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Abstract: Motivated by q-analogue theory and symmetric conic domain, we study here the q-version
of the Ruscheweyh differential operator by applying it to the starlike functions which are related
with the symmetric conic domain. The primary aim of this work is to first define and then study
a new class of holomorphic functions using the q-Ruscheweyh differential operator. A new class
k− STτ

q [C, D] of k-Janowski starlike functions associated with the symmetric conic domain, which
are defined by the generalized Ruscheweyh derivative operator in the open unit disk, is introduced.
The necessary and sufficient condition for a function to be in the class k− STτ

q [C, D] is established.
In addition, the coefficient bound, partial sums and radii of starlikeness for the functions from the
class of k-Janowski starlike functions related with symmetric conic domain are included.

Keywords: holomorphic functions; starlike functions; q-starlike functions; Ruscheweyh q-differential
operator; symmetric conic domain

1. Introduction

The wide range of applications of q-analysis has attracted the considerable attention of
researchers in this area, as can be seen in the current literature. The range of its applications
covers several categories of research in mathematics. Jackson [1,2] was the first mathemati-
cian to use the idea of q-calculus. He first proposed the well-known q-derivative and also
the q-integral in a composed manner. After that, since the early 1980s, geometrical specifi-
cations of q-analysis have been discussed and analyzed through investigations on quantum
groups. This investigation additionally proposes a connection between appropriate frame-
works and q-analysis. In [3–5], the q-version of the famous Baskakov Durrmeyer operator
was introduced, which relies on the q-beta function. Two more significant q-speculations of
complex operators are the q-Picard integral operator and the q-Gauss–Weierstrass integral
operator (see [6,7]). These operators were studied and analyzed in terms of their geometric
specifications for a few subclasses of holomorphic functions. Currently, many operators are
studied in terms of their q-analogues; see [8–10]. The q-symmetric differential operator and
its applications can be seen in [11–15]. The concept of the convolution of the standardized
holomorphic functions and q-versions of hypergeometric functions were utilized to define
these q-operators, and numerous amazing outcomes have been observed. This series of
transformations of differential as well as integral operators made this common in recent
research work, which has consequently opened a wide range of research in the space
of holomorphic functions. The class of k-Janowski starlike functions summed up by the
q-derivative operator, denoted by k − STq[C, D], was presented recently (see [16]). The
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Janowski functions and their related materials can be found in [17]. Special functions are
vital in various branches of applied sciences and mathematics. The geometric characteris-
tics of some extraordinary special functions were investigated by numerous researchers;
see [18–23].

After a careful study of the relevant literature, it was observed that the q-version of
the well-known and most cited differential operator, named the Ruscheweyh differential
operator, was introduced in [24]. However, this has not been studied for starlike func-
tions defined in the symmetric conic domain. This was the main motivation behind the
following Definition 4 and its related results. In this paper, our focus is the presentation of
some comparable outcomes for the standardized types of the k-Janowski starlike function
summed up by the q-Ruscheweyh derivative operator, which has vital applications in
different zones of mathematics. In this article, we focus primarily on the partial sums and
existence of the radius of the starlikeness of the k-Janowski starlike functions related to
the generalized q-Ruscheweyh derivative. Furthermore, our aim is also to give a sufficient
condition and coefficient bound for the class k− STτ

q [C, D]. The paper is organized into two
sections. After the brief review of the literature about the ongoing research, the remaining
part of this section is devoted to some essential definitions that are required for the proof
of our fundamental outcomes. The second section contains some preliminary outcomes,
which are important in giving a concrete base to our main theorems. The section contains
the sufficient condition and coefficient bound, followed by the ratios of partial sums of the
functions from the class k− STτ

q [C, D]. We now begin with a pair of terms.
Let Λ represent the class of functions having the form

h(z) = z +
∞

∑
n=2

anzn. (1)

which are holomorphic in U = {z : z ∈ C and |z| < 1}. Further, we represent the class S of
all functions in Λ which are univalent in U ; for details, see [25].

A function h(z) ∈ S is called starlike of order α if it satisfies

< zh
′
(z)

h(z)
> α (z ∈ U )

for α ∈ [0, 1). We represent by S∗(α) the subclass of S containing the functions which are
starlike of order α in U .

If h1 and h2 are holomorphic functions in U with w(0) = 0 and |w(z)| ≤ 1, ∀z ∈ U so
that h1(z) = h2(w(z)), then we say that h2 is subordinated by h1, denoted symbolically as
h1 ≺ h2. If h2 is univalent, then h1 ≺ h2 iff h1(0) = h2(0) and h1(U ) ⊆ h2(U ).

For two holomorphic functions,

h1(z) =
∞

∑
k=0

akzk and h2(z) =
∞

∑
k=0

bkzk (z ∈ U ),

the Hadamard product of h1(z) and h2(z) is defined as

h1(z) ∗ h2(z) =
∞

∑
k=0

akbkzk.

We give a few notations and the theory of q-calculus utilized as a part of this article;
see [1,2,10]. For q ∈ (0, 1) and n ∈ N, the q-hypothesis starts with the q-analogues of the
positive integers. The following expression

lim
q→1

1− qn

1− q
= n.
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gives the q-analogue of n, also known as the q-number of n; that is,

[n, q] =
1− qn

1− q
.

We include the q-factorial, which is defined by

[n, q]! =
{

[n, q][n− 1, q] · · · [1, q], n = 1, 2, · · · ,
1, n = 0.

The q-difference operator for h ∈ Λ is defined as

∂qh(z) =
h(qz)− h(z)

z(q− 1)
, (z ∈ U ).

For n ∈ N and z ∈ U , consider

∂qzn = [n, q]zn−1

and

∂q

{
∞

∑
n−1

anzn

}
=

∞

∑
n−1

[n, q]anzn−1.

Definition 1. For a function h(z) ∈ Λ, the q-analog of the Ruscheweyh differential operator is
defined as

ςτ
qh(z) = ϕ(q, τ + 1; z) ∗ h(z) = z +

∞

∑
n=2

ψn−1anzn, (z ∈ U and τ > −1) (2)

where

ϕ(q, τ + 1; z) = z +
∞

∑
n=2

ψn−1anzn,

and

ψn−1 =
Γq(τ + n)

[n− 1, q]!Γq(τ + 1)
=

[τ + 1, q]n−1
[n− 1, q]!

, (ψ0 = 1), (3)

where [τ + 1, q]n−1 is a Pochhammer symbol, which is defined as follows.

[τ + 1, q]n−1 =


1, n = 1,

[τ + 1, q][τ + 2, q][τ + 3, q][τ + 4, q] · · · [τ + n− 1, q], n = 2, 3, 4, · · · .

It is evident from (2) that

ς0
qh(z) = h(z) and ς1

qh(z) = z∂qh(z),

and

ςn
q h(z) =

z∂n
q
(
zn−1h(z)

)
[n, q]!

, (n ∈ N).

lim
q→1−

ϕ(q, τ + 1; z) =
z

(1− z)τ+1 ,

and
lim

q→1−
ςτ

qh(z) = h(z) ∗ z

(1− z)τ+1 .
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This reveals that, for q → 1−, the q-Ruscheweyh differential operator changes into
the Ruscheweyh differential operator Dδ(h(z)), see [26]. The following is an obvious
well-known derivation from (2).

z∂ςτ
qh(z) =

(
1 +

[τ, q]
qτ

)
ςτ+1

q h(z)− [τ, q]
qτ

ςτ
qh(z).

If q→ 1−, then it reduces to

z(ςτh(z))
′
= (1 + τ)ςτ+1h(z)− τςτh(z).

Definition 2. The function p(z) ∈ k− Pq[C, D], iff,

p(z) ≺ ((3− q) + C(1 + q)) p̃k(z) + ((3− q)− C(1 + q))
((3− q) + D(1 + q)) p̃k(z) + ((3− q)− D(1 + q))

, k ≥ 0,

where −1 ≤ D < C ≤ 1, k ≥ 0, q ∈ (0, 1) and

p̃k(z) =



1+z
1−z , k = 0,

1 + 2
π2

(
log 1+

√
z

1−
√

z

)2
, k = 1,

1 + 2
1−k2 sinh2[( 2

π cos−1 k
)

tan−1 h
√

z
]
, 0 < k < 1,

1 + 1
k2−1 sin

 π
2Q(s)

u(z)√
s∫

0

1√
1−x2
√

1−(sx)2 dx

+ 1
k2−1 , k > 1,

(4)

The function p̃k(z) gives the image of U as a conic domain which is symmetric about the real
axis. For more details, see [27,28]. If p̃k(z) = 1 + δkz + · · · , then it is shown in [29] that from
(4), one can have

δk =


8(cos−1 k)

2

π2(1−k2)
, 0 ≤ k < 1,

8
π2 , k = 1,

π2

4(k2−1)
√

s(1+s)Q2(s) , k > 1.

Geometrically, the values of the function p(z) ∈ k− P[C, D] belong to the q-symmetric conic
domain Ωk,q[C, D], −1 ≤ D < C ≤ 1, k ≥ 0 which is defined as

Ωk,q[C, D] =

{
g : <(λ) > k|λ− 1|, λ =

((q− 3) + D(1 + q))g(z) + ((3− q)− C(1 + q))
((3− q) + D(1 + q))g(z)− ((3− q) + C(1 + q))

}
.

Definition 3. The function h(z) ∈ Λ will be in the class k− STq[C, D], k ≥ 0,−1 ≤ D < C ≤ 1,
iff

<

 ((q− 3) + D(1 + q)) zDqh(z)
h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q)) zDqh(z)
h(z) − ((3− q) + C(1 + q))


> k

∣∣∣∣∣∣
((q− 3) + D(1 + q)) zDqh(z)

h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q)) zDqh(z)
h(z) − ((3− q) + C(1 + q))

− 1

∣∣∣∣∣∣
or equivalently

z∂qh(z)
h(z)

∈ k− Pq[C, D].

For more details of the above classes, we refer to [16]. It is noted that
0−STq[C, D] = S∗q [C, D], the class of q-starlike functions, was given by Srivastava et al. [19]
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and lim
q−→1−

(
k− STq[C, D]

)
= k− ST[C, D], the class of Janowski k-starlike functions, was

presented by Noor and Malik [18].
The detailed study of the above-mentioned classes motivated us to define the much

generalized class of functions with the q-Ruscheweyh differential operator related with
the symmetric conic domain defined by Janowski functions. This class is denoted by
k− STτ

q [C, D] and is defined as follows.

Definition 4. A function h ∈ Λ will be in the class k− STτ
q [C, D], k ≥ 0 , −1 ≤ D < C ≤ 1, iff

<

 ((q− 3) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) − ((3− q) + C(1 + q))


> k

∣∣∣∣∣∣∣
((q− 3) + D(1 + q))

z∂qςτ
q h(z)

ςτ
q h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) − ((3− q) + C(1 + q))
− 1

∣∣∣∣∣∣∣
Or equivalently,

z∂qςτ
qh(z)

ςτ
qh(z)

∈ k− P[C, D].

Lemma 1 ([30]). Let h(z) = 1 +
∞
∑

n=1
vnzn be subordinate to H(z) = 1 +

∞
∑

n=1
Vnzn. If H(z) is

univalent in U and H(U ) is convex, then

|vn| ≤ |V1|, n ≥ 1. (5)

2. Main Results

The following theorem gives a condition which is sufficient for functions to be in
k− STτ

q [C, D].

Theorem 1. A function h ∈ Λ and with the form (1) will belong to the class k − STτ
q [C, D],

k ≥ 0, 1 ≤ D < C ≤ 1, if it satisfies the condition

∞

∑
n=2

gn

(1 + q)|D− C| |an| < 1, (6)

where

gn = {2q(3− q)(k + 1)[n− 1, q] + |((3− q) + D(1 + q))[n, q]− ((3− q) + C(1 + q))|}ψn−1 (7)

with ψ, as defined by (3).

Proof. Let us assume (6) holds; then, it is enough to show that

k

∣∣∣∣∣∣∣
((q− 3) + D(1 + q))

z∂qςτ
q h(z)

ςτ
q h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) − ((3− q) + C(1 + q))
− 1

∣∣∣∣∣∣∣
−<

 ((q− 3) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) − ((3− q) + C(1 + q))
− 1

 < 1
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We assume for our convenience

k

∣∣∣∣∣∣∣
((q− 3) + D(1 + q))

z∂qςτ
q h(z)

ςτ
q h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) − ((3− q) + C(1 + q))
− 1

∣∣∣∣∣∣∣
−<

 ((q− 3) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) + ((3− q)− C(1 + q))

((3− q) + D(1 + q))
z∂qςτ

q h(z)
ςτ

q h(z) − ((3− q) + C(1 + q))
− 1



≤ (k + 1)

∣∣∣∣∣ ((q− 3) + D(1 + q))z∂qςτ
qh(z) + ((3− q)− C(1 + q))ςτ

qh(z)
((3− q) + D(1 + q))z∂qςτ

qh(z)− ((3− q) + C(1 + q))ςτ
qh(z)

− 1

∣∣∣∣∣
= 2(3− q)(k + 1)

∣∣∣∣∣ ςτ
qh(z)− z∂qςτ

qh(z)
((3− q) + D(1 + q))z∂qςτ

qh(z)− ((3− q) + C(1 + q))ςτ
qh(z)

∣∣∣∣∣
= 2(3− q)(k + 1)

∣∣∣∣∣∣∣∣∣
∑∞

n=2(1− [n, q])ψn−1anzn

z(D− C)(1 + q) + ∑∞
n=2

(
((3− q) + D(1 + q))[n, q]
−((3− q) + C(1 + q))

)
ψn−1anzn

∣∣∣∣∣∣∣∣∣
= 2(3− q)(k + 1)

∣∣∣∣∣∣∣∣∣
−q ∑∞

n=2[n− 1, q]ψn−1anzn

z(D− C)(1 + q) + ∑∞
n=2

(
((3− q) + D(1 + q))[n, q]
−((3− q) + C(1 + q))

)
ψn−1anzn

∣∣∣∣∣∣∣∣∣
≤ 2q(3− q)(k + 1)∑∞

n=2[n− 1, q]ψn−1|an|
(1 + q)|D− C| −∑∞

n=2|((3− q) + D(1 + q))[n, q]− ((3− q) + C(1 + q))|ψn−1|an|
.

=
2q(3− q)(k + 1)∑∞

n=2[n− 1, q]|an|
(1 + q)|D− C| 1

ψn−1
−∑∞

n=2|((3− q) + D(1 + q))[n, q]− ((3− q) + C(1 + q))||an|

The last expression is bounded above by 1 if

2q(3− q)(k + 1)
∞

∑
n=2

[n− 1, q]|an| < (1 + q)|D− C| 1
ψn−1

−
∞

∑
n=2
|((3− q) + D(1 + q))[n, q]− ((3− q) + C(1 + q))||an|,

which reduces to

∞

∑
n=2
{2q(3− q)(k + 1)[n− 1, q] + |((3− q) + D(1 + q))[n, q]− ((3− q) + C(1 + q))|}ψn−1|an|

< (1 + q)|D− C|.

and the proof is complete.

As a special case, taking τ = 0, the following result is obtained, which is already
proved in [16].
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Corollary 1. A function h ∈ Λ will be said to belong to the class k − STq[C, D], k ≥ 0,
−1 ≤ D < C ≤ 1 if it satisfies the condition

∞

∑
n=2
{2q(3− q)[n− 1, q](k + 1) + |((3− q) + D(1 + q))[n, q]− ((3− q) + C(1 + q))|}|an|

< (1 + q)|D− C|.

Theorem 2. Let h(z) ∈ k− STτ
q [C, D], k ≥ 0, −1 ≤ D < C ≤ 1 and is of the form (1), then for

n ≥ 2,

|an| ≤
n−2

∏
j=0

∣∣(C− D)δkψj − 2qD[j, q]ψj
∣∣

2q[j + 1, q]ψj+1
, (8)

where ψ is defined by (3).

Proof. By definition, for h(z) ∈ k− STτ
q [C, D], we have

z∂qςτ
qh(z)

ςτ
qh(z)

= p(z), (9)

where

p(z) ≺ ((3− q) + C(1 + q)) p̃k(z) + ((3− q)− C(1 + q))
((3− q) + D(1 + q)) p̃k(z) + ((3− q)− D(1 + q))

.

If p̃k(z) = 1 + δkz + ..., then

((3− q) + C(1 + q)) p̃k(z) + ((3− q)− C(1 + q))
((3− q) + D(1 + q)) p̃k(z) + ((3− q)− D(1 + q))

= 1 +
1
4
(C− D)(q + 1)δk +

1
4

[(
−1

4
Cq− 1

4
C +

1
4

Dq +
1
4

D
)
((D + 1)(1 + q) + 2− 2q)

]
δ2

k + .... (10)

Now, if p(z) = 1 +
∞
∑

n=1
pnzn, then by (5) and (10), we get

|pn| ≤
1
4
(C− D)(q + 1)|δk|, n ≥ 1. (11)

Now, from (9), we have

z∂qςτ
qh(z) = p(z)ςτ

qh(z).

Let p(z) = 1 +
∞
∑

n=1
pnzn

z +
∞

∑
n=2

[n, q]ψn−1anzn =

(
1 +

∞

∑
n=1

pnzn

)(
z +

∞

∑
n=2

ψn−1anzn

)
.

∞

∑
n=1

[n, q]ψn−1anzn =

(
1 +

∞

∑
n=1

pnzn

)(
∞

∑
n=1

ψn−1anzn

)
, p0 = 1.

This implies that

∞

∑
n=1

[n, q]ψn−1anzn =
∞

∑
n=1

ψn−1anzn +

(
∞

∑
n=1

pnzn

)(
∞

∑
n=1

ψn−1anzn

)
.
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By using the Cauchy product formula, we get

∞

∑
n=1

([n, q]− 1)ψn−1anzn =
∞

∑
n=1

n−1

∑
j=1

ψj−1aj pn−jzn.

Comparing the coefficients of zn, we have

([n− 1, q])qψn−1an =
n−1

∑
j=1

ψj−1aj pn−j,

which implies that

an =
1

[n− 1, q]qψn−1

n−1

∑
j=1

ψj−1aj pn−j.

Using (11), we have

|an| ≤
|δk|(C− D)(q + 1)

4[n− 1, q]qψn−1

n−1

∑
j=1

ψj−1
∣∣aj
∣∣. (12)

Now, we prove that

|δk|(C− D)(q + 1)
4[n− 1, q]qψn−1

n−1

∑
j=1

ψj−1
∣∣aj
∣∣ ≤ n−2

∏
j=0

∣∣(C− D)(q + 1)δkψj − 4Dq[j, q]ψj
∣∣

4q[j + 1, q]ψj+1
,

To proceed for this proof, one may use the induction method.
For n = 2, from (12), we get

|a2| ≤
|δk|(C− D)(q + 1)

4[1, q]qψ1

2−1

∑
j=1

ψj−1
∣∣aj
∣∣,

which reduces to

|a2| ≤
|δk|(C− D)(q + 1)

4[1, q]qψ1
, ψ0 = 1.

From (8)

|a2| ≤
(C− D)(q + 1)|δk|

4q[1, q]ψ1
.

For n = 3, from (12), we have

|a3| ≤
|δk|(C− D)(q + 1)

4[2, q]qψ2

2

∑
j=1

ψj−1
∣∣aj
∣∣

=
|δk|(C− D)(q + 1)

4[2, q]qψ2
(ψ0|a1|+ ψ1|a2|)

≤ |δk|(q + 1)(C− D)

4[2, q]qψ2

(
1 +

(q + 1)(C− D)|δk|
4q[1, q]

)
.
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From (8), we have

|a3| ≤
1

∏
j=0

∣∣(C− D)(q + 1)δkψj − 4Dq[j, q]ψj
∣∣

4q[j + 1, q]ψj+1

=
(C− D)(q + 1)|δk|

4q[1, q]ψ1

(
(C− D)(q + 1)|δk|ψ1 + 4q[1, q]ψ1

4q[2, q]ψ2

)
=
|δk|(q + 1)(C− D)

4[2, q]qψ2

(
1 +

(q + 1)(C− D)|δk|
4q[1, q]

)
.

Consider that the hypothesis is correct for n = m + 1. Then, from (12), one may have

|am| ≤
|δk|(C− D)(q + 1)
4[m− 1, q]qψm−1

m−1

∑
j=1

ψj−1
∣∣aj
∣∣.

From (8), we have

|am| ≤
m−2

∏
j=0

∣∣(C− D)(q + 1)δkψj − 4qD[j, q]ψj
∣∣

4q[j + 1, q]ψj+1
.

By induction hypothesis,

m−2

∏
j=0

∣∣(C− D)(q + 1)δkψj − 4qD[j, q]ψj
∣∣

4q[j + 1, q]ψj+1
≥ |δk|(C− D)(q + 1)

4[m− 1, q]qψm−1

m−1

∑
j=1

ψj−1
∣∣aj
∣∣,

Multiplying both sides by (C−D)(q+1)|δk |ψm−1+4q[m−1,q]ψm−1
4q[m,q]ψm

, we have

m−2

∏
j=0

∣∣(C− D)(q + 1)δkψj − 4qD[j, q]ψj
∣∣

4q[j + 1, q]ψj+1
≥

(
(C− D)(q + 1)|δk|ψm−1 + 4q[m− 1, q]ψm−1

4q[m, q]ψm

)

.

(
|δk|(C− D)(q + 1)
4[m− 1, q]qψm−1

m−1

∑
j=1

ψj−1
∣∣aj
∣∣)

=
|δk|(C− D)(q + 1)

4[m, q]qψm

(
ψm−1

|δk|(C− D)(q + 1)
4[m− 1, q]qψm−1

m−1

∑
j=1

ψj−1
∣∣aj
∣∣+ m−1

∑
j=1

ψj−1
∣∣aj
∣∣)

≥ |δk|(C− D)(q + 1)
4[m, q]qψm

(
ψm−1|am|+

m−1

∑
j=1

ψj−1
∣∣aj
∣∣)

=
|δk|(C− D)((q + 1))

4[m, q]qψm

m

∑
j=1

ψj−1
∣∣aj
∣∣.

That is,

|δk|(C− D)

2[m− 1, q]qψm−1

m−1

∑
j=1

ψj−1
∣∣aj
∣∣ ≤ m−2

∏
j=0

∣∣(C− D)δkψj − 2qD[j, q]ψj
∣∣

2q[j + 1, q]ψj+1
.

Thus, the result holds for n = m + 1. Consequently, by the induction principle, it is
proved that (8) holds for all n ≥ 2.

As a special case, taking τ = 0 gives the following already proved result (see [16]).



Symmetry 2021, 13, 1947 10 of 18

Corollary 2. Let the function h ∈ k− STq[C, D] be of the form (1), then

|an| ≤
n−2

∏
j=0

∣∣∣(C− D)(q + 1)δk − 4qD[j]q
∣∣∣

4q[j + 1]q
, (n ∈ N\{1}). (13)

3. Partial Sums

In this section, using the already proven results of Silverman [31] and Silvia [32] on
partial sums of holomorphic functions, we examine the ratio of a function with the form (1)
to its sequence of partial sums hn(z) = z + ∑n

j=2 ajzj when the function h(z) has coefficients
that are small enough to satisfy the inequality (6). We investigate sharp lower bounds for
h(z)

hn(z)
, h
′
(z)

h′n(z)
, hn(z)

h(z) and h
′
n(z)

h′ (z)
for the functions of the class k− STτ

q [C, D].

Theorem 3. If h(z) ∈ k− STτ
q [C, D], then

<
{

h(z)
hn(z)

}
≥ 1− ε

gn+1
, (14)

where gn+1 is defined by (7) and ε = (1 + q)|D− C|. The extremal function

h(z) = z +
ε

gn+1
zn+1. (15)

gives the sharp result.

Proof. Define a function w(z) as

w(z) =
gn+1

ε
.
[

h(z)
hn(z)

−
(

1− ε

gn+1

)]
=

gn+1

ε

h(z)
hn(z)

− gn+1

ε
+ 1,

which reduces to

w(z) =
gn+1

(
1 + ∑∞

j=2 ajzj−1
)

ε
(

1 + ∑n
j=2 ajzj−1

) − gn+1

ε
+ 1

=
1 + ∑n

j=2 ajzj−1 + gn+1
ε ∑∞

j=n+1 ajzj−1

1 + ∑n
j=2 ajzj−1 .

Using this, one may have∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤ gn+1
ε ∑∞

j=n+1
∣∣aj
∣∣

2− 2 ∑n
j=2
∣∣aj
∣∣− gn+1

ε ∑∞
j=n+1

∣∣aj
∣∣ .

Now ∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤ 1,

if
n

∑
j=2

∣∣aj
∣∣+ gn+1

ε

∞

∑
j=n+1

∣∣aj
∣∣ ≤ 1. (16)
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It would be sufficient to show that the left side of (16) has an upper bound ∑∞
j=2

gj
ε

∣∣aj
∣∣,

if
n

∑
j=2

∣∣aj
∣∣+ gn+1

ε

∞

∑
j=n+1

∣∣aj
∣∣ ≤ ∞

∑
j=2

gj

ε

∣∣aj
∣∣,

which leads to the following expression

n

∑
j=2

( gj − ε

ε

)∣∣aj
∣∣+ ∞

∑
j=n+1

( gj − gn+1

ε

)∣∣aj
∣∣ ≥ 0.

To justify the sharpness of the result, we see from the function given by (15) that for
z = re

iπ
n

h(z)
hn(z)

= 1 +
ε

gn+1
zn

= 1 +
ε

gn+1
rneiπ

= 1− εrn

gn+1

=
gn+1 − ε

gn+1
when r → 1.

The following results are due to certain values of parameters, as proved in [31].

Corollary 3. If h(z) ∈ 0− ST0
1− [1− 2α,−1] ≡ S∗(α), 0 ≤ α < 1, then

<
{

h(z)
hn(z)

}
≥ n

n− α + 1
.

This bound is sharp and the following function gives the sharp bound:

h(z) = z +
1− α

n− α + 1
zn+1. (17)

Now, setting α = 0 and n = 1, we get the following result.

Corollary 4. If h(z) ∈ 0− ST0
1− [1,−1] ≡ S∗, then

<
{

h(z)
z

}
≥ 1

2
.

This bound is sharp and the following function gives the sharp bound:

h(z) = z +
1
2

z2. (18)

Theorem 4. If h(z) ∈ k− STτ
q [C, D], then

<
{

hn(z)
h(z)

}
≥ gn+1

gn+1 + ε
, (19)

where gn+1 is defined by (7) and ε = (1 + q)|D− C|. The bound (19) is best possible for the
function, represented in (15).



Symmetry 2021, 13, 1947 12 of 18

Proof. Define a function w(z) as

w(z) =
gn+1 + ε

ε
.
[

hn(z)
h(z)

− gn+1

gn+1 + ε

]
=

(gn+1 + ε)hn(z)
εh(z)

− gn+1

ε
.

This implies that

w(z) =
(gn+1 + ε)

(
1 + ∑n

j=2 ajzj−1
)

ε
(

1 + ∑∞
j=2 ajzj−1

) − gn+1

ε

=
1 + ∑n

j=2 ajzj−1 − gn+1
ε ∑∞

j=n+1 ajzj−1

1 + ∑∞
j=2 ajzj−1 .

This leads us to the following:

w(z)− 1
w(z) + 1

=
−
(
1 + gn+1

ε

)
∑∞

j=n+1 ajzj−1

2 + 2 ∑n
j=2 ajzj−1 +

(
1− gn+1

ε

)
∑∞

j=n+1
∣∣aj
∣∣zj−1 ,

which implies that∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤
(
1 + gn+1

ε

)
∑∞

j=n+1
∣∣aj
∣∣

2− 2 ∑n
j=2
∣∣aj
∣∣− (1− gn+1

ε

)
∑∞

j=n+1
∣∣aj
∣∣ .

Now ∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤ 1,

if
n

∑
j=2

∣∣aj
∣∣+ ∞

∑
j=n+1

∣∣aj
∣∣ ≤ 1. (20)

It would be enough to show that the left side of (20) has the upper bound ∑∞
j=2

gj
ε

∣∣aj
∣∣,

if
n

∑
j=2

∣∣aj
∣∣+ ∞

∑
j=n+1

∣∣aj
∣∣ ≤ ∞

∑
j=2

gj

ε

∣∣aj
∣∣,

which leads to the following expression:

n

∑
j=2

( gj

ε
− 1
)∣∣aj

∣∣+ ∞

∑
j=n+1

( gj

ε
− 1
)∣∣aj

∣∣ ≥ 0

That is,
∞

∑
j=2

( gj

ε
− 1
)∣∣aj

∣∣ ≥ 0.

Finally, equality holds for function h(z), as presented in (15).

The following results are due to certain values of parameters, as proved in [31].

Corollary 5. If h(z) ∈ 0− ST0
1− [1− 2α,−1] ≡ S∗(α), 0 ≤ α < 1, then

<
{

hn(z)
h(z)

}
≥ n− α + 1

n− 2α + 2
.

This bound is sharp and the function defined by (17) gives the sharp bound.
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Now, setting n = 1 and α = 0, the following result is obtained.

Corollary 6. If h(z) ∈ 0− ST0
1− [1,−1] ≡ S∗, then

<
{

z
h(z)

}
≥ 2

3
.

This bound is sharp and the function defined by (18) gives the sharp bound.

h(z) = z +
1
2

z2.

Theorem 5. If h(z) ∈ k− STτ
q [C, D], then

<
{

h
′
(z)

h′n(z)

}
≥ 1− ε(n + 1)

gn+1
, (21)

where gn+1 is defined by (7) and ε = (1 + q)|D− C|. The bound (21) is best possible for function,
presented in (15).

Proof. Consider the function w(z) as follows.

w(z) =
gn+1

ε(n + 1)
.

[
h
′
(z)

h′n(z)
− gn+1 − ε(n + 1)

gn+1

]
,

which becomes

w(z) =
gn+1

(
1 + ∑∞

j=2 jajzj−1
)

ε(n + 1)
(

1 + ∑n
j=2 jajzj−1

) − (gn+1 − ε(n + 1))
ε(n + 1)

=
1 + ∑n

j=2 jajzj−1 + gn+1
ε(n+1) ∑∞

j=n+1 jajzj−1

1 + ∑n
j=2 jajzj−1 .

This leads us to

w(z)− 1
w(z) + 1

=

gn+1
ε(n+1) ∑∞

j=n+1 jajzj−1

2 + 2 ∑n
j=2 jajzj−1 + gn+1

ε(n+1) ∑∞
j=n+1 jajzj−1 ,

which reduces to ∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤ gn+1
ε(n+1) ∑∞

j=n+1 j
∣∣aj
∣∣

2− 2 ∑n
j=2 j

∣∣aj
∣∣− gn+1

ε(n+1) ∑∞
j=n+1 j

∣∣aj
∣∣ .

Now ∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤ 1,

if
n

∑
j=2

j
∣∣aj
∣∣+ gn+1

ε(n + 1)

∞

∑
j=n+1

j
∣∣aj
∣∣ ≤ 1. (22)

It would be enough to show that the left side of (22) has the upper bound ∑∞
j=2

gj
ε

∣∣aj
∣∣, if

n

∑
j=2

j
∣∣aj
∣∣+ gn+1

ε(n + 1)

∞

∑
j=n+1

j
∣∣aj
∣∣ ≤ ∞

∑
j=2

gj

ε

∣∣aj
∣∣,
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which leads to the following expression

n

∑
j=2

( gj

ε
− j
)∣∣aj

∣∣+ ∞

∑
j=n+1

( gj

ε
− jgn+1

ε(n + 1)

)∣∣aj
∣∣ ≥ 0.

The following results are due to certain values of parameters, as proved in [31].

Corollary 7. If h(z) ∈ 0− ST0
1− [1− 2α,−1] ≡ S∗(α), 0 ≤ α < 1, then

<
{

h′(z)
h′n(z)

}
≥ nα

n− α + 1
.

This bound is sharp and the function defined by (17) gives the sharp bound.

Now setting n = 1 and α = 0, the following result is obtained:

Corollary 8. If h(z) ∈ 0− ST0
1− [1,−1] ≡ S∗, then

<
{

h′(z)
}
≥ 0.

This bound is sharp and the function defined by (18) gives the sharp bound.

h(z) = z +
1
2

z2.

Theorem 6. If h(z) ∈ k− STτ
q [C, D], then

<
{

h
′
n(z)

h′(z)

}
≥ gn+1

ε(n + 1) + gn+1
, (23)

where gn+1 is defined by (7) and ε = (1 + q)|D− C|. The bound (23) is sharp for the function
presented by (15).

Proof. Consider w(z) as

w(z) =
ε(n + 1) + gn+1

ε(n + 1)
.

[
h
′
n(z)

h′(z)
− gn+1

ε(n + 1) + gn+1

]
,

which takes the form

w(z) =
(ε(n + 1) + gn+1)

(
1 + ∑n

j=2 jajzj−1
)

ε(n + 1)
(

1 + ∑∞
j=2 jajzj−1

) − gn+1

ε(n + 1)

=
1 + ∑n

j=2 jajzj−1 − gn+1
ε(n+1) ∑∞

j=n+1 jajzj−1(
1 + ∑∞

j=2 jajzj−1
) .

This leads us to

w(z)− 1
w(z) + 1

=
∑n

j=2 jajzj−1 −∑∞
j=2 jajzj−1 − gn+1

ε(n+1) ∑∞
j=n+1 jajzj−1

2 + ∑n
j=2 jajzj−1 + ∑∞

j=2 jajzj−1 − gn+1
ε(n+1) ∑∞

j=n+1 jajzj−1

=
−∑∞

j=n+1

(
1 + gn+1

ε(n+1)

)
jajzj−1

2 + 2 ∑n
j=2 jajzj−1 + ∑∞

j=n+1

(
1− gn+1

ε(n+1)

)
jajzj−1

.
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That is,

∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤
(

1 + gn+1
ε(n+1)

)
∑∞

j=n+1 j
∣∣aj
∣∣

2− 2 ∑n
j=2 j

∣∣aj
∣∣− (1− gn+1

ε(n+1)

)
∑∞

j=n+1 j
∣∣aj
∣∣ .

Now ∣∣∣∣w(z)− 1
w(z) + 1

∣∣∣∣ ≤ 1,

if
n

∑
j=2

j
∣∣aj
∣∣+ ∞

∑
j=n+1

j
∣∣aj
∣∣ ≤ 1. (24)

Since the left side of (24) would be bounded above by ∑∞
j=2

gj
ε

∣∣aj
∣∣, if

n

∑
j=2

j
∣∣aj
∣∣+ ∞

∑
j=n+1

j
∣∣aj
∣∣ ≤ ∞

∑
j=2

gj

ε

∣∣aj
∣∣,

which can be written as

n

∑
j=2

j
∣∣aj
∣∣+ ∞

∑
j=n+1

j
∣∣aj
∣∣ ≤ n

∑
j=2

gj

ε

∣∣aj
∣∣+ ∞

∑
j=n+1

gj

ε

∣∣aj
∣∣,

which leads to the following expression:

n

∑
j=2

( gj

ε
− j
)∣∣aj

∣∣+ ∞

∑
j=n+1

( gj

ε
− j
)∣∣aj

∣∣ ≥ 0.

That is,
∞

∑
j=2

( gj

ε
− j
)∣∣aj

∣∣ ≥ 0.

The following results are due to certain values of parameters, as proved in [31].

Corollary 9. If h(z) ∈ 0− ST0
1− [1− 2α,−1] ≡ S∗(α), 0 ≤ α < 1, then

<
{

h′n(z)
h′(z)

}
≥ n− α + 1

2n− 2α + 2− nα
.

This bound is sharp and the function defined by (17) gives the sharp bound.

Now, setting n = 1 and α = 0, the following result is obtained.

Corollary 10. If h(z) ∈ 0− ST0
1− [1,−1] ≡ S∗, then

<
{

1
h′(z)

}
≥ 1

2
.

This bound is sharp, and the function defined by (18) gives the sharp bound.

h(z) = z +
1
2

z2.

In the next theorems, we will find the radii of starlikeness of order α for the class
k− STτ

q [C, D].
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Theorem 7. Let h(z) ∈ k− STτ
q [C, D]. Then h(z) is a starlike of order α ∈ [0, 1) in |z| < r =

r1(α), where

r1(α) =

 gn(1− α)

ε
(

q[n− 1]q + (1− α)
)
 1

n−1

, n = 2.3, ...,

where gn is defined by (7) and ε = (1 + q)|D− C|.

Proof. Let h(z) ∈ k− STτ
q [C, D] be of the form (1). Then, from Theorem 16 gives

∞

∑
n=2

gnψn−1

ε
|an| < 1 (25)

where gn is defined by (7) and ε = (1 + q)|D− C|. For α ∈ [0, 1), we need to show that∣∣∣∣∣ z∂qςτ
qh(z)

ςτ
qh(z)

− 1

∣∣∣∣∣ < 1− α;

that is, ∣∣∣∣∣ z∂qςτ
qh(z)− ςτ

qh(z)
ςτ

qh(z)

∣∣∣∣∣ =

∣∣∣∣∣−∑∞
n=2 ψn−1q[n− 1]qanzn−1

1−∑∞
n=2 ψn−1anzn−1

∣∣∣∣∣
≤

∑∞
n=2 ψn−1q[n− 1]q|an||z|n−1

1−∑∞
n=2 ψn−1|an||z|n−1

< 1− α.

Thus
∣∣∣∣ z∂qςτ

q h(z)−ςτ
q h(z)

ςτ
q h(z)

∣∣∣∣ < 1− α, if

(
q[n− 1]q

1− α
+ 1

)
ψn−1|an||z|n−1 < 1. (26)

According to Theorem 16, (26) will be true if(
q[n− 1]q

1− α
+ 1

)
|z|n−1 <

gn

ε
. (27)

Now, solving (27) for |z|, we obtain

|z|n−1 <
gn(1− α)

ε
(

q[n− 1]q + (1− α)
) . (28)

Setting |z| = r(α) in (28), we get

r(α) =

 gn(1− α)

ε
(

q[n− 1]q + (1− α)
)
 1

n−1

as required.

4. Conclusions

We have studied the q-version of the famous Ruscheweyh differential operator and
applied it to define and study a new class k− STτ

q [C, D] of q-starlike functions related to
the symmetric conic domain. This class generalizes the class k− STq[C, D] which is defined
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in [16]. The study in [16] covers certain coefficient inequalities for q-starlike functions
including coefficient bounds and sufficient conditions, which are obtained as a special case
from the results, as proved above in this article. Using the same analogy of special cases,
the results related to partial sums for the functions of class k− STτ

q [C, D] also give similar
bounds for functions of class k− STq[C, D], which have not been investigated to date.
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