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Abstract: In this paper, we introduce an inner product on abelian groups and, after investigating the
basic properties of the inner product, we first show that each inner product group is a torsion-free
abelian normed group. We give examples of such groups and describe the norms induced by such
inner products. Among other results, Hilbert groups, midconvex and orthogonal subgroups are
presented, and a Riesz representation theorem on divisible Hilbert groups is proved.
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1. Introduction and Preliminaries

In 1936, Birkhoff and Kakutani independently proved a significant theorem: A Haus-
dorff group K is homeomorphic with a metric space, if and only if K satisfies the first countability
axiom. They also showed that this group has a right invariant metric. The theorem then
became known as Birkhoff–Kakutani’s metrization theorem for groups [1,2]. A metric
d on a semigroup K is called left-invariant if d(vx, vy) = d(x, y) and right-invariant if
d(xv, yv) = d(x, y) whenever v, x, y ∈ K. The metric d is said to be invariant if it is both
right and left-invariant. In 1950, V. L. Klee studied invariant metrics on groups to solve a
problem of Banach [3]. In this article, we focus on normed groups closely related to the
groups with invariant metrics and which recently played a role in the theory of topological
groups [4–7]. Some may use the term “length function” instead of “norm” for groups [8,9].
Recently, new approaches have been presented to the theory of normed groups, such as
probabilistic normed groups [10,11]; see [4] for a broader discussion about the history of
normed groups. We start with some preliminaries as required in the paper.

Definition 1 ([4]). Let K be a group with identity element e. A function ‖.‖ : K → R is called a
group-norm if the following holds for all v, s ∈ K:

1. ‖v‖ = ‖v−1‖ (Symmetry);
2. ‖vs‖ ≤ ‖v‖+ ‖s‖ (Triangle inequality);
3. ‖v‖ ≥ 0 and ‖v‖ = 0 i f f v = e (Positivity).

Then, K equipped with a group-norm ‖.‖ is said to be a normed group.

Definition 2 ([4]). Let (K, ‖.‖) be a normed group and s ∈ K and {sn} be a sequence in K. Then,

1. The sequence {sn} converges to s if for every ε ∈ R, ε > 0, there exists a positive integer n0

depending on ε such that ‖sns−1‖ < ε for every n > n0. We denote this by s = lim
n→∞

sn.

2. The sequence {sn} is called a Cauchy sequence if for every ε ∈ R, ε > 0 there exists a positive
integer n0 depending on ε such that ‖sns−1

m ‖ < ε for every n, m > n0.
3. The normed group (K, ‖.‖) is called complete if any Cauchy sequence in K converges to an

element of K; i.e., it has a limit in group K.
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4. A Banach group is a normed group (K, ‖.‖) that is complete with respect to the metric

d(s, q) = ‖sq−1‖, (s, q ∈ K).

Definition 3 ([12]). Let K be a group with identity element e. The order of an element v ∈ K is
the smallest n ∈ N such that vn = e. If no such n exists, v is said to have infinite order. An abelian
group K is said to be torsion-free if no element other than the identity e is of finite order.

Let (K, ‖.‖) be a normed group. For s ∈ K, the s-conjugate norm is defined by

‖v‖s := ‖svs−1‖.

Note that the group-norm is abelian iff the norm is preserved under conjugacy [13]. It
is obvious that each norm on an abelian group is an abelian norm. The following example
shows how non-trivial cases can be considered.

Example 1. Let K be the nonabelian dihedral group D3. A matrix representation of this group is
given by

r0 =

(
1 0
0 1

)
, s0 =

(
1 0
0 −1

)

r1 =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
, s1 =

(
− 1

2 −
√

3
2√

3
2

1
2

)

r2 =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
, s2 =

(
− 1

2 −
√

3
2

−
√

3
2

1
2 .

)
The relations

rirj = ri+j

risj = si+j

sirj = si−j

sisj = ri−j,

holds for integers i and j such that 0 ≤ i, j ≤ 2 and both i + j and i− j are computed modulo 3.
Note that r0 is the identity element, r−1

i = r3−i and s−1
i = si, for each 0 ≤ i ≤ 2.

Now let ‖.‖ : D3 → R be defined by

‖V‖ = 2− tr(V) (∀V ∈ D3),

where tr(V) denotes the trace of matrix V. Note that ‖.‖ is abelian because

‖rirj‖ = ‖ri+j‖ = ‖rj+i‖ = ‖rjri‖,

‖risj‖ = ‖si+j‖ = 2 = ‖sjri‖,

‖sisj‖ = ‖ri−j‖ =
{

0, i f i = j
3, i f i 6= j

= ‖sjsi‖.

This shows that there is an abelian norm on a non-abelian group.

Definition 4 ([14]). LetK be a group. An element v ∈ K is said to be divisible by n ∈ Z if v = xn

has a solution x in K. A group K is called infinitely divisible if each element in K is divisible by
every positive integer.

A group norm ‖.‖ is N-homogeneous if for each n ∈ N

‖vn‖ = n‖v‖ (∀v ∈ K).
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Remark 1. For a divisible element v in a N-homogeneous normed group K, let sn = v; then,
‖s‖ = 1

n‖v‖ and as sm = v
m
n , we have m

n ‖v‖ = ‖v
m
n ‖.

Definition 5 ([4]). Let (K, ‖.‖K) and (L, ‖.‖L) be normed groups. A map α : K → L is
called continuous if for every ε > 0 there exists such a δ > 0 that ‖vs−1‖K < δ implies
‖α(v)α(s)−1‖L < ε.

2. Inner Product Groups

In this section, we introduce the notion of the inner product on abelian groups. Here,
we derive and investigate in detail the induced norm properties such as Cauchy–Schwartz
inequality for groups and the Parallelogram law for inner product groups. Besides, we show
that every inner product group is a normed torsion-free group. Note that in this paper,
the identity element of groups is denoted by e.

Definition 6. A semi-inner product on a group K with identity element e is a function that
associates a real number 〈v, s〉 with each pair of elements v and s in K in such a way that the
following axioms are satisfied for all elements v, s and z in K:

1. 〈v, s〉 = 〈s−1, v−1〉 ( Symmetry);
2. 〈vs, z〉 = 〈v, z〉+ 〈s, z〉 (Distributivity);
3. 〈v, v〉 ≥ 0 ( Positivity ).

A group with a semi-inner product is called a semi-inner product group.

Note that combining (1) and (2) gives the equation

〈v, sz〉 = 〈v, s〉+ 〈v, z〉 (∀v, s, z ∈ K).

Example 2.

1. Let K =


1 a b

0 1 c
0 0 1

 : a, b, c ∈ Z

 denote the discrete Heisenberg group and let 〈., .〉 :

K → R be defined by

〈v, s〉 = (a + c)(á + ć) (∀v, s ∈ K)

where v =

1 a b
0 1 c
0 0 1

 and s =

1 á b́
0 1 ć
0 0 1

. Then (K, 〈., .〉) is a semi-inner prod-

uct group.
2. Let K = SO(2). Define the group SO(2) as 2× 2 matrices by

SO(2) =
{(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
: θ ∈ R

}
.

Note that the group operation is given by the matrix multiplication. Then, by

〈A(θ), A(θ́)〉 = θθ́,

where A(θ) and A(θ́) are elements in SO(2), this group is a semi-inner product group.
3. Let K be a finite abelian group with gcd(ord(v), ord(s)) = 1 for all v, s ∈ K, where ord(v)

denotes the order of an element v ∈ K. For elements v and s in K, with orders m and n,
respectively, if m and n are co-prime, then vs has order mn [15].
Then, for all v, s ∈ K,

〈v, s〉 = (log ord(v))(log ord(s)),

is a semi-inner product on K.
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It is obvious that 〈v, v〉 ≥ 0 and 〈v, s〉 = 〈s−1, v−1〉. The principle of distributivity remains
to be proven.

〈vs, z〉 = (log ord(vs))(log ord(z))

= (log(ord(v)ord(s)))(log ord(z))

= (log ord(v) + log ord(s))(log ord(z))

= (log ord(v))(log ord(z)) + (log ord(s))(log ord(z))

= 〈v, z〉+ 〈s, z〉.

Proposition 1. Let (K, 〈., .〉) be a semi-inner product group. Here are some elementary properties
of semi-inner product:

1. 〈v−1, s〉 = −〈v, s〉 (∀v, s ∈ K);
2. 〈v, s〉 = 〈s, v〉 (∀v, s ∈ K);
3. 〈vn, sm〉 = nm〈v, s〉 (∀v, s ∈ K and n, m ∈ N);
4. 〈v, e〉 = 0 (∀v ∈ K);

The definition of inner products usually comes immediately after defining semi-inner
products; i.e., if after three axioms of Definition 6, 〈v, v〉 = 0 implies v = e, we expect that
〈., .〉 is an inner product for group K. However, there is an additional condition for groups
with an inner product. In other words, we show that the definition of our inner product
imposes an abelian structure on groups.

Definition 7 ([12]). Let K be a group. The subgroup of K generated by the set {vsv−1s−1|v, s ∈
K} is called a commutator subgroup of K and denoted by Ḱ. The elements vsv−1s−1(v, s ∈ K)
are called commutators.

Theorem 1 ([12]). Group K is abelian if and only if Ḱ = {e}.

In fact, Ḱ provides an indicator for measuring differences between group K and
an abelian group. Now, let (K, 〈., .〉) be an semi-inner product group and suppose that
〈v, v〉 = 0 implies v = e. We show that Ḱ = {e}. Since for v, s ∈ G

〈vsv−1s−1, vsv−1s−1〉 = 〈v, vsv−1s−1〉+ 〈s, vsv−1s−1〉
+ 〈v−1, vsv−1s−1〉+ 〈s−1, vsv−1s−1〉
= 〈v, vsv−1s−1〉+ 〈s, vsv−1s−1〉
− 〈v, vsv−1s−1〉 − 〈s, vsv−1s−1〉
= 0.

Then, vsv−1s−1 = e. This shows that all commutators of K are equal to e. So, we
define inner products on abelian groups as follows:

Definition 8. Let (K, 〈., .〉) be a semi-inner product abelian group, in which for v ∈ K, 〈v, v〉 = 0
implies v = e. Then (K, 〈., .〉) is called an abelian inner product group.

In this paper, it is supposed that every inner product group is abelian. Therefore,
when we talk of an inner product group or a Hilbert group, we mean that there is an inner
product on an abelian group.

Example 3.

1. Let K = R∗+ denote the group of positive real numbers with multiplication as the group
operation. By

〈v, s〉 := (log v)(log s) (∀v, s ∈ K),
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K will be an inner product group.
2. Let K = 2z := {2a|a ∈ Z}, then K is an abelian group by real multiplication. By setting

〈2a, 2á〉 := aá,

K is an inner product group.
3. Let Q(

√
2) = {p + q

√
2|p, q ∈ Q}. Then, with a binary operation

(p + q
√

2) + ( ṕ + q́
√

2) = (p + ṕ) + (q + q́)
√

2,

and by setting an inner product

〈v, s〉 = vs (∀v, s ∈ K),

K = Q
√

2 is an inner product group.
4. Let Z× Z = {(a, b)|a, b ∈ Z}. Then, with a binary operation

(a, b) + (á, b́) = (a + á, b + b́)

and by setting an inner product

〈(a, b), (á, b́)〉 = (a +
√

2b)(á +
√

2b́)

K = Z× Z is an inner product group.

Proposition 2. Let (K, 〈., .〉) be an inner product group. For v, s ∈ K such that 〈v, z〉 = 〈s, z〉
for all z ∈ K, then v = s.

Proof. For v, s ∈ K, let 〈v, z〉 = 〈s, z〉 for all z ∈ K. Therefore, 〈vs−1, z〉 = 0 for all z ∈ K,
and we have 〈vs−1, vs−1〉 = 0. So, vs−1 = e, which means v = s.

The proofs of the next two lemmas are straightforward, and thus we omit them.

Lemma 1. Let K be an abelian group and (L, 〈., .〉L) be an inner product group. If v : K → L is
a group monomorphism, then

〈v, s〉K := 〈v(v), v(s)〉L (∀v, s ∈ K)

is also an inner product on K.

Lemma 2. Let (K, ◦, 〈., .〉K) and (L, •, 〈., .〉L) be inner product groups.
Then, the group (K×L, ∗, 〈., .〉K×L) with

(v, s) ∗ (v́, ś) = (v ◦ v́, s • ś)

is also an inner product group by

〈(v, s), (v́, ś)〉K×L := 〈v, v́〉K + 〈s, ś〉L.

Definition 9. Let (K, 〈., .〉) be an inner product group. We define the map ‖.‖ : K → R for all
v ∈ K by

‖v‖ =
√
〈v, v〉.

Theorem 2. Let (K, 〈., .〉) be an inner product group. Then,

|〈v, s〉| ≤ ‖v‖.‖s‖ (∀v, s ∈ K). (1)
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Proof. Let v and s be arbitrary in K. If s = e, then the inequality is true. For v, s 6= e and
n ∈ N, the positivity of the inner product shows that

0 ≤ 〈vs−n, vs−n〉 = 〈v, vs−n〉+ 〈s−n, vs−n〉
= 〈snv−1, v−1〉+ 〈snv−1, sn〉
= −2n〈v, s〉+ 〈v, v〉+ n2〈s, s〉.

Then,
〈s, s〉n2 − 2〈v, s〉n + 〈v, v〉 ≥ 0.

Let a = 〈s, s〉 , b = −2〈v, s〉 and c = 〈v, v〉. Then, the equation becomes an2 + bn + c ≥
0. This is a quadratic equation for n ∈ N with real coefficients. Since this polynomial takes
only non-negative values, its discriminate b2 − 4ac must be non-positive

4〈v, s〉2 − 4〈v, v〉〈s, s〉 ≤ 0.

This implies that

|〈v, s〉| ≤
√
〈v, v〉

√
〈s, s〉 = ‖v‖.‖s‖ (∀v, s ∈ K).

Inequality (1) is called Cauchy–Schwartz inequality for groups.

Proposition 3. Let (K, 〈., .〉) be an inner product group. Then,

〈vs(ab)−1, vs(ab)−1〉
1
2 ≤ 〈va−1, va−1〉

1
2 + 〈sb−1, sb−1〉

1
2 .

Proof. Recall that every inner product group is abelian; then,

〈vs(ab)−1, vs(ab)−1〉
1
2 = 〈vsa−1b−1, vsa−1b−1〉

1
2

= 〈va−1sb−1, va−1sb−1〉
1
2

= (〈va−1, va−1sb−1〉+ 〈sb−1, va−1sb−1〉)
1
2

= (〈va−1, va−1〉+ 〈va−1, sb−1〉+ 〈sb−1, va−1〉+ 〈sb−1, sb−1〉)
1
2

≤ (〈va−1, va−1〉+ 2〈va−1, va−1〉
1
2 〈sb−1, sb−1〉

1
2 + 〈sb−1, sb−1〉)

1
2

= 〈va−1, va−1〉
1
2 + 〈sb−1, sb−1〉

1
2 .

Theorem 3. Let (K, 〈., .〉) be an inner product group. Then, it is a normed group with norm
‖v‖ =

√
〈v, v〉 for all v ∈ K.

Proof. The positivity principle of the norm is clear. From Proposition 1, we have 〈v, v〉 =
〈v−1, v−1〉 whenever v ∈ K. Then,

‖v‖2 = 〈v, v〉 = 〈v−1, v−1〉 = ‖v−1‖2.

Now, we show that ‖.‖ satisfies the triangle inequality. For all v, s ∈ K, we have

‖vs‖2 = 〈vs, vs〉 = 〈v, vs〉+ 〈s, vs〉
= 〈v, v〉+ 〈v, s〉+ 〈s, v〉+ 〈s, s〉
= ‖v‖2 + 2〈v, s〉+ ‖s‖2.
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So, the Cauchy–Schwartz inequality for groups implies that

‖vs‖2 ≤ ‖v‖2 + 2‖v‖‖s‖+ ‖s‖2 = (‖v‖+ ‖s‖)2.

Hence,
‖vs‖ ≤ ‖v‖+ ‖s‖.

Example 4. Let K be the abelian group of matrices of the form A(θ), where θ ∈ R, and

A(θ) =

(
cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

)
.

The group operation is given by the multiplication of matrices. It follows that A(θ).A(θ́) =
A(θ + θ́). Now, we define

〈A(θ), A(θ́)〉 := θθ́.

Therefore, it is obvious that K is a normed group with ‖A(θ)‖ = |θ|.

Corollary 1. Let (K, 〈., .〉) be an inner product group. Then, the group norm induced by the inner
product is N-homogeneous; i.e., ‖vn‖ = n‖v‖ (∀v ∈ K, n ∈ N).

Proof. It follows immediately from the fact that 〈vn, vn〉 = n2〈v, v〉, since

‖vn‖2 = 〈vn, vn〉 = n2〈v, v〉 = n2‖v‖2.

Theorem 4. Let (K, 〈., .〉) be an inner product group. Then, K is a torsion-free abelian group.

Proof. Let v ∈ K such that ord(v) = n and n 6= 0. Then, the N-homogeneous property of
the induced group norm implies that

‖vn‖ = n‖v‖ = ‖e‖ = 0.

Since n 6= 0, then ‖v‖ = 0 and v = e. Hence, K is a torsion-free abelian group.

Lemma 3 (Parallelogram Law). Let (K, 〈., .〉) be an inner product group. Then,

‖vs‖2 + ‖vs−1‖2 = 2(‖v‖2 + ‖s‖2) (∀v, s ∈ K).

Proof. We have

‖vs‖2 + ‖vs−1‖2 = 〈vs, vs〉+ 〈vs−1, vs−1〉
= ‖v‖2 + ‖s‖2 + 〈v, s〉+ 〈s, v〉
+ ‖v‖2 + ‖s‖2 − 〈v, s〉 − 〈s, v〉
= 2(‖v‖2 + ‖s‖2).

Theorem 5. Let (K, ‖.‖) be an abelian normed group. The norm ‖.‖ is induced by an inner
product iff the parallelogram law holds in (K, ‖.‖).
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Proof. Let (K, ‖.‖) be an abelian normed group whose norm satisfies the parallelogram
law. Put

〈v, s〉 :=
1
4
(‖vs‖2 − ‖vs−1‖2).

We wish to show that 〈., .〉 is an inner product on K. We begin by observing that
〈v, v〉 = 1

4 (‖v2‖2 − ‖e‖2) for all v ∈ K, so 〈., .〉 is non-negative.
Since

〈v, s〉 = 1
4
(‖vs‖2 − ‖vs−1‖2)

=
1
4
(‖s−1v−1‖2 − ‖s−1v‖2)

= 〈s−1, v−1〉,

the function 〈., .〉 is also a symmetric function. The final step in this proof is showing that
〈., .〉 satisfies the distributivity property. We have

2‖vz‖2 + 2‖s‖2 = ‖vsz‖2 + ‖vs−1z‖2.

This gives

‖vsz‖2 = 2‖vz‖2 + 2‖s‖2 − ‖vs−1z‖2.

Exchanging v and s in the last equation gives

‖vsz‖2 = 2‖sz‖2 + 2‖v‖2 − ‖sv−1z‖2.

Then,

‖vsz‖2 = ‖v‖2 + ‖s‖2 + ‖vz‖2 + ‖sz‖2 − 1
2
‖vs−1z‖2 − 1

2
‖sv−1z‖2.

Replacing z by z−1, we have

‖vsz−1‖2 = ‖v‖2 + ‖s‖2 + ‖vz−1‖2 + ‖sz−1‖2 − 1
2
‖vs−1z−1‖2 − 1

2
‖sv−1z−1‖2.

Since ‖v‖ = ‖v−1‖ for all v ∈ K, we get

〈vs, z〉 = 1
4
(‖vsz‖2 − ‖vsz−1‖2)

=
1
4
(‖vz‖2 − ‖vz−1‖2) +

1
4
(‖sz‖2 − ‖sz−1‖2)

= 〈v, z〉+ 〈s, z〉.

This shows that the defined 〈., .〉 satisfies all three criteria of an inner product. There-
fore, (K, 〈., .〉) is an inner product group.

Lemma 4. Let (K, 〈., .〉) be an inner product group with induced norm ‖.‖. Then, 〈., .〉 : K×K →
R is continuous.
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Proof. Let v, s ∈ K and for all v́, ś ∈ K put v́v−1 = z and śs−1 = w. Then, we have

|〈v́, ś〉 − 〈v, s〉| = |〈zv, ws〉 − 〈v, s〉|
= |〈z, ws〉+ 〈v, ws〉 − 〈v, s〉|
= |〈z, s〉+ 〈z, w〉+ 〈v, s〉+ 〈v, w〉 − 〈v, s〉|
≤ ‖z‖‖s‖+ ‖z‖‖w‖+ ‖v‖‖w‖
= ‖v́v−1‖‖s‖+ ‖v́v−1‖‖śs−1‖+ ‖v‖‖śs−1‖.

From which it follows that 〈., .〉 is continuous.

Definition 10. Let (K, ‖.‖K) and (L, ‖.‖L) be normed groups. An isomorphism (bijective group
homomorphism) v : K → L is said to be isometric if ‖v(v)‖L = ‖v‖K for all v ∈ K.

Proposition 4. Let (K, 〈., .〉K) and (L, 〈., .〉L) are inner product groups. Then, an isomorphism
v : K → L is isometric if and only if

〈v(v), v(s)〉L = 〈v, s〉K (∀v, s ∈ K)

Proof. Suppose that the given identity holds. Then,

‖v(v)‖L =
√
〈v(v), v(v)〉L =

√
〈v, v〉K = ‖v‖K (∀v ∈ K).

For the converse, suppose that v is isometric, and v, s ∈ K, then

〈v(v), v(s)〉L =
1
4
(‖v(v)v(s)‖2

L − ‖v(v)v(s)−1‖2
L)

=
1
4
(v(vs)‖2

L − ‖v(vs−1)‖2
L)

=
1
4
(‖vs‖2

K − ‖vs−1‖2
K)

= 〈v, s〉K.

3. Hilbert Groups and a Riesz Representation Theorem

In this section, we intend to prove a Riesz Representation Theorem for groups. However,
we first need to define the notion of orthogonality and midconvexity and prove related
theorems and results on Hilbert groups.

Definition 11. Let (K, ‖.‖K) and (L, ‖.‖L) be normed groups. Suppose that α : K → L is an
arbitrary function. Define

‖α‖ := sup{‖α(v)‖L/‖v‖K : v ∈ K}
= inf{M : ‖α(v)‖L ≤ M‖v‖K (∀v ∈ K)}.

Then, α is a possibly infinite number that is called bounded if ‖α‖ is finite.

Remark 2. Suppose that (K, ‖.‖K) and (L, ‖.‖L) are normed groups and α : K → L is a bounded
homomorphism. Then, α is continuous.
We denote the set of all bounded homomorphisms from K into the L by B(K,L). Clearly,
(B(K,L), ‖.‖), under the pointwise multiplication (αγ)(v) = α(v)γ(v), is also a normed group.

Lemma 5. Let (K, ‖.‖K) and (L, ‖.‖L) be normed groups. If L is Banach group, then so is
B(K,L).
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Proof. Suppose that {αn} is a Cauchy sequence in the group B(K,L). Let v ∈ V. Since

‖αn(v)α−1
m (v)‖L ≤ ‖αnα−1

m ‖‖v‖K,

it follows that {αn(v)} is also a Cauchy sequence in the group L. Now, define α0 by

α0(v) := lim
n→∞

αn(v).

We have

α0(vs) = lim
n→∞

αn(vs)

= lim
n→∞

αn(v)αn(s)

= α0(v)α0(s).

To see that α0 is bounded, note that {αn} is bounded. Hence, there exists an M > 0
such that ‖αn‖ ≤ M for each n ∈ N.

Moreover, since
‖α0(v)‖L = lim

n→∞
‖αn(v)‖ ≤ M‖v‖K,

then, ‖α0‖ ≤ M.
Now, let ε > 0 and choose an N ∈ N so that if n, m > N, then ‖αnα−1

m ‖ < ε.
Let v ∈ K with ‖v‖K ≤ 1. Since ‖αn(v)α−1

m (v)‖L < ε for each m ≥ N, we have

‖α0(v)α−1
0 (v)‖L = lim

n→∞
‖αn(v)α−1

m (v)‖L ≤ ε.

In particular,
α0 = lim

n→∞
αn,

in B(K,L).

Let K be a topological abelian group. We denote the set of all continuous homomor-
phisms α : K → R by K̃. Note that in this content, we consider R as an additive group.

Lemma 6. Let (K, 〈., .〉K) be an inner product group. Fix s ∈ K and define φs : K → R by
φs(v) = 〈v, s〉K. Then, φs ∈ K̃ and ‖φs‖ = ‖s‖K.

Proof. |φs(v)| = |〈v, s〉K| ≤ ‖v‖K‖s‖K, so φs ∈ K̃ and ‖φs‖ ≤ ‖s‖K. Since

|φs(s)| = |〈s, s〉K| = ‖s‖2
K,

then
‖φs‖ ≥ ‖s‖K.

So ‖φs‖ = ‖s‖K.

Definition 12. Let (K, 〈., .〉) be an inner product group. Then, K is called a Hilbert group if K is
complete with respect to the norm induced by the inner product.

Example 5.

1. Let K = (Rn,+). Then K with the inner product 〈v, s〉 = ∑n
j=1 vjsj is a Hilbert group.

2. Let K = (Mm×n,+). Then K with the inner product 〈K, Z〉 = ∑m
i=1 ∑n

j=1 kijbij is a
Hilbert group.

Moreover, the connected component of identity in an abelian Lie group is an infinitely
divisible group [16]. So, considering Example 5, let (A, 〈., .〉) be the connected component
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of identity in Rn with the same inner product. Then, (A, 〈., .〉) is an infinitely divisible
Hilbert group.

Definition 13. Two elements v and s of an inner product groupK are said to be orthogonal, written
v⊥s, if 〈v, s〉 = 0. We say that subsets A and B are orthogonal if a⊥b for each a ∈ A and b ∈ B.
The orthogonal complement A⊥ of a subset A is the set of elements u ∈ K such that u is orthogonal
to all elements in A.

Lemma 7. Let A be a subset of Hilbert groupH. Then, the orthogonal complement of A is a closed
subgroup ofH and A ∩ A⊥ = {e}.

Proof. Let H be a Hilbert group and A ⊂ H. If a, b ∈ A⊥, then for arbitrary c ∈ A, we
have

〈c, ab−1〉 = 〈c, a〉+ 〈c, b−1〉
= 〈c, a〉 − 〈c, b〉 = 0.

Thus, A⊥ is a subgroup ofH.
To show that A⊥ is closed, let {bn} be a sequence in A⊥ such that converges to b. We

show b ∈ A⊥.
Let a ∈ A, then

〈a, b〉 = 〈a, lim
n→∞

bn〉 = lim
n→∞
〈a, bn〉 = 0.

Hence, b ∈ A⊥.
To prove A ∩ A⊥ = {e}, let a ∈ A ∩ A⊥. Then, 〈a, a〉 = 0 and a = e.

Definition 14 ([4]). Let K be a group. A subset C of K is called 1
2 -convex (or midconvex), if for

every v, s ∈ C there exists an element z ∈ C, denoted by
√

vs, such that z2 = vs.

Lemma 8. Let H be a Hilbert group and A be a non-empty, closed and 1
2 -convex subset of H.

Then, A contains a unique element of the smallest norm; i.e.,

‖v‖ = inf
a∈A
‖a‖.

Proof. There exists a sequence vn in A such that

‖vn‖ → b = inf
a∈A
‖a‖.

By applying the Parallelogram law to vn and vm, we obtain

1
4
‖vnv−1

m ‖2 =
1
2
‖vn‖2 +

1
2
‖vm‖2 − ‖

√
vnvm‖2.

Since ‖vn‖2 → b2, given ε > 0 if N is large enough, then for n > N

2‖vn‖2 < 2b2 +
ε2

2
.

By 1
2 -convexity of A, we have (vnvm)

1
2 ∈ A, so

‖
√

vnvm‖2 ≥ b2.

Combining these estimates gives

n, m ≥ N ⇒ ‖vnv−1
m ‖2 ≤ 4b2 + ε2 − 4b2 = ε2.
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SinceH is complete and A is closed, vn → v ∈ A. Moreover,

‖v‖ = lim
n→∞
‖vn‖ = b.

Thus, v exists, and if v and v́ are two elements in A with ‖v‖ = ‖v́‖, then

‖vv́−1‖2 = 2‖v‖2 + 2‖v́‖2 − 4‖
√

vv́‖2 ≤ 0.

Therefore, v = v́.

Lemma 9. Let A be a closed and 1
2 -convex subgroup of Hilbert groupH. Then,H = AA⊥. This

mens that any s ∈ H has a unique decomposition s = aa⊥ where a ∈ A and a⊥ ∈ A⊥.

Proof. Let A be a closed and 1
2 -convex subgroup ofH. If A = H, then A⊥ = {e} and there

is nothing to show. Consider v ∈ H\A and set

B = vA = {va : a ∈ A} = {v́ ∈ H; v́ = va, a ∈ A}.

where B is non-empty, because e ∈ A. So, for b́ = vá and b̀ = và in B, we have

(b́b̀)
1
2 = v(áà)

1
2 ∈ B.

In addition, every sequence in B is of the form v́n = van, where an is a sequence in A.
Thus, v́n converges in B if and only if an converges in A. It follows that B is a closed subset
ofH.

Now, we define a⊥ to be the element of the smallest norm in vA; this exists as a result
of Lemma 8. Put a = v(a⊥)−1; it is clear that a ∈ A. Then, v = aa⊥.

To prove the uniqueness of this, let aá = bb́ for some elements a, á ∈ A and b, b́ ∈ A⊥.
Then, ba−1 = b́á−1. Since ba−1 ∈ A, b́á−1 ∈ A⊥ and A

⋂
A⊥ = {e}, we have a = b, á =

b́.

Definition 15. Let K be a group and qn be a sequence of rational numbers that converges to r ∈ R.
For each v ∈ K and r ∈ R, define

vr := lim
n→∞

vqn .

Remark 3. Let (K, 〈., .〉) be an inner product group. We know that 〈vn, s〉 = n〈v, s〉 for each
v, s ∈ K and n ∈ Z. Then 〈vq, s〉 = q〈v, s〉 for each v, s ∈ K and q ∈ Q, Since for each q = m

n

n
m
n
〈v, s〉 = 〈vn m

n , s〉

= n〈v
m
n , s〉.

Thus, m
n 〈v, s〉 = 〈v m

n , s〉. We wish to show that 〈vr, s〉 = r〈v, s〉 for each v, s ∈ K and r ∈ R.
Because of the density of Q in R, for each r ∈ R, there is a sequence {qn} of Q that converges

to r. Let ε > 0 and N ∈ N; then, for each n > N,

|qn − r| < ε

|〈v, s〉+ 1| .

Thus, for each v, s ∈ K, we have

d(〈vqn , s〉, r〈v, s〉) = |〈vqn , s〉 − r〈v, s〉|
= |qn〈v, s〉 − r〈v, s〉|
= 〈v, s〉|qn − r| < ε.
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Since lim
n→∞
〈vqn , s〉 = 〈vr, s〉, then

〈vr, s〉 = r〈v, s〉.

Theorem 6. Let H be an infinitely divisible Hilbert group and φ : H → R be a continuous
epimorphism. Then, there is a unique element s0 inH such that φ(s) = 〈s, s0〉 for every s ∈ H.

Proof. Let M = ker φ. If φ = 0 then s0 = e, and thus assume that φ is a non-zero
epimorphism. Because φ is continuous, then M is a closed 1

2 -convex subgroup ofH. As we
suppose that M 6= H, so M⊥ 6= {e}. Therefore, there is v in M⊥ such that φ(v) = 1.
Now, if s ∈ H and a = φ(s), then

φ(sv−a) = φ(s)− φ(va) = φ(s)− aφ(v) = 0.

Therefore, sv−a ∈ M and we have

0 = 〈sv−a, v〉
= 〈s, v〉+ 〈v−a, v〉
= 〈s, v〉 − a〈v, v〉.

Thus, if s0 = v
1
〈v,v〉 , then φ(s) = 〈s, s0〉 for all s ∈ H.

If ś0 ∈ H such that 〈s, s0〉 = 〈s, ś0〉 for all s ∈ H, then

〈s0, s〉 − 〈ś0, s〉 = 〈s0 ś0
−1, s〉 = 0

In particular, 〈s0 ś0
−1, s0 ś0

−1〉 = 0 and so s0 = ś0.
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