
symmetryS S

Article

An Accurate Limit Load Solution for an Anisotropic Highly
Undermatched Tension Specimen with a Crack

Sergei Alexandrov 1,2 , Yun-Che Wang 3,* and Lihui Lang 1,2

����������
�������

Citation: Alexandrov, S.; Wang, Y.-C.;

Lang, L. An Accurate Limit Load

Solution for an Anisotropic Highly

Undermatched Tension Specimen

with a Crack. Symmetry 2021, 13, 1941.

https://doi.org/10.3390/sym13101941

Academic Editors: Alexey V.

Lukoyanov and Raffaele Barretta

Received: 31 August 2021

Accepted: 9 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
sergei_alexandrov@spartak.ru (S.A.); lang@buaa.edu.cn (L.L.)

2 Faculty of Materials Science and Metallurgy Engineering, Federal State Autonomous Educational Institution
of Higher Education “South Ural State University (National Research University)”, 76 Lenin Prospekt,
454080 Chelyabinsk, Russia

3 Department of Civil Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
* Correspondence: yunche@ncku.edu.tw; Tel.: +886-62757575 (ext. 63140)

Abstract: Plastic anisotropy significantly influences the behavior of structures subjected to various
loading conditions. The extremum principles in the theory of rigid plastic solids are convenient and
reliable tools for plastic design. The present paper combines the upper bound theorem and Hill’s
quadratic yield criterion for orthotropic materials to evaluate the plastic collapse load of a highly
undermatched welded tensile panel with a crack in the weld. The base material is supposed to be
rigid. The shape of the crack is quite arbitrary. The orientation of the principal axes of anisotropy
varies through the thickness of the weld. The upper bound solution is based on an exact solution
for a layer of an anisotropic material. This feature of the upper bound solution is advantageous
for increasing its accuracy. A numerical treatment is only necessary to find the solution for the
uncracked specimen. This specimen has two axes of symmetry, which simplifies the solution. Simple
analytic formulae transform this solution into a solution for the cracked specimens with one axis
of symmetry and no symmetry. It is shown that the through-thickness distribution of anisotropic
properties significantly affects the limit load.

Keywords: welded joints; plastic anisotropy; crack; limit load

1. Introduction

Flaw assessment procedures, such as ETM, R6, SINTAP, FITNET, BS 7910, and API
579, are widely used in engineering fracture mechanics (for example, [1–5]). The plastic
limit load is one of the key parameters affecting the accuracy of predictions based on these
procedures [6]. Compendiums of limit load solutions for structures containing cracks are
available in the literature [7–9]. Most of these solutions are for isotropic materials. Several
solutions for anisotropic materials are reviewed in [9]. These solutions and the solutions
found in [10–12] reveal a great effect of plastic anisotropy on the limit load. An overview
of the state-of-the-art application of engineering fracture mechanics to weldments are
provided in [13]. This work emphasizes the inhomogeneous microstructure of the weld.
The microstructure of materials, among other factors, affects the mechanical anisotropy.
Some of these factors are reviewed in [14] for steels used for pipelines. Only the yield
criterion affects the plastic limit load. In particular, elastic properties are immaterial for
calculating the plastic limit load [15]. In the present paper, it is assumed that the yield
criterion represents the current state of anisotropy, independently of the factors that have
caused it. The solutions [9–12] are based on the assumption that the parameters involved in
the yield criterion are constant in the weld and the base material. The review [13] strongly
suggests that the distribution of anisotropic properties is not uniform within the weld.
Taking into account that the effect of plastic anisotropy on various parameters resulting
from elastic/plastic solutions is large [16], it is natural to expect that those non-uniform
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distributions of anisotropic properties may significantly affect the plastic limit load. A
plane strain solution for a highly undermatched middle cracked tensile panel is proposed
in [17]. This solution assumes that the weld is orthotropic and obeys Hill’s quadratic yield
criterion [18]. The thickness of the weld is constant. The present paper proposes a two-fold
extension of the solution [17]. Firstly, quite an arbitrary through-thickness distribution of
the parameters involved in Hill’s yield criterion is assumed. Secondly, the shape of the
crack is also quite arbitrary, though some restrictions apply. The method proposed in [19]
is used to extend the solution for symmetric specimens to a class of the corresponding
asymmetric specimens.

Other upper bound solutions for cracked specimens that account for plastic anisotropy
are proposed in [10–12]. The solutions [11,12] are for over-matched specimens. The general
method developed in the present paper is not applicable for such specimens. However,
the solution [10] is for highly undermatched scarf joints. Therefore, the method developed
is immediately applicable to generalize the solution [10] to non-uniform distributions of
anisotropic properties and the crack of arbitrary shape.

2. Statement of the Problem

A schematic diagram of the weld joint under consideration is shown in Figure 1. The
width of the specimen is 2B, and its thickness is W. The shape of a through-crack is quite
arbitrary. The specific restrictions on this shape will be formulated later. The specimen
is subject to tension by two forces Q. It is required to evaluate the value of Q at plastic
collapse under plane strain deformation.

Figure 1. Schematic diagram of the specimen under consideration.

It is assumed that the weld is much softer than the base material. Therefore, plastic
yielding occurs in the weld, whereas the base material is rigid. For this reason, the plastic
properties of the base material are immaterial. The elastic properties of both the weld and
base material are immaterial at plastic collapse, as follows from the theorem proven in [15].
The weld is plastically anisotropic. Let σαα, σββ, and σαβ be the stress components referred
to as the principal axes of anisotropy in planes of flow. Under plane strain conditions, Hill’s
quadratic yield criterion reads as follows [18]:

s2
αβ

1− c
+ σ2

αβ = T2. (1)
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Here, sαβ =
(
σαα − σββ

)/
2, T is the yield stress in shear with respect to the (α, β)

axes, and c is expressed in terms of the yield stresses with respect to the principal axes of
anisotropy. The expression for c is provided in [18]. For the present paper, it is sufficient to
know that the following holds:

−∞ < c < 1. (2)

In the case of isotropic materials, c = 0.
The upper bound theorem involves the plastic work rate. Let ξαα, ξββ, and ξαβ be the

strain rate components referred to as the principal axes of anisotropy (α, β) . The general
expression for the plastic work rate per unit volume is derived in [18]. This expression
reduces to the following:

ωV = 2T
√
(1− c)ξ2

ββ + ξ2
αβ (3)

under plane strain deformation. It is taken into account that the material is incompressible
and, therefore, ξαα = −ξββ.

We introduce a Cartesian coordinate system (x, y) in the planes of flow. Let θ be the in-
clination of the α-axis to the x-axis, measured counterclockwise. Then, the following holds:

σαα =
σxx+σyy

2 +
(σxx−σyy)

2 cos2θ + σxysin2θ,

σββ =
σxx+σyy

2 − (σxx−σyy)
2 cos2θ − σxysin2θ,

σαβ = − (σxx−σyy)
2 sin 2θ + σxy cos 2θ.

(4)

Here, σxx, σyy and σxy are the stress components referred to as the Cartesian coordi-
nates. Equation (4) can be rewritten as follows:

σxx =
σαα+σββ

2 +
(σαα−σββ)

2 cos2θ − σαβsin2θ,

σyy =
σαα+σββ

2 − (σαα−σββ)
2 cos2θ + σαβsin2θ,

σxy =
(σαα−σββ)

2 sin 2θ + σαβ cos 2θ.

(5)

Analogously,

ξαα =
ξxx+ξyy

2 +
(ξxx−ξyy)

2 cos2θ + ξxysin2θ,

ξββ =
ξxx+ξyy

2 − (ξxx−ξyy)
2 cos2θ − ξxysin2θ,

ξαβ = − (ξxx−ξyy)
2 sin 2θ + ξxy cos 2θ.

(6)

Here, ξxx, ξyy, and ξxy are the strain rate components referred to as the Cartesian coordinates.

3. Solution for the Specimen with No Crack

It will be seen later that the solution for the specimen with no crack can be immediately
adopted to evaluate the limit load of the specimen with quite an arbitrary crack. A
schematic diagram of the specimen considered in this section, together with the Cartesian
coordinate system, is shown in Figure 2. The axes of this coordinate system coincide with
the symmetry axes of the specimen.
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Figure 2. Schematic diagram of the uncracked specimen and Cartesian coordinates.

3.1. An Exact Solution for a Layer of Anisotropic Material

Even though the upper bound theorem does not require that the equilibrium equations
are satisfied, it is advantageous to choose a kinematically admissible velocity field so
that the associated stress field satisfies the equilibrium equations and associated flow
rule. An exact solution for the compression of an anisotropic material layer between two
parallel plates is provided in [20]. Since the material is incompressible, this solution can be
immediately adopted for the tension of the layer. Because of symmetry, it is sufficient to
consider the solution in the first quadrant, x ≥ 0 and y ≥ 0 . The rigid base material moves
with velocity V along the y-axis. The magnitude of this velocity is immaterial.

Let ux and uy be the velocity components referred to the Cartesian coordinate system.
The velocity field found in [20] is as follows:

ux

V
= − x

h
+

2
h

y∫
h

cot 2ϕdχ + u0,
uy

V
=

y
h

. (7)

Here, u0 is constant, χ is a dummy variable of integration, and cos 2ϕ is determined
as follows:

cot 2ϕ =
∂sxy

∂σxy
. (8)

Here, sxy =
(
σxx − σyy

)/
2. The pair sxy and σxy involved in (8) should satisfy the

yield criterion. The solution [20] is valid if ϕ is independent of x. In what follows, it is
convenient to use the dimensionless quantities:

ζ =
y
h

, η =
x
B

, b =
B
h

. (9)
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Then, Equation (7) becomes the following:

ux

V
= −ηb + 2

ζ∫
1

cot 2ϕdχ + u0,
uy

V
= ζ. (10)

Using (7), one can find the strain rate components as follows:

ξxx =
∂ux

∂x
= −V

h
, ξyy =

∂uy

∂y
=

V
h

, ξxy =
1
2

(
∂ux

∂y
+

∂uy

∂x

)
=

V
h

cot 2ϕ. (11)

Equation (1) is satisfied by the following substitution:

sαβ = T
√

1− ccos2γ, σαβ = T sin 2γ. (12)

Here, γ is an arbitrary function of ζ. Equations (5) and (12) combine to give the following:

sxy = T
(√

1− c cos 2γ cos 2θ − sin 2γ sin 2θ
)

,

σxy = T
(√

1− c cos 2γ sin 2θ + sin 2γ cos 2θ
)

. (13)

It is seen from (8) and (13) that the condition that ϕ is a function only of ζ is satisfied if
θ is a function only of ζ. The latter is assumed in the present paper. It follows from (8) and
(13) that the following holds:

cot 2ϕ =

√
1− c cos 2θ sin 2γ + cos 2γ sin 2θ√
1− c sin 2θ sin 2γ− cos 2γ cos 2θ

. (14)

If σxy has the same value at y = h and y = −h (Figure 2), the solution for the shear
stress given in [20] reads as follows:

σxy = Tµζ. (15)

Here, µ is a constant whose value is determined by the boundary condition at ζ = 1.
The second equation in (13) and (15) combine to provide the following:

√
1− ccos2γ sin 2θ + sin 2γ cos 2θ = µζ. (16)

Using the trigonometric identities

sin 2γ =
2 tan γ

1 + tan2γ
and cos 2γ =

1− tan2γ

1 + tan2γ
, (17)

one transforms (16) to the following:(
µζ +

√
1− c sin 2θ

)
tan2γ− 2cos2θtanγ + µζ −

√
1− csin2θ = 0. (18)

It is a quadratic equation for tan γ. Its solution is the following:

tan γ =
cos 2θ ±

√
1− csin22θ − µ2ζ2

µζ +
√

1− c sin 2θ
. (19)

Four values of γ are determined from this equation. The unique solution satisfies the
following inequalities:

− π

2
≤ γ ≤ π

2
(20)
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and √
1− ccos2γ cos 2θ − sin 2γ sin 2θ ≤ 0. (21)

The latter follows from the assumption that sxy ≤ 0 and the first equation in (13).
Substituting γ found from (19) into (14), one finds ϕ as a function of ζ. Then, Equation (11)
supplies the strain rate components as functions of ζ.

3.2. Upper Bound Solution

The general structure of the solution is illustrated in Figure 3. The velocity field (10)
is kinematically admissible in the plastic region. In particular, it is seen from (11) that the
incompressibility equation, ξxx + ξyy = 0, is satisfied. It follows from (10) that uy = 0 at
ζ = 0 and uy = V at ζ = 1. The velocity component ux does not satisfy the condition ux = 0
at η = 0. Therefore, there must exist a rigid region that contains the y-axis (Figure 3). This
region moves along the y-axis, together with the rigid base material. Therefore, its velocity
is represented as follows:

Figure 3. General structure of the solution for the uncracked specimen.

Ur = Vj (22)

where j is one of the unit base vectors of the Cartesian coordinate system. The other
unit base vector is denoted as i. The velocity vector in the plastic region is represented
as follows:

Up = uxi + uyj. (23)

Here, Equation (10) supplies ux and uy. Let φ be the inclination of the tangent to
velocity discontinuity line OA to the x-axis, measured counterclockwise (Figure 3). Then,
the unit vector normal to OA is represented as follows:

n = −i sin φ + j cos φ. (24)

The velocity component normal to the velocity discontinuity line OA must be contin-
uous. Therefore, Ur · n = Up · n. Substituting (22), (23), and (24) into this equation and
using (10), one obtains the following:

cos φ =

ηb− 2

ζ∫
1

cot 2ϕdχ− u0

 sin φ + ζ cos φ. (25)

It follows from the geometry of Figure 3 and (9) that the following holds:

tan φ =
dy
dx

=
hdζ

Bdη
=

dζ

bdη
. (26)
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Equations (25) and (26) combine to give the following:

dη

dζ
=

η

1− ζ
− 2

b(1− ζ)

ζ∫
1

cot 2ϕdχ− u0

b(1− ζ)
. (27)

It is a linear differential equation for determining the shape of the velocity disconti-
nuity line. This line should pass through the origin of the Cartesian coordinate system.
Therefore, the boundary condition to Equation (27) is η = 0 for ζ = 0. The solution of
Equation (27) satisfying this boundary condition is as follows:

η = ηOA(ζ) = −
2

b(1− ζ)

 ζ∫
0

β∫
1

cot 2ϕdχdβ +
ζu0

2

. (28)

Integrating by parts, one obtains the following:

ζ∫
0

β∫
1

cot 2ϕdχdβ = ζ

ζ∫
1

cot 2ϕdχ−
ζ∫

0

χ cot 2ϕdχ. (29)

Equations (28) and (29) combine to provide the following:

η = ηOA(ζ) =
2

b(1− ζ)

 ζ∫
0

χ cot 2ϕdχ− ζ

ζ∫
1

cot 2ϕdχ− ζu0

2

. (30)

The velocity discontinuity line may have a common point with the line ζ = 1 only if
the numerator in (30) vanishes at ζ = 1. Therefore, the following holds:

u0 = 2
1∫

0

χ cot 2ϕdχ. (31)

Substituting (31) into (30) and applying l’Hospital’s rule, one determines the value of
η at point A (Figure 3) as the following:

ηA =
2
b

1∫
0

χ cot 2ϕdχ. (32)

The present solution is valid if the following holds:

0 < ηA ≤ 1. (33)

The final expression for the velocity discontinuity line follows from (30) and (31)
as follows:

η = ηOA(ζ) =
2

b(1− ζ)

 ζ∫
0

χ cot 2ϕdχ− ζ

ζ∫
1

cot 2ϕdχ− ζ

1∫
0

χ cot 2ϕdχ

. (34)

Using (14) and (19), one can evaluate the integrals numerically. The infinitesimal length

element of the velocity discontinuity line is dL =
√
(dx)2 + (dy)2 =

√(
dx
/

dy
)2

+ 1dy.
Here, the derivative dx/dy is determined from (26) and (27). Then, using (9) and (30), one
can represent the infinitesimal length element as follows:

dL = Ω1(y)dy (35)
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where Ω1(y) is a known function of y. Alternatively, using (9), one transforms the expres-

sion dL =
√
(dx)2 + (dy)2 into the following:

dL =

√
(dη)2B2 + (dζ)2h2 = h

√
(dη)2b2 + (dζ)2 = h

√
b2
(

dηOA
dζ

)2
+ 1dζ. (36)

The derivative dηOA
/

dζ is determined from (27) and (31) as follows:

dηOA
dζ

=
ηOA(ζ)

1− ζ
− 2

b(1− ζ)

ζ∫
1

cot 2ϕdχ− 2
b(1− ζ)

1∫
0

χ cot 2ϕdχ. (37)

Using (34) and (37), one obtains the coefficient of dζ in (36) as a function of ζ. Then,
the infinitesimal length element is represented as follows:

dL = Ω1(y)dy = Ω2(ζ)dζ, (38)

where Ω2(ζ) is a known function of ζ. The amount of velocity jump across the velocity
discontinuity line is represented as [u] =

∣∣Ur −Up
∣∣. Substituting (22) and (23) into this

equation, one arrives at the following:

[u] =
√

u2
x +

(
uy −V

)2. (39)

The velocity components ux and uy are understood to be calculated at the velocity
discontinuity line. Therefore, Equations (10), (31) and (39) combine to give the following:

[u]
V

=

√√√√√−bηOA(ζ) + 2

ζ∫
1

cot 2ϕdχ + 2
1∫

0

χ cot 2ϕdχ

2

+ (ζ − 1)2. (40)

The strain rate components involved in (3) are determined from (6) and (11) as follows:

ξββ =
V
h
(cos2θ − cot 2ϕsin2θ), ξαβ =

V
h
(sin 2θ + cot 2ϕ cos 2θ). (41)

Equations (3) and (41) combine to give the following:

ωV =
2TV

h

√
(1− c)(cos2θ − cot 2ϕsin2θ)2 + (sin 2θ + cot 2ϕ cos 2θ)2. (42)

It follows from the upper bound theorem and Equation (35) that the following holds:

QV ≤ 2W

 h∫
0

B∫
BηOA

ωVdxdy +

h∫
0

τ[u]Ω1dy +

B∫
BηA

τs|ux|dx

. (43)

The velocity component ux is understood to be calculated at ζ = 1. The first integral
in (43) represents the plastic work rate in the plastic region, the second at the velocity
discontinuity line OA, and the third at the velocity discontinuity line AC (Figure 3). Then,
τ is the actual shear stress over the velocity discontinuity line OA and τs is the actual shear
stress over the velocity discontinuity line AC.

Using (9) and (38), one can rewrite (43) as follows:

Q
2TWB

≤
1∫

0

1∫
ηOA

hωV
TV

dηdζ +
1
b

1∫
0

τ

T
[u]
V

Ω2

h
dζ +

1∫
ηA

τs

T
|ux|
V

dη. (44)
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Using (42), one transforms the first integral in (44) to the following:

1∫
0

1∫
ηOA

hωV
TV

dηdζ =

2
1∫

0

1∫
ηOA

√
(1− c)(cos2θ − cot 2ϕsin2θ)2 + (sin 2θ + cot 2ϕ cos 2θ)2dηdζ =

2
1∫

0

√
(1− c)(cos2θ − cot 2ϕsin2θ)2 + (sin 2θ + cot 2ϕ cos 2θ)2(1− ηOA)dζ. (45)

The integrand is a known function of ζ. Therefore, the integral can be evaluated numerically.
Using (36) and (40), one transforms the second integral in (44) to the following:

1∫
0

τ
T
[u]
V

Ω2
h dζ =

1∫
0

τ
T

√√√√[−bηOA + 2
ζ∫

1
cot 2ϕdχ + 2

1∫
0

χ cot 2ϕdχ

]2

+ (ζ − 1)2
√

b2
(

dηOA
dζ

)2
+ 1dζ.

(46)

Since τ is the actual shear stress over the velocity discontinuity line, its value is
unknown. Therefore, the integral in (46) cannot be evaluated. In the case of isotropic
materials, this difficulty is resolved by replacing τ with the shear yield stress, which is a
material constant. Since τ is less or equal to the shear yield stress, this replacement cannot
reduce the value of the integral in (46). Based on this argument, one concludes that the
resulting right-hand side of (44) provides an upper bound on Q. However, the shear yield
stress in anisotropic materials depends on the plane’s orientation over which it applies.
The second equation in (13) gives the shear stress over any plane when the yield criterion
is satisfied. It follows from this equation that we have the following:

τ ≤ τm = max
{

T, T
√

1− c
}

. (47)

One can replace τ with τm in (44) and (46) to arrive at the following:

Qu
2TWB = qu =

1∫
0

1∫
ηOA

hωV
TV dηdζ + τm

bT

1∫
0

[u]
V

Ω2
h dζ +

1∫
ηA

τs
T
|ux |
V dη,

1∫
0

τm
T

[u]
V

Ω2
h dζ =

τm
T

1∫
0

√√√√[−bηOA + 2
ζ∫

1
cot 2ϕdχ + 2

1∫
0

χ cot 2ϕdχ

]2

+ (ζ − 1)2
√

b2
(

dηOA
dζ

)2
+ 1dζ.

(48)

Here, Qu is the upper bound limit load and qu is its dimensionless representation.
The essential difference between the OA and AC velocity discontinuity lines is that

the bi-material interface is an envelope of characteristics in the exact solution. Therefore, τs
involved in the third integral in (48) is as follows [18]:

τs = T
√

1− csin22θs. (49)

Here, θs is the value of θ at ζ = 1. It follows from (10), (31), and (32) that the
following holds:

ux

V
= b(ηA − η). (50)



Symmetry 2021, 13, 1941 10 of 15

Substituting (49) and (50) into (48), one obtains the following:

qu =

1∫
0

1∫
ηOA

hωV
TV

dηdζ +
τm

bT

1∫
0

[u]
V

Ω2

h
dζ +

b
√

1− csin22θs(1− ηA)
2

2
. (51)

Using (45), (47) and the second equation in (48), one can calculate qu from (51). It
follows from (15) and (49) that the following holds:

µ =

√
1− csin22θs. (52)

3.3. Numerical Examples

It is seen from the previous section that a numerical technique is only necessary
for evaluating ordinary integrals. The Wolfram Language function NIntegrate is used
for this purpose. It is assumed that b = 5 in all calculations presented in this section.
Figures 4 and 5 depict the variation of the dimensionless limit load with c if θ is a constant
function and a linear function of ζ, respectively. The linear function is defined as θ = θ0ζ,
where θ0 is constant. Figure 6 illustrates the effect of the through-thickness variation of θ
on the dimensionless limit load. In this case, θ is represented by second-order polynomials
as follows:

θ =
(π

2
− δ
)
+ δζ2. (53)

where δ is constant. The particular case δ = 0 corresponds to one of the solutions shown in
Figure 4. The range of δ is restricted by the condition that sin 2θ is a monotonic function of
ζ in the range 0 ≤ ζ ≤ 1.

Figure 4. Variation of the dimensionless limit load with c if θ is a constant.

All the curves in Figures 4 and 5 intersect at c = 0 (isotropic material). The effect of
θ (Figure 4) and θ0 (Figure 5) on the limit load increases as |c| increases. The qualitative
behavior of the solution is different in the ranges of c > 0 and c < 0. In particular, qu
is an increasing function of |c| for all θ (Figure 4) and all θ0 Figure 5) in the range c < 0.
However, it may be a decreasing or increasing function of c in the range c > 0. Therefore,
predictions of flaw assessment procedures based on the assumption of isotropic material
may be non-conservative if c > 0.
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Figure 5. Variation of the dimensionless limit load with c if θ is a linear function of ζ.

Figure 6 shows that the limit load is sensitive to the through-thickness distribution of
anisotropic properties. It is particularly sensitive if δ is small. Small δ-values mean that θ is
close to π/2 everywhere, as follows from (53).

Figure 6. Effect of the through-thickness variation of θ on the dimensionless limit load.

4. Solution for the Specimen with a Crack

This section demonstrates that the solution derived in Section 3 can be immediately
adopted to find an upper bound limit load for a class of the specimens with a crack.

4.1. Crack on the x-Axis

As shown in Figure 2, the boundary value problem is symmetric relative to the x-axis.
Therefore, it is sufficient to consider the domain y ≥ 0. A schematic diagram of the weld
and the general structure of a kinematically admissible velocity field are shown in Figure 7.
It is seen from this figure that the solution from Section 3 is valid on the right to line l1 if B
is replaced with B1. Analogously, the solution from Section 3 is valid on the left to line l2 if
B is replaced with B2. Then, we have the following:
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Figure 7. Schematic diagram of the weld of the middle cracked specimen and the general structure
of a kinematically admissible velocity field.

qu =
1
2

(
q(1)u

B1

B
+ q(2)u

B2

B

)
. (54)

Here, q(1)u and q(2)u are determined from (48) at b = b1 = B1
/

h and b = b2 = B2
/

h,
respectively. The factor 1/2 appears because (51) gives the limit load for the specimen
whose width is 2B.

Both the velocity discontinuity lines (Figure 7) should satisfy the inequality (33).
Of practical importance is the inequality ηA ≤ 1. Putting ηA = 1 in (32), one obtains
the following:

bm = 2
1∫

0

χ cot 2ϕdχ. (55)

The solution is valid if b1 ≥ bm and b2 ≥ bm. Figure 8 depicts the variation of bm with
c at several values of θ, assuming that θ is constant.

Figure 8. Geometric illustration of the solution validity condition if θ is constant.

4.2. Arbitrary Crack

The boundary value problem is not symmetric relative to any axis. Therefore, it is
necessary to consider the entire domain occupied by the weld. A schematic diagram
of the weld and the general structure of a kinematically admissible velocity field are
shown in Figure 9. The kinematically admissible velocity fields on the right to l1 and left
to l2 are taken the same as in the specimen shown in Figure 7. For the entire velocity
field to be kinematically admissible, it is necessary to introduce two additional velocity
discontinuity lines, a1c1 and a2c2. Then, the only restriction on the shape of the crack is that
it is compatible with the motion of the two rigid regions along the y-axis in the opposite
directions. The contribution of the additional velocity discontinuity lines to the right-hand
side of (43) involves τ. As in the case of the velocity discontinuity line OA (Figure 3),
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one can replace τ with τm given by (47). Then, the contribution of the additional velocity
discontinuity lines to the right-hand side of (43) can be represented as follows:

Figure 9. Schematic diagram of the weld and the general structure of a kinematically admissible
velocity field in the case of an arbitrary crack.

Ωa = VWτm(L1 + L2). (56)

Here, L1 and L2 are the lengths of lines a1c1 and a2c2, respectively. Using (47), (54),
and (56), one arrives the following expression for the dimensionless limit load:

qu =
1
2

(
q(1)u

B1

B
+ q(2)u

B2

B

)
+

1
4

(τm

T

)( L1

B
+

L2

B

)
. (57)

4.3. Numerical Examples

Given the mechanical properties, Equations (54) and (57) allow the limit load to be easily
calculated for the specimen having any crack if the dependence of q(i)u on bi is known. Here,
q(i)u = q(1)u and bi = b1 or q(i)u = q(2)u and bi = b2. Figure 10 depicts the variation of q(i)u with
bi at several values of θ, assuming that θ is constant. Figure 11 shows the variation of q(i)u with
bi at several values of θ0, assuming that θ = θ0ζ. The results presented in Figures 10 and 11
are for c = −1. The left ends of the curves in Figure 10 correspond to bi = bm (Figure 8).

Figure 10. Variation of q(i)u with bi for several values of θ, which is a constant function.
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Figure 11. Variation of q(i)u with bi for several values of θ0 assuming that θ = θ0ζ.

The limit load for isotropic materials is an increasing function of b. An important
feature of the solution illustrated in Figures 10 and 11 is that the limit load considered a
function of b may have a minimum if the material is anisotropic. This feature should affect
the prediction of flaw assessment procedures.

5. Conclusions

A new upper bound limit load solution is proposed for a highly undermatched tension
specimen containing a crack. The weld is supposed to be plastically anisotropic. The distin-
guishing features of this solution are (i) through-thickness variation in the plastic anisotropy,
and (ii) crack of an arbitrary shape. Some restrictions of the variation in the plastic anisotropy
and the shape of the crack apply, but they are not restrictive for practical applications.

An advantage of the solution is that the stress field associated with the kinematically
admissible velocity field chosen satisfies the equilibrium equations. Therefore, this solution
should be more accurate than other upper bound solutions of the same level of complexity.

The solution is practically analytic. A numerical technique is only required for evalu-
ating ordinary integrals. It is particularly important because the material properties are
classified by an arbitrary function rather than a set of parameters. Therefore, no parametric
study is possible. However, the calculation of the limit load for any given function is fast
and straightforward.

The numerical example has revealed the following interesting features of the solution:
(i) predictions of flow assessment procedures based on the assumption of isotropic mate-
rials may be non-conservative for certain anisotropic materials, and (ii) the limit load is
represented by a non-monotonic function of the relative thickness of the weld for certain
anisotropic properties.

The solution is ready for use in conjunction with flaw assessment procedures. Such
procedures are widely accepted in practical applications [1].
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