2, 8 \\ 2 & \text{for } n \equiv 0 \pmod{10} \text{ and } k \equiv a \pmod{10}, a = 1, 5, 9 \text{ or} \\ \text{for even } n, n \not\equiv 0 \pmod{10} \text{ and } dk. \end{cases}$$

Corollary 2. Let $n \ge 3$, $k < \frac{n}{2}$ be integers. If $n \equiv 0 \pmod{10}$ and $k \equiv a \pmod{10}$, a = 3, 7, then

$$\gamma_{(2-d)}(P(n,k)) = \frac{4}{5}n \text{ and } \Gamma_{(2-d)}(P(n,k)) = n.$$

Corollary 3. *Let* $n \ge 3$, $k < \frac{n}{2}$ *be integers. If* $n \equiv 5 \pmod{10}$ *and* $k \equiv a \pmod{5}$, a = 2, 3 *or* $n \equiv 0 \pmod{10}$ *and* $k \equiv a \pmod{10}$, a = 2, 8, *then*

$$\gamma_{(2-d)}(P(n,k)) = \Gamma_{(2-d)}(P(n,k)) = \frac{4}{5}n.$$

Corollary 4. Let $n \ge 3$, $k < \frac{n}{2}$ be integers. If $n \equiv 0 \pmod{10}$ and $k \equiv a \pmod{10}$, a = 1, 5, 9 or n is even, $n \not\equiv 0 \pmod{10}$ and k is odd, then

$$\gamma_{(2-d)}(P(n,k)) = \Gamma_{(2-d)}(P(n,k)) = n.$$

The above corollaries characterize all possible graphs P(n, k), which have the (2-*d*)-kernel.

2.2. The Second Generalization of the Petersen Graph

Now, we consider another generalization of the Petersen graph. Let $n \ge 5$ be an integer. Let C_n be a cycle and $\overline{C_n}$ its complement such that $V(C_n) = \{x_1, x_2, ..., x_n\}$, $V(\overline{C_n}) = \{x_1^c, x_2^c, ..., x_n^c\}$ with the numbering of vertices in the natural order. Let G(n) be the graph such that $V(G(n)) = V(C_n) \cup V(\overline{C_n})$ and $E(G(n)) = E(C_n) \cup E(\overline{C_n}) \cup \{x_i x_i^c; i \in \{1, 2, ..., n\}\}$. Figure 21 shows an example of a (2-d)-kernel in G(13). It is easy to check that if n = 5, then G(5) is isomorphic to the Petersen graph.

Figure 21. An example of a (2-d)-kernel in G(13).

The next Theorem shows a complete characterization of graphs G(n) with the (2-d)-kernel.

Theorem 2. Let $n \ge 5$ be integer. The graph G(n) has a (2-d)-kernel if and only if n is odd.

Proof. Let $n \ge 5$ be odd. We will show that $J = \{x_2^c, x_3^c, x_1, x_4, x_6, \dots, x_{n-1}\}$ is the (2-*d*)-kernel of the graph G(n). The independence of *J* is obvious. It is sufficient to show that *J*

is a 2-dominating set. By the definition of the graph G(n), we can assume that $x_{n+1} = x_1$. Suppose that $y \in V(G(n)) \setminus J$. Hence, $y \in V(C_n)$ or $y \in V(\overline{C_n})$. Let $y \in V(C_n)$. Thus $y = x_k, k \in \{2, 3, 5, ..., n\}$. If $x_k^c \notin J$, then there exist vertices $x_{k-1}, x_{k+1} \in J$ adjacent to x_k . If $x_k^c \in J$, then k = 2 or k = 3. For k = 2, the vertex x_2 is adjacent to $x_1, x_2^c \in J$. Moreover, if k = 3, then the vertex x_3 is adjacent to $x_4, x_3^c \in J$. Hence, every vertex from the set $V(C_n)$ is 2-dominated by the set J. Let now $y \in V(\overline{C_n})$. Thus $y = x_k^c, k \in \{1, 4, 5, ..., n\}$. Then, the vertex $x_k^c, k \in \{5, 6, ..., n\}$ is adjacent to $x_2^c, x_3^c \in J$. If k = 1, then $x_1^c x_1, x_1^c x_3^c \in E(G(n))$. Moreover, for k = 4 the vertex x_4^c is adjacent to x_4, x_2^c . Therefore, vertices from the set $V(\overline{C_n})$ are 2-dominated by J and hence J is a (2-d)-kernel of G(n).

Conversely, suppose that a graph G(n) has a (2-d)-kernel J. We will show that n is odd. By the definition of the graph G(n), we obtain that $J \cap V(\overline{C_n}) \neq \emptyset$. Otherwise, vertices from the set $V(\overline{C_n})$ are not 2-dominated by the set J. Let $x_1^c \in J$. Then either $x_2^c \in J$ or $x_n^c \in J$. Otherwise, x_2^c or x_n^c is not 2-dominated. Hence, $|J \cap V(\overline{C_n})| = 2$. Without loss of generality assume that $x_1^c, x_2^c \in J$. This means that $x_i^c, i \in \{4, 5, \ldots, n-1\}$ is 2-dominated by J and x_3^c, x_n^c are dominated by J. Let $J^* = J \setminus \{x_1^c, x_2^c\}$. Then, $J^* \subset V(C)$. Since J is the (2-d)-kernel, $x_3, x_n \in J^*$; otherwise, x_3^c, x_n^c are not 2-dominated by J. Therefore, the graph $\langle \{x_3, x_4, \ldots, x_n\} \rangle_{G(n)} \cong P_{n-2}$ must have a (2-d)-kernel to 2-dominate vertices from $V(C_n) \setminus J^*$. This means that n must be odd. Thus, $J^* = \{x_3, x_5, \ldots, x_n\}$, which ends the proof. \Box

Finally, it turns out that if a graph G(n) has (2-d)-kernel, then the number of (2-d)-kernels depends linearly on the number of vertices. Moreover, each (2-d)-kernel of G(n) has the same cardinality.

Corollary 5. If $n \ge 5$ is odd, then $\sigma(G(n)) = n$ and

$$\gamma_{(2-d)}(G(n)) = \Gamma_{(2-d)}(G(n)) = \left\lfloor \frac{n}{2} \right\rfloor + 2.$$

Proof. Let $n \ge 5$ be odd. From the construction of a (2-d)-kernel described in the proof of Theorem 2, we conclude that exactly two not adjacent vertices from the set $V(\overline{C_n}) \subset V(G(n))$ belong to a (2-d)-kernel. The selection of these two vertices will determine the (2-d)-kernel in G(n). Since two not adjacent vertices can be chosen on n ways, $\sigma(G(n)) = n$. Moreover, from the construction of (2-d)-kernels in G(n), it follows that all of them have the same cardinality. Hence, $\gamma_{(2-d)}(G(n)) = \Gamma_{(2-d)}(G(n)) = \lfloor \frac{n}{2} \rfloor + 2$, which ends the proof. \Box

3. Concluding Remarks

In this paper, we considered two different generalizations of the Petersen graph, and we discussed the problem of the existence of (2-d)-kernels in these graphs. In particular, we determined the number of (2-d)-kernels in these graphs and their lower and upper (2-d)-kernel number. The generalized Petersen graphs considered in this paper are special cases of *I*-graphs (see, for example, [35]). The *I*-graph I(n, j, k) is a graph with a vertex set $V(I(n, j, k)) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}$ and an edge set $E(I(n, j, k)) = \{u_i u_{i+j}, u_i v_i, v_i v_{i+k}; i \in \{1, 2, \ldots, n\}\}$, where subscripts are reduced modulo *n*. Because P(n, k) = I(n, 1, k), the results obtained could be a starting point to studying and counting (2-d)-kernels in *I*-graphs. It could also be interesting to investigate the number of (2-d)-kernels in other generalizations of generalized Petersen graphs. For more generalizations, see, for example, [36].

Author Contributions: Both authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Diestel, R. Graph Theory, 3rd ed.; Springer: New York, NY, USA, 2005.
- 2. Morgenstern, O.; Von Neumann, J. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944.
- 3. Berge, C. *Graphs and Hypergraphs;* North-Holland Pub. Co.: Amsterdam, The Netherlands, 1973.
- 4. Berge, C.; Duchet, P. Perfect graphs and kernels. Bull. Inst. Math. Acad. Sin. 1988, 16, 263–274.
- 5. Berge, C.; Duchet, P. Recent problems and results about kernels in directed graphs. Discrete Math. 1990, 86, 27–31. [CrossRef]
- 6. Galeana-Sánchez, H.; Hernández-Cruz, C. On the existence of (k, l)-kernels in infinite digraphs: A survey. *Discuss. Math. Graph Theory* **2014**, *34*, 431–466. [CrossRef]
- 7. Galeana-Sánchez, H.; Hernández-Cruz, C.; Arumugam, S. On the existence of (k, l)-kernels in digraphs with a given circumference. *AKCE Int. J. Graphs Comb.* 2013, 10, 15–28.
- 8. Kucharska, M. On (k, l)-kernel perfectness of special classes of digraphs. Discuss. Math. Graph Theory 2005, 25, 103–119. [CrossRef]
- 9. Włoch, I. On kernels by monochromatic paths in the corona of digraphs. *Open Math.* **2008**, *6*, 537–542. [CrossRef]
- 10. Bai, Y.; Fujita, S.; Zhang, S. Kernels by properly colored paths in arc-colored digraphs. *Discrete Math.* **2018**, *341*, 1523–1533. [CrossRef]
- 11. De la Maza, S.G.H.; Hernández-Cruz, C. On the complexity of the k-kernel problem on cyclically k-partite digraphs. *Theoret. Comput. Sci.* **2019**, 795, 9–19. [CrossRef]
- 12. Hedetniemi, S.M.; Hedetniemi, S.T.; Knisely, J.; Rall, D.F.; Haynes, T.W. Secondary domination in graphs. *AKCE Int. J. Graphs Comb.* **2008**, *5*, 103–115.
- 13. Szumny, W.; Włoch, A.; Włoch, I. On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs. *Discrete Math.* **2008**, *308*, 4616–4624. [CrossRef]
- 14. Włoch, I. On kernels by monochromatic paths in D-join. Ars Combin. 2011, 98, 215–224.
- 15. Bednarz, U.; Włoch, I. On strong (1;1;2)-kernels in graphs. Ars Combin. 2020, 152, 32–43.
- 16. Bednarz, U. Strong (1;1;2)-kernels in the corona of graphs and some realization problems. *Iran. J. Sci. Technol. Trans. A Sci.* **2020**, 44, 401–406. [CrossRef]
- 17. Bednarz, U.; Włoch, I. Fibonacci numbers in graphs with strong (1, 1, 2)-kernels. Bol. Soc. Mat. Mex. 2021, 27, 1–12. [CrossRef]

18. Michalski, A.; Włoch, I. On the existence and the number of independent (1,2)-dominating sets in the G-join of graphs. *Appl. Math. Comput.* **2020**, *377*, 125155. [CrossRef]

- 19. Fink, J.F.; Jacobson, M.S. *n*-domination in graphs. In *Graph Theory with Applications to Algorithms and Computer Science*; John Wiley & Sons, Inc.: New York, NY, USA, 1985; pp. 283–300.
- 20. Włoch, A. On 2-dominating kernels in graphs. Australas. J. Combin. 2012, 53, 273–284.
- 21. Bednarz, P.; Włoch, I. An algorithm determining (2-d)-kernels in trees. Util. Math. 2017, 102, 215–222.
- 22. Bednarz, P.; Włoch, I. On (2-d)-kernels in the cartesian product of graphs. *Ann. Univ. Mariae Curie-Skłodowska Sect. A* 2016, 70, 1–8. [CrossRef]
- 23. Bednarz, P.; Hernández-Cruz, C.; Włoch, I. On the existence and the number of (2-d)-kernels in graphs. *Ars Combin.* **2015**, *121*, 341–351.
- 24. Bednarz, P. On (2-d)-Kernels in the Tensor Product of Graphs. *Symmetry* **2021**, *13*, 230. [CrossRef]
- 25. Nagy, Z.L. On the Number of k-Dominating Independent Sets. J. Graph Theory 2017, 84, 566–580. [CrossRef]
- 26. Gerbner, D.; Keszegh, B.; Methuku, A.; Patkós, B.; Vizer, M. An improvement on the maximum number of *k*-Dominating Independent Sets. *J. Graph Theory* **2019**, *91*, 88–97. [CrossRef]
- 27. Nagy, Z.L. Generalizing Erdős, Moon and Moser's result—The number of k-dominating independent sets. *Electron. Notes Discrete Math.* **2017**, *61*, 909–915. [CrossRef]
- 28. Behzad, A.; Behzad, M.; Praeger, C.E. On the domination number of the generalized Petersen graphs. *Discrete Math.* **2009**, *308*, 603–610. [CrossRef]
- 29. Ebrahimi, B.J.; Jahanbakht, N.; Mahmoodian E.S. Vertex domination of generalized Petersen graphs. *Discrete Math.* **2009**, *309*, 4355–4361. [CrossRef]
- 30. Yan, H.; Kang, L.; Xu, G. The exact domination number of the generalized Petersen graphs. *Discrete Math.* 2009, 309, 2596–2607. [CrossRef]
- 31. Gabrovšek, B.; Peperko, A.; Žerovnik, J. Independent Rainbow Domination Numbers of Generalized Petersen Graphs P(n, 2) and P(n, 3). *Mathematics* **2020**, *8*, 996. [CrossRef]
- 32. Erveš, R.; Žerovnik, J. On 2-Rainbow Domination Number of Generalized Petersen Graphs P(5k, k). *Symmetry* **2021**, *13*, 809. [CrossRef]
- 33. Watkins, M.E. A theorem on Tait colorings with an application to the generalized Petersen graphs. *J. Combin. Theory* **1969**, *6*, 152–164. [CrossRef]
- 34. Alspach, B.; Liu, J. On the Hamilton connectivity of generalized Petersen graphs. Discrete Math. 2009, 309, 5461–5473. [CrossRef]
- 35. Boben, M.; Pisanski, T.; Žitnik, A. I-graphs and the corresponding configurations. J. Combin. Des. 2005, 13, 406–424. [CrossRef]
- 36. Saražin, M.L.; Pacco, W.; Previtali, A. Generalizing the generalized Petersen graphs. Discrete Math. 2007, 307, 534–543. [CrossRef]