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Abstract: The all-at-once technique has attracted many researchers’ interest in recent years. In this
paper, we combine this technique with a classical symplectic and symmetric method for solving
Hamiltonian systems. The solutions at all time steps are obtained at one-shot. In order to reduce
the computational cost of solving the all-at-once system, a fast algorithm is designed. Numerical
experiments of Hamiltonian systems with degrees of freedom n ≤ 3 are provided to show that our
method is more efficient than the classical symplectic method.

Keywords: hamiltonian systems; symplectic method; all-at-once technique; fast algorithm; structure-
preserving methods

1. Introduction

Hamiltonian mechanics, along with Newtonian mechanics and Lagrangian mechanics,
are three classical mechanics. It is a reformulation of the classic mechanics that evolved
from Lagrangian mechanics. The Hamiltonian system is developed based on Hamiltonian
mechanics. The Hamiltonian system is an important category of dynamical systems, which
can represent all real physical processes with negligible dissipation. It has a very wide range
of applications, such as biology [1], plasma physics [2–5] and celestial mechanics [6,7]. The
basis of Hamiltonian system is symplectic geometry which is the phase space composed
of n generalized coordinates and n generalized momentum in a system with n degrees
of freedom. The remarkable property of a Hamiltonian system is that it has intrinsic
symplectic structure which is preserved by its phase flow.

It is usually difficult to obtain the phase flow of a Hamiltonian system, even though
it preserves the certain symplectic structure. Therefore, the numerical method that may
preserve the symplectic structure of the Hamiltonian system is an alternative choice. Thus,
the symplectic method [8] is developed to numerically simulate the Hamiltonian system,
aiming to preserve the symplectic structure. Its structure-preservation property and sym-
plectic method have a great advantage in computational stability and long-term simulation
over conventional numerical schemes. Such an advantage afford the symplectic algorithm
tremendous success in diverse areas, e.g., mechanics, biology and physics [1,4,7,9–13].
Particularly, symplectic algorithms have been widely applied in plasma physics in recent
years. The charged particle dynamics and guiding center dynamics in electro-magnetic
fields can be expressed as a Hamiltonian system and a non-canonical Hamiltonian system,
respectively. Explicit sympletic methods based on generating functions and coordinate
transformations are developed for charged particle dynamics [5,13]. For guiding center
dynamics of charged particles, variational symplectic methods [2,14] and canonicalized
symplectic method [4] have been proposed.

Traditionally, the symplectic method is a time-stepping scheme, which obtains the
solutions step-by-step. The symplectic method is usually implicit, thus an iteration method,
such as fixed point iteration method or Newton iteration method is needed to solve the
method. If a large number of time steps are involved, the total number of iterations
can be very large, and the symplectic method may become time-consuming. Therefore,
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to overcome the time-consuming problem of the time-stepping method, we propose an
alternative method. The basic idea of our method is combining the all-at-once technique
with a sympletic method. For convenience, we call this novel method the symplectic
all-at-once method in this paper. More precisely, we stack the solutions of the symplectic
method at all time steps in a vector, then an all-at-once system or a block lower triangular
system will be obtained. Such a lower triangular structure facilitates the use of the fast
algorithm. We will show in the numerical experiments that our method equipped with a
fast algorithm takes less computational cost than the time-stepping method.

More and more researchers have paid attention to the all-at-once technique in recent
years as it can obtain the solution at all time steps. The all-at-once method has been widely
used in time-dependent optimal control problems [15,16] and fractional partial differential
equations (FPDEs) [17–22]. Stoll and Wathen [15] used the all-at-once approach to solve
the discretized unsteady Stokes problems. This approach was shown to be efficient and
mesh-independent. The all-at-once method was also applied for the optimal control of the
unsteady Burgers equation [16]. Furthermore, the all-at-once technique equipped with fast
algorithms was utilized when using finite difference methods to solve FPDEs [17–22]. The
reason why many researchers use the all-at-once approach is to reduce the computational
cost. Zhao et al. [20] employed the all-at-once approach for the time–space fractional diffu-
sion equation. They developed a block bi-diagonal Toeplitz preconditioner for efficiently
solving their resulting system. Gu and Wu proposed a parallel-in-time iterative algorithm
for solving the all-at-once system arising from partial integro-differential problems [17].
The fast implementations for solving block lower triangular systems arising from fractional
differential equations can be found in [18,19] and the references therein.

In this paper, we develop a sympletic all-at-once method for Hamiltonian systems.
The all-at-once system is solved by the Newton method equipped with a fast algorithm
which greatly saves computational time. Numerical experiments in three Hamiltonian
problems are carried out to show that our method is more efficient than the classical
symplectic method.

The rest of this paper is organized as follows. In Section 2, we first give a review of
symplectic methods for Hamiltonian systems. Then, we derive the all-at-once system based
on the midpoint rule. Accordingly, we provide a framework of our method for solving
Hamiltonian systems. In Section 3, several numerical examples are provided to show the
performance of our method. Moreover, we also compare our method with the classical
midpoint rule and the third order non-symplectic Runge–Kutta method. In this paper, we
only conduct experiments on Hamiltonian systems with degrees of freedom n ≤ 3. In
Section 4, we summarize our work and make enlightening remarks.

2. All-at-Once System for Hamiltonian Systems

Firstly, we give a short introduction to Hamiltonian systems and symplectic methods.

2.1. Symplectic Methods for Hamiltonian Systems

It is well known that the Hamiltonian system [1,7,11] is an important category in
ordinary differential equations. Hamiltonian systems exist in diverse areas of physics,
mechanics and engineering. It is generally accepted that all the physical process with
negligible dissipation may be expressed as suitable Hamiltonian systems. So, reliable
numerical methods that are developed for the numerical solution of Hamiltonian system
would have wide applications. A prominent property of Hamiltonian systems is the
symplecticity of the phase flow. Therefore, symplectic method is developed to preserve the
symplectic structure of the Hamiltonian system.

In this paper, we consider the autonomous Hamiltonian system

dp
dt

= −∂H(p, q)
∂q

,
dq
dt

=
∂H(p, q)

∂p
, (1)
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where H(p, q) is the Hamiltonian function and p = (p1, · · · , pn)> and q = (q1, · · · , qn)>

represent the momentum and configuration variables, respectively. If we combine all the
variables in (1) in a 2n−dimensional vector y = (p>, q>)>, then (1) takes the compact form

ẏ = J−1∇H(y), (2)

where J is a 2n× 2n skew-symmetric matrix

J2n×2n =

(
0 In
−In 0

)
with In and 0 representing the n×n identity and zero matrix, respectively. By differentiating
H with respect to t along the solution of system, we find that

d
dt

H(y(t)) = (∇H)>ẏ(t) = (∇H)> J−1(∇H) = 0.

Then, Hamiltonian function H is a conserved quantity which remains constant along the
solution of the system. It is also called the energy of the system.

It is worth mentioning that in this paper, we only consider the autonomous Hamil-
tonian system (1). For non-autonomous Hamiltonian systems, we can trasform them to
autonomous ones [10]. More precisely, for the following non-autonomous Hamiltonian sys-
tem

dp
dt

= −∂H(p, q, t)
∂q

,
dq
dt

=
∂H(p, q, t)

∂p
, (3)

with momentum variables p = (p1, p2, · · · , pn)> and conjugate variables q = (q1, q2, · · · , qn)>, it
can be transformed to an autonomous Hamiltonian system by adding a conjugate pair p0 :=
h = −H, q0 := t. This approach is to consider the time t as an additional conjugate variable.
The new momentum h, to interpret it physically, is the negative of the total energy. Then
the corresponding phase space has 2n + 2 dimension, y1 = (p0, p1, · · · , pn, q0, q1, · · · , qn),
and the new Hamiltonian function H̃(p0, p, q0, q) = H(p, q, t) +h = H(p, q, q0) + p0. Ac-
cordingly, the system becomes

dp0

dt
= −∂H(p, q, t)

∂t
= −∂H̃(p0, p, q0, q)

∂q0
,

dp
dt

= −∂H(p, q, t)
∂q

= −∂H̃(p0, p, q0, q)
∂q

,

dq0

dt
= 1 =

∂H̃(p0, p, q0, q)
∂p0

,

dq
dt

=
∂H(p, q, t)

∂p
=

∂H̃(p0, p, q0, q)
∂p

.

It is an autonomous Hamiltonian system

ẏ1 = J−1∇H̃(y1), y1 = (p0, p>, q0, q>)>

with Hamiltonian function H̃(y1) = H(p, q0, q) + p0.
As is mentioned above, the symplecticity of the phase flow is a characteristic of

Hamiltonian systems. That means that the phase flow ϕt(y) of the Hamiltonian system (2)
preserves symplectic structure, i.e., ϕt(y) satisfies(

∂ϕt(y)
∂y

)>
J
(

∂ϕt(y)
∂y

)
= J, ∀t ∈ R.

In most occasions, it is difficult to obtain the exact solution of (2) when the system
is highly nonlinear. So, we resort to using numerical methods to solve (2), such as the
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symplectic geometric methods [1,7,8,11].

Definition 1. A numerical method

Φτ : y ∈ R2n → ỹ ∈ R2n, τ > 0,

is called symplectic if it satisfies (
∂ỹ
∂y

)>
J
(

∂ỹ
∂y

)
= J,

for a given time stepsize τ.

Notice that the symplectic method still preserves the symplectic structure, just as the
phase flow of Hamiltonian systems does. Furthermore, the symplectic method possesses
another important property: long-term energy conservation.

Among all kinds of symplectic methods, symplectic Runge–Kutta method [1,11] is
a commonly used method because of its stability. An s−stage Runge–Kutta method is
given by

yk+1 = yk + τ
s

∑
i=1

bi f (Ki),

Ki = yk + τ
s

∑
j=1

aij f (Kj), i = 1, 2, · · · , s,
(4)

where bi and aij are real numbers, τ is the time stepsize and yk+1 is the forward value of
the variable y based on the known value yk.

Theorem 1. A Runge–Kutta method is symplectic if the coefficients satisfy [23,24]

bibj = biaij + bjaji i, j = 1, · · · , s.

Generally, an explicit Runge–Kutta method does not satisfy the above symplectic con-
dition. Thus, a symplectic Runge–Kutta method is usually implicit. Midpoint rule [1,7,11] is
a second order one-stage symplectic Runge–Kutta method. Formally, we take the midpoint
rule as

Φτ : yk → yk+1 = yk + τ J−1∇H
(

yk+1 + yk
2

)
.

Definition 2. A numerical method

Φτ : y ∈ R2n → ỹ ∈ R2n, τ > 0,

is said to be symmetric if it satisfies
Φτ ◦Φ−τ = id.

The above condition has an equivalent expression Φτ = Φ−1
−τ [1].

To obtain the adjoint method Φ−1
−τ from Φτ , we just need to exchange yk ↔ yk+1

and τ ↔ −τ. By comparing the midpoint rule with its adjoint method, we find that
they are exactly the same. Thus, the midpoint rule is a symmetric method. The midpoint
rule is widely used for simulating Hamiltonian systems because of its symmetry and
stability [4,25,26]. In our work, the all-at-once technique based on the midpoint rule is
derived for solving (2).
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2.2. All-at-Once System

We assume that the ordinary differential Equation (ODE) is of particular form

ẏ = f (y), y ∈ Rd. (5)

The case that f includes a slow explicit dependence on t, i.e., f = f (y, t), may be trivially
reduced to (5) by adding a component yd+1 to the state vector y and setting ẏd+1 = 1.
If the ODE system is a Hamiltonian system, then the case f (y, t) is a non-autonomous
Hamiltonian system. According to the preceding section, by adding a conjugate pair, the
non-autonomous system can be transformed to an autonomous one. Thus, the case (5)
we considered is of generality. To simulate the solutions of general ODEs, the traditional
way is to proceed the solution step-by-step, i.e., the so called time-stepping method. The
all-at-once method stacks the solutions at all time steps in a vector, which proceeds all the
solutions simultaneously by solving the resulted all-at-once system.

By applying the all-at-once technique to the midpoint rule, a bi-diagonal block struc-
ture will be obtained, which greatly reduces the storage requirement. Precisely, let us take
N time steps with Nτ = T, then the time discretization of the ODE system is

yk+1 = yk + τ fk+1, k = 0, · · · , N − 1,

where fk+1 = f ((yk+1 + yk)/2). Then, we can construct the following nonlinear system
with the solutions at all time steps:

A0
A1 A0

. . . . . .
A1 A0


︸ ︷︷ ︸

A


y1
y2
...

yN


︸ ︷︷ ︸

x

=


y0 + τ f1

τ f2
...

τ fN


︸ ︷︷ ︸

b

, (6)

where A0 = Id and A1 = −Id. This bi-diagonal block structure makes the fast computation
possible. Aiming to solve this nonlinear system, the Newton iteration method is chosen
in this article. It is well known that the Newton method has the property of second-order
convergence, thus less iteration is required to obtain the satisfactory solution than other
iteration methods. Therefore, the Newton method is suitable to solve the all-at-once system.
In order to proceed the Newton method, the initial value and the Jacobian matrix in each
iterative step are required. Therefore, a well-chosen initial value and an efficient method to
solve the Jacobian equations are two essential ingredients to solve (6).

Here is the stratergy: We solve (6) on a coarse mesh based on using higher order
symplectic methods. Then, we use the interpolate method to obtain the initial value on a
fine mesh. More precisely,

Step 1: Let τc (τc > τ) be the large time stepsize and the time steps Nc = T/τc. Using
the fourth order Gauss’ method [1,11] to integrate the Hamiltonian system (2) aiming at
calculating the values y1, · · · , yNc .

Step 2: Using the interpolation method, such as the piecewise cubic Hermite interpo-
lating polynomial, to obtain the initial value y0

1, y0
2, · · · , y0

N .
The expression of fourth order Gauss’ method is

yk+1 = yk +
1
2

τ f (K1) +
1
2

τ f (K2),

K1 = yk +
1
4

τ f (K1) +

(
1
4
−
√

3
6

)
τ f (K2),

K2 = yk +

(
1
4
+

√
3

6

)
τ f (K1) +

1
4

τ f (K2).
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It is a symplectic and symmetric Runge–Kutta method. Gauss’ method is used to calculate
the datum on the coarse mesh. As symplectic method preserves the symplectic structure of
Hamiltonian systems, Gauss’ method can obtain more favorable results than other non-
symplectic methods under large time stepsize τc. The value of τc is often determined by
the experimental result. In fact, the chosen of τc influences not only the total computational
time, but also the initial value of the Newton method. The convergence speed of the
Newton method is highly affected by the initial value. Newton method converges fast
if a good initial value is chosen. Furthermore, the initial value is generated by using a
numerical method to calculate the values y1, · · · , yNc on a coarse mesh under big time
stepsize τc, then interpolating the values y0

1, y0
2, · · · , y0

N on a fine mesh under small stepsize.
If τc or a numerical method is not properly chosen, then the initial value obtained by using
interpolation method is not good enough, as a result, the Newton method will converge
very slow, the computational cost will be very high. Therefore, a suitable value of τc and a
high order method with good property such as the fourth order Gauss’ method are two
important ingredients for generating the initial value of the Newton method.

For the second problem, we rewrite Equation (6) as follows

F(x) = Ax− b = 0.

Then, we calculate the Jacobian matrix of F(x). Note that fk depends only on yk−1 and yk,
thus the Jacobian matrix is

JF : =


A0
A1 A0

. . . . . .
A1 A0

− τ


∂ f1
∂y1
∂ f2
∂y1

∂ f2
∂y2
. . . . . .

∂ fN
∂yN−1

∂ fN
∂yN



=


A11
A21 A22

. . . . . .
AN,N−1 ANN

,

where Akk = A0 − τ
∂ fk
∂yk

, k = 1, · · · , N and Ak,k−1 = A1 − τ
∂ fk

∂yk−1
, k = 2, · · · , N. It can be

seen that JF is a lower bi-diagonal block matrix which facilitates the use of fast algorithm
to compute its inverse. The essential part of the Newton method is how to compute J−1

F v
as fast as possible, where v is a vector with a suitable size. Here, we use block Thomas
method (see Algorithm 1). In fact, due to the bi-diagonal block structure of JF, the vector
J−1
F v can be divided into N blocks and every block is a d dimensional vector. Thus, we can

derive every block iteratively. The vector v is divided into N blocks as well. Then, the first
block of J−1

F v is equivalent to A−1
11 multiplying the first block of v. Furthermore, the second

to the N-th block of J−1
F v can be derived iteratively. Thus, according to Algorithm 1, we

can easily obtain the vector J−1
F v, which accelerates the process of the Newton iteration.

In this paper, we apply an all-at-once technique to the midpoint rule for Hamiltonian
systems. We only consider the Hamiltonian system (2) with degrees of freedom n ≤ 3 (2n
dimension), the cases with n ≥ 4 will be considered in our future work. When n = 1 or 2,
the inverse of Akk, k = 1, 2, · · · , N in lines 2 and 5 of Algorithm 1 can be calculated directly.
Thus, only O(nN) memory is needed in Algorithm 1 and the computational complexity
of this algorithm is O(nN). For n ≥ 4, the computation of A−1

kk v may not be fast, then
in Algorithm 1 we may use Krylov subspace method [27] to compute A−1

kk v. The Krylov
subspace method is very efficient to compute A−1v. An advantage of this method is that it
avoids directly calculating the inverse of A.
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Algorithm 1 Compute z = J−1
F v

1: Given a dN dimensional vector v, reshape v into d× N Matrix V

2: Compute b̃1 = A−1
11 V(:, 1)

3: for k = 2, · · · , N do
4: ψ = V(:, k)− Ak,k−1b̃k−1

5: b̃k = A−1
kk ψ

6: end for

7: Stack b̃k (k = 1, · · · , N) in the vector z

Remark 1. If the integration time is very long, we need to make a further partition of the time
interval into several subintervals for the all-at-once system.

3. Numerical Experiments

All experiments were performed in MATLAB R2016b on a Windows 10 (64 bit) PC
with the configuration: Intel(R) Core(TM) i7-8550U CPU 1.80 GHz and 16 GB RAM. The
methods we used to perform numerical simulation are listed as follows.

AAO: symplectic all-at-once method which is a combination of all-at-once technique
with the midpoint rule. Newton iteration method equipped with Thomas algorithm is
utilized to solve the obtained all-at-once system. The midpoint rule is a second order
symmetric and symplectic method.

TS: time-stepping method which represents the traditional way to deal with the
midpoint rule. The solutions are obtained step-by-step.

RK3: the third-order Runge–Kutta method [4] which is neither sympletic nor symmet-
ric. The method can be expressed as

yk+1 = yk +
1
2

τ f (K1) +
1
2

τ f (K2),

K1 = yk +
1
2

τ f (K1) +

√
3

6
τ f (K2), (7)

K2 = yk −
√

3
6

τ f (K1) +
1
2

τ f (K2),

3.1. Example 1: Harmonic Oscillator

First, we consider the well-know Hamiltonian system with one degree of freedom
n = 1

H = T + V, T =
p2

2m
, V =

kq2

2
.

Here, q represents the configuration variable and p is the momentum. This system describes
the motion of a particle of mass m attached to a spring with stiffness constant k. Here, T
and V are kinetic energy and potential energy, respectively, [11].

As the harmonic oscillator is a Hamiltonian system, the equations can be written as

dp
dt

= −kq,
dq
dt

=
p
m

.

When we plot the phase plane (p, q), the curves (p(t), q(t)) are ellipses

p2

2m
+

kq2

2
= Const.

If km = 1, the curves are circles.
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The simple harmonic oscillators constitute a Hamiltonian system with the conju-
gate variables (p, q). We consider the case for k = 1 and m = 1, then the Hamiltonian
system reads (

ṗ
q̇

)
=

(
0 −1
1 0

)
∇H(p, q) (8)

with H = p2

2 + q2

2 [11]. The exact solution is

(
p(t)
q(t)

)
= (cos tI2 − sin tJ2)

(
p0
q0

)
, J2 =

(
0 1
−1 0

)
.

We first integrated the problem (8) with the symplectic all-at-once method under the
initial condition p0 = 0.1, q0 = 0.1. The Newton iteration method for solving (6) terminates
if the tolerance error is less than 10−12 or the iteration number is more than 2000. The
coarse time stepsize for the symplectic all-at-once method is τc = 1. Then we integrated
the problem (8) with the time-stepping method and third order Runge–Kutta method.

Firstly we compare the symplectic all-at-once method with the third order Runge–
Kutta method. We have displayed in Figure 1 the phase orbits and the energy errors of
both methods over the interval [0, 20,000]. The phase orbit of the symplectic all-at-once
method is accurate over a long time, but the phase orbit of the third order Runge–Kutta
method spirals inwards over time. The energy error of the symplectic all-at-once method is
preserved very well, but that of the the third order Runge–Kutta method increases over
time. Therefore, the symplectic all-at-once method has significant advantage in preserving
the phase orbit and the energy of the system over the third order Runge–Kutta method.
The reason why the symplectic all-at-once method behaves better than the third order
Runge–Kutta method is that the midpoint rule is symmetric and symplectic.

(a)

0 0.5 1 1.5 2 2.5

t 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
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rg
y 

er
ro

r

10-17

AAO

(b)

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t 104
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2

3

4

5

6

7

8

9

E
ne

rg
y 

er
ro

r

10-3

RK3

(d)

Figure 1. The phase orbits and the energy errors of the symplectic all-at-once method and third order
Runge–Kutta method over the interval [0, 20,000]. The stepsize τ = 0.1. Subfigure (a,b) are the phase
orbit and energy error obtained by symplectic all-at-once method. Subfigure (c,d) are the phase orbit
and energy error of third order Runge-Kutta method.
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Then, we compare the computational efficiency of the symplectic all-at-once method
and the time-stepping method. Table 1 reports, for varying time stepsize τ, the CPU times
of the symplectic all-at-once method and the time-stepping method, over the interval
[0, 2000]. By looking at the columns of Table 1, we find that solving the all-at-once system is
a bit faster than solving the system (8) using the time-stepping method. When the stepsize
is 0.1/64 or 0.1/128, the CPU time of the time-stepping method is nearly twice of that of
the symplectic all-at-once method. The global errors of p and q of the symplectic all-at-once
method are displayed in Table 1. Figure 2 indicates that the global error behaves as τ2

which clearly shows the order of the midpoint rule. We have displayed in Table 2 the
global errors of p and q of the time-stepping method and they are the same as those of the
symplectic all-at-once method. The discrepancy between the solutions computed by both
methods is also presented in Table 2. The maximum errors under different stepsizes are
less than the value 1.7× 10−14.

Table 1. The CPU times of the symplectic all-at-once method (AAO) and the time-stepping method (TS) and global error of
the symplectic all-at-once method over the time interval [0, 2000].

τ CPU (AAO) CPU (TS) Global Error of p (AAO) Global Error of q (AAO)

0.1 0.097 0.117 2.090× 10−1 2.090× 10−1

0.1/2 0.164 0.230 5.845× 10−2 5.839× 10−2

0.1/4 0.309 0.456 1.472× 10−2 1.470× 10−2

0.1/8 0.573 0.909 3.681× 10−3 3.678× 10−3

0.1/16 1.119 1.843 9.202× 10−4 9.195× 10−4

0.1/32 2.189 3.638 2.300× 10−4 2.299× 10−4

0.1/64 4.364 7.565 5.751× 10−5 5.747× 10−5

0.1/128 8.874 15.381 1.434× 10−5 1.437× 10−5

Table 2. The global errors of p and q of the time-stepping method (TS) and the maximum errors of p and q between the
symplectic all-at-once method and the time-stepping method over the time interval [0, 2000].

τ Global Error of p (TS) Global Error of q (TS) Maximum Error of p Maximum Error of q

0.1 2.090× 10−1 2.090× 10−1 7.980× 10−16 8.049× 10−16

0.1/2 5.845× 10−2 5.839× 10−2 5.220× 10−15 5.239× 10−15

0.1/4 1.472× 10−2 1.470× 10−2 8.756× 10−15 8.778× 10−15

0.1/8 3.681× 10−3 3.678× 10−3 1.004× 10−14 1.004× 10−14

0.1/16 9.202× 10−4 9.195× 10−4 1.176× 10−14 1.174× 10−14

0.1/32 2.300× 10−4 2.299× 10−4 8.344× 10−15 8.420× 10−15

0.1/64 5.751× 10−5 5.747× 10−5 1.428× 10−14 1.389× 10−14

0.1/128 1.434× 10−5 1.437× 10−5 1.632× 10−14 1.643× 10−14
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Figure 2. The global errors of p and q over the interval [0, 2000]. Subfigure (a) presents the global
error of p of symplectic all-at-once method while Subfigure (b) presents the global error of q. Both
subfigures clearly show the order of symplectic all-at-once method is 2.
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We have also integrated the system over long time interval [0, 20,000] and the compar-
ison results are displayed in Table 3. At all time stepsizes, the CPU times of the symplectic
all-at-once method are less than those of the time-stepping method. The difference in CPU
time becomes larger when the stepsize turns smaller. The maximum energy errors between
the two methods at all stepsizes τ are very close to the machine accuracy. In conclusion,
the symplectic all-at-once method is more efficient than the time-stepping method.

Table 3. The comparison of CPU times and maximum energy errors (in the variable p) between the
symplectic all-at-once method (AAO) and the time-stepping method (TS) over the interval [0, 20,000].

τ CPU (AAO) CPU (TS) Energy Error

0.1 1.012 1.118 1.214× 10−17

0.1/2 1.706 2.543 2.255× 10−17

0.1/4 3.949 4.786 5.204× 10−18

0.1/8 6.611 10.904 8.674× 10−18

0.1/16 11.285 22.096 1.041× 10−17

0.1/32 23.435 38.254 1.041× 10−17

0.1/64 46.830 76.264 5.204× 10−18

0.1/128 94.054 155.335 5.204× 10−18

3.2. Example 2: Hénon–Hiles Model

The Hénon–Hiles Model describes stellar motion in celestial mechanics [1,28]. More
precisely, it describes the star’s motion under the action of a gravitational potential of a
galaxy with cylindrical symmetry. Hénon and Hiles reduced the dimension of the system,
and they show that the model actually describes the motion of a particle in a plane with
the total energy [1,28]

H(q1, q2, p1, p2) =
1
2
(p2

1 + p2
2) + U(q1, q2)

where the potential function U(q1, q2) is arbitrary. They chose the potential as

U(q1, q2) =
1
2
(q2

1 + q2
2) + q2

(
q2

1 −
q2

2
3

)
.

When the potential energy U(q1, q2) approaches 1
6 , the level curves of U(q1, q2) tends

to an equivalent triangle and the triangle finally forms the region

R :=
{
(q1, q2)

> : U(q1, q2) ≤
1
6

}
.

If one choose a starting point (q0
1, q0

2, p0
1, p0

2)
> such that the total energy

H(q0
1, q0

2, p0
1, p0

2) <
1
6

,

then the solution stays in the region R. However, if one choose a starting point that the
energy H approaches 1

6 , the chaotic behavior will occur.
We have displayed in Figure 3 that the Poincare section [1,11] of (p2, q2) with the q1 = 0

plane obtained by the symplectic all-at-once method. Figure 3a shows a quasi-periodic
solution with the initial energy H0 = 1

12 . The initial condition is p1 = 1
6 , p2 = q1 = q2 = 0.

Figure 3b shows a chaotic solution with the initial energy H0 = 0.15925. The initial
condition is p1 =

√
0.3185, p2 = q1 = q2 = 0. The intersections depicted in Figure 3a

correspond to one trajectory; they lie on a curve which indicates the quasi-periodic behavior.
We can see from Figure 3b that the intersections do not stay in a curve, but are scattered in
the two-dimensional (q2, p2) plane. This trajectory is called chaotic. The energy errors of
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the symplectic all-at-once method for the quasi-periodic trajectory and the chaotic trajectory
are also displayed in Figure 3c,d. Energy error is presented by |H − H0|. In both cases, the
energy error is bounded by a very small interval. Thus, the symplectic all-at-once method
can not only accurately depict the chaotic motion, but also nearly preserves the energy
over long time.
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Figure 3. Subfigure (a) shows the Poincare section of (q2, p2) with the q1 = 0 plane. The initial energy
is H0 = 1

12 . The integration is performed by the symplectic all-at-once method for 0 ≤ t ≤ 30,000
with stepsize τ = 0.0005. Subfigure (b) shows the Poincare section of (q2, p2) with the q1 = 0 plane.
The initial energy is H0 = 0.15925. The integration is performed by the symplectic all-at-once method
for 0 ≤ t ≤ 30,000 with stepsize τ = 0.0005. Subfigure (c,d) show the energy errors of the symplectic
all-at-once method for both trajectories.

We choose the total energy as above H(p1, p2, q1, q2) = 1
2 (p2

1 + p2
2) +

1
2 (q

2
1 + q2

2) +

q2
1q2 − 1

3 q3
2, then the Hénon–Hiles model can be expressed as a four dimensional Hamilto-

nian system [1,28](
ṗ
q̇

)
=

(
0 −I2
I2 0

)
∇H(p, q), p = (p1, p2)

>, q = (q1, q2)
>. (9)

We integrated the system (9) with the symplectic all-at-once method and the time-
stepping method over the time interval [0, 10,000]. The initial condition is chosen as p1 = 0,
p2 = 0.1, q1 = 0.2, q2 = 0 such that H(p1, p2, q1, q2) <

1
6 . The coarse time stepsize for the

symplectic all-at-once method is τc = 0.1/2.
The Poincare section of (p2, q2) with the q1 = 0 plane and the energy errors of the

symplectic all-at-once system and the third order Runge–Kutta method are shown in
Figure 4. The Poincare sections of both methods do not show much difference. However,
the symplectic all-at-once method behaves better in energy conservation than the third
order Runge–Kutta method. We can see from Figure 4 that the energy error of the symplectic
all-at-once method is bounded by a very small number, but that of the third order Runge–
Kutta method increases without bound.
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Figure 4. The Poincare section of (q2, p2) and energy errors of symplectic all-at-once method and
third order Runge–Kutta method over the interval [0, 10,000]. The stepsize is τ = 0.01/2. Subfigure
(a,b) display the Poincare section and energy error of symplectic all-at-once method, while Subfigure
(c,d) display the Poincare section and energy error of third order Runge-Kutta method.

We report in Table 4 for the global errors of p1 and q1 of the symplectic all-at-once
method under different time stepsize τ = 0.01/2i(i = 1, 2, · · · , 7) over the interval [0, 1000].
It can be seen that the convergence order of the symplectic all-at-once method is nearly 2.
This clearly shows that the symplectic all-at-once method is of order 2. The global errors of
the time-stepping method under different stepsizes are displayed in Table 5, and they are
the same as those of the symplectic all-at-once method. The maximum errors of p1 and q1
between two methods are also presented in Table 5. We can see that the errors are of small
value (less than 2.6× 10−11).

Table 4. The global errors of variables p1 and q1 of the symplectic all-at-once method (AAO) over the interval [0, 1000].

τ Global Error of p1 Convergence Order Global Error of q1 Convergence Order

0.01/2 4.074× 10−4 – 4.198× 10−4 –
0.01/4 1.019× 10−4 1.999 1.049× 10−4 2.001
0.01/8 2.546× 10−5 2.001 2.624× 10−5 1.999

0.01/16 6.366× 10−6 2.000 6.559× 10−6 2.000
0.01/32 1.591× 10−6 2.000 1.640× 10−6 2.000
0.01/64 3.979× 10−7 1.999 4.100× 10−7 2.000

0.01/128 9.947× 10−8 2.000 1.025× 10−7 2.000
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Table 5. The global errors of variables p1 and q1 of the time-stepping method (TS) and the maximum errors of p1 and q1

between the symplectic all-at-once method and the time-stepping method over the interval [0, 1000].

τ Global Error of p1 Global Error of q1 Maximum Error of p1 Maximum Error of q1

0.01/2 4.074× 10−4 4.198× 10−4 3.160× 10−14 3.369× 10−14

0.01/4 1.019× 10−4 1.049× 10−4 3.096× 10−14 3.060× 10−14

0.01/8 2.546× 10−5 2.624× 10−5 1.371× 10−13 1.676× 10−13

0.01/16 6.366× 10−6 6.559× 10−6 7.212× 10−14 8.903× 10−14

0.01/32 1.591× 10−6 1.640× 10−6 2.429× 10−11 2.534× 10−11

0.01/64 3.979× 10−7 4.100× 10−7 1.641× 10−12 1.549× 10−12

0.01/128 9.947× 10−8 1.025× 10−7 2.550× 10−13 3.165× 10−13

Furthermore, the CPU times of the symplectic all-at-once method and the time-
stepping method for varying τ are reported in Table 6. From the table, we see that the
CPU times of the symplectic all-at-once method are less than those of the time-stepping
method. The advantage of the symplectic all-at-once method in CPU time becomes more
obvious when τ is smaller. This clearly shows that the symplectic all-at-once method is
more efficient than the time-stepping method. The maximum energy errors between the
two methods are also presented in Table 6. The energy errors approximately reach the
machine accuracy.

Table 6. The comparison of CPU times and maximum energy errors between the symplectic all-at-
once method (AAO) and the time-stepping method (TS) over the interval [0, 10,000].

τ CPU (AAO) CPU (TS) Energy Error

0.01/2 17.779 19.199 2.134× 10−15

0.01/4 28.628 37.953 1.672× 10−15

0.01/8 52.044 76.525 6.158× 10−15

0.01/16 99.407 154.227 1.122× 10−14

0.01/32 188.392 271.944 4.212× 10−12

0.01/64 383.799 473.621 1.356× 10−13

0.01/128 746.694 953.738 2.353× 10−14

3.3. Example 3: Charged Particle System

Theoretically, there are three methods to describe the motion of plasma while the
single charged particle motion is the simplest one. We describe the motion of one single
charged particle in given electro-magnetic field without taking account of the reaction of
the charged particle motion to the field and the interactions between charged particles.
The motion of charged particles is the most fundamental equation and it helps people
have a better understanding of many important phenomena in plasma physics research.
The dynamics of one single charged particle in a magnetized plasma is a multi-scale
problem because it contains two components: the fast gyromotion and the slow guiding
center motion. On one hand, by averaging out the fast gyromotion, the guiding center
motion can be obtained. The behaviour of guiding centers is governed by gyrokinetics
and related theories. On the other hand, by rewriting the equations of the single charged
particle motion, it is found that the motion can be expressed as a Hamiltonian system if the
Cartesian coordinate (x, p) is chosen. Here, the variable x = (x, y, z) is the configuration
variable and p is the momentum.
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The dynamics of a charged particle with the Lorentz force [3,5,13] in the coordinate
(x, p) is

dx
dt

=
1
m
[p− qA(x)],

dp
dt

= −q∇φ(x) +
q
m

(∂A(x)
∂x

)>
[p− qA(x)] (10)

which can be written as a Hamiltonian system

dy
dt

= J∇H(y),

where y = (x>, p>)> is a six-dimensional vector and the Hamiltonian function H(y) =
1

2m [p− qA(x)]2 + qφ(x). Here q, m are constants, A(x) is the vector potential. The relation
of the magnetic field B(x) and the vector potential is B(x) = ∇×A(x). We integrated the
system (10) with the symplectic all-at-once method and the time-stepping method over the
time interval [0, 2000π]. The initial condition for the position variables is x = (x0, y0, z0) =
[0,−0.65, 0] and the velocity is v = (ẋ0, ẏ0, ż0) = [0.1, 0.01, 0]. The vector potential A(x) is
chosen to be (0, x, 0)>.

The global errors of variables x and p1 of the symplectic all-at-once method under dif-
ferent time stepsize τ = π/10/2i(i = 1, 2, · · · , 6) over the interval [0, 200π] are displayed
in Table 7. The global errors computed by the symplectic all-at-once method in Table 7
and those computed by the time-stepping method in Table 8 are the same. It is shown in
Table 7 the convergence order of the symplectic all-at-once method is 2 which means that
the method is of order 2. We have also computed the maximum errors of x and p1 between
two methods, they are all of very small value (less than 3.3× 10−15). The maximum errors
nearly reach the machine accuracy.

Table 7. The global errors of variables x and p1 of the symplectic all-at-once method (AAO) over the interval [0, 200π].

τ Global Error of x Convergence Order Global Error of p1 Convergence Order

π/20 2.879× 10−1 – 2.885× 10−1 –
π/40 7.704× 10−2 1.902 7.724× 10−2 1.901
π/80 1.939× 10−2 1.990 1.941× 10−2 1.993

π/160 4.859× 10−3 1.997 4.854× 10−3 2.000
π/320 1.215× 10−3 2.000 1.213× 10−3 2.001
π/640 3.038× 10−4 2.000 3.034× 10−4 1.999

Table 8. The global errors of variables x and p1 of the time-stepping method (TS) and the maximum errors of x and p1

between the symplectic all-at-once method and time-stepping method over the interval [0, 200π].

τ Global Error of x (TS) Global Error of p1 (TS) Maximum Error of x Maximum Error of p1

π/20 2.879× 10−1 2.885× 10−1 1.221× 10−15 1.194× 10−15

π/40 7.704× 10−2 7.724× 10−2 8.188× 10−16 8.340× 10−16

π/80 1.939× 10−2 1.941× 10−2 1.443× 10−15 1.443× 10−15

π/160 4.859× 10−3 4.854× 10−3 1.943× 10−15 1.887× 10−15

π/320 1.215× 10−3 1.213× 10−3 2.012× 10−15 2.026× 10−15

π/640 3.038× 10−4 3.034× 10−4 3.247× 10−15 3.109× 10−15

We first compare the phase orbits and the energy errors of the symplectic all-at-once
method and the third order Runge–Kutta method. Displayed in Figure 5 are the orbits
of two components (x, y) of x and the energy errors of both methods over the interval
[0, 2000π]. We can see that the orbit of the symplectic all-at-once method is very accurate
over long time, but the orbit of the third order Runge–Kutta method spirals inward over
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time. The energy error of the symplectic all-at-once method is bounded by a very small
number, while the energy error of the third order Runge–Kutta method is not bounded
and increase along time. The energy errors of the third order Runge–Kutta method are
much larger than those of the symplectic all-at-once method. Therefore, the symplectic
all-at-once method has overwhelming advantage in tracking the orbit and preserving the
energy than the third order Runge–Kutta method.

Table 9 reports the CPU times of the symplectic all-at-once method and the time-
stepping method over the interval [0, 2000π] with different stepsizes τ = π/10/2i, i =
0, 1, · · · , 6. We can see from Table 9 that the CPU times of the symplectic all-at-once method
are all less than those of the time-stepping method. Especially, when the stepsize τ is
less than π/80, the CPU time of the time-stepping method is three times of that of the
symplectic all-at-once method. Therefore, this clearly shows that the symplectic all-at-once
method is more efficient than the time-stepping method. We have also reported the Newton
iteration of the symplectic all-at-once method and the iterations are all 3, which shows the
efficiency of our method.
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Figure 5. The orbits of (x, y) and the energy errors of the symplectic all-at-once method and the
third order Runge–Kutta method over the interval [0, 2000π]. The stepsize τ = π/20. Subfigure (a,b)
present the orbit of (x, y) and energy error of symplectic all-at-once method, while Subfigure (c,d)
present the orbit of (x, y) and energy error of third order Runge-Kutta method.
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Table 9. The comparison of CPU times between the symplectic all-at-once method (AAO) and the
time-stepping method (TS) over the interval [0, 2000π].

τ CPU (AAO) CPU (TS) Iteration (AAO)

π/10 0.882 1.112 3
π/20 1.221 2.192 3
π/40 1.875 4.363 3
π/80 3.216 8.724 3

π/160 5.860 17.555 3
π/320 11.144 36.371 3
π/640 21.947 74.532 3

4. Conclusions

We have proposed a symplectic all-at-once method to integrate Hamiltonian systems.
The symplectic all-at-once method is a combination of the all-at-once technique and the
symplectic midpoint rule. When applying the all-at-once technique to the midpoint rule,
we obtain a lower bi-diagonal block system. This bi-diagonal block structure facilitates the
use of the fast algorithm. The Newton method equipped with Thomas algorithm are used
to rapidly solve this system. The numerical results of the three Hamiltonian problems show
that our method is more efficient than the time-stepping method. It is also shown that our
method has a significant advantange in tracking the phase orbit and preserving the energy
of the system compared to the third order non-symplectic Runge–Kutta method. Thus,
the symplectic all-at-once method provides a good choice for solving the Hamiltonian
system (2).

In this work, we only consider 2n dimensional Hamiltonian systems with n ≤ 3.
For n = 1 or 2, the inverse of Akk, k = 1, 2, · · · , N in lines 2 and 5 of Algorithm 1 can be
calculated directly. Thus, the computational complexity is highly reduced. For n ≥ 4, we
suggest using Krylov subspace methods to perform fast computation because the Krylov
subspace method does not need to compute A−1

kk in Algorithm 1. We only consider the
combination of the all-at-once technique and symplectic methods. Apart from symplec-
tic methods, volume-preserving methods and energy-preserving methods are also two
important categories of structure-preserving algorithms. They can preserve one of the
invariant of Hamiltonian system, the volume and the energy of the system, respectively.
Thus, they are also good numerical methods to simulate the Hamiltonian system. In the
future work, we will consider combining the all-at-once technique with energy-preserving
methods and volume-preserving methods, and then designing fast algorithms for these
all-at-once systems.
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