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Abstract: In this pedagogical article, we explore a powerful language for describing the notion of
spacetime and particle dynamics intrinsic to a given fundamental physical theory, focusing on special
relativity and its Newtonian limit. The starting point of the formulation is the representations of the
relativity symmetries. Moreover, that seriously furnishes—via the notion of symmetry contractions—
a natural way in which one can understand how the Newtonian theory arises as an approximation
to Einstein’s theory. We begin with the Poincaré symmetry underlying special relativity and the
nature of Minkowski spacetime as a coset representation space of the algebra and the group. Then,
we proceed to the parallel for the phase space of a spin zero particle, in relation to which we present
the full scheme for its dynamics under the Hamiltonian formulation, illustrating that as essentially
the symmetry feature of the phase space geometry. Lastly, the reduction of all that to the Newtonian
theory as an approximation with its space-time, phase space, and dynamics under the appropriate
relativity symmetry contraction is presented. While all notions involved are well established, the
systematic presentation of that story as one coherent picture fills a gap in the literature on the
subject matter.

Keywords: group theoretical formulation; classical dynamics; relativity symmetry; symmetry contraction

1. Introduction

Over the past century, the notion of symmetry became an indispensable feature of
theoretical physics. It no longer merely facilitates the simplification of a difficult calculation,
nor lurks behind the towering conservation laws of Newton’s time, but rather unveils
fundamental features of the universe around us, describes how its basic constituents
interact, and places deep constraints on the kinds of theories that are even possible. In
light of this, one natural approach to contemplating nature would be to take symmetries
seriously. In other words, one may aim to reformulate as much of our understanding of
nature in the language most natural for describing symmetries.

More specifically, what we are concerned with here is the notion of a relativity symmetry.
Using the archetypal example handed down to us by Einstein, we hope to illustrate that not
only does a relativity symmetry relate frames of reference in which the laws of physics look
the same, but also captures the structure of physical spacetime (Throughout this note, we
reserve “spacetime” specifically for the notion of physical spacetime underlying Einsteinian
special relativity, while using “space” to cover the corresponding notion in general. Space-
time in the Newtonian setting, or space-time used instead whenever admissible, refers to
the sum of the mathematically independent Newtonian space and time) itself as well as
much of the theory of particle dynamics on it. Moreover, as detailed below, formulating our
theory in these terms provides one with a natural language in which approximations to the
theory in various limits can be described. The term relativity symmetry, though much like
introduced into physics by Einstein, is in fact a valid notion for Newtonian mechanics too.
It just has a different relativity symmetry, the Galilean symmetry. Newtonian mechanics
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can be called the theory of Galilean relativity. The symmetry for the Einstein theory is
usually taken as the Poincaré symmetry. Note that we neglect the consideration of all
discrete symmetries like the parity transform in this article. We talk about the relativity
symmetries without such symmetries included.

To parse the details of this fascinating tale, we begin with an examination of exactly
how one can naturally pass from the (classical) relativity symmetry group/algebra to
its corresponding geometric counterparts such as the model of the spacetime and the
phase space for a particle in Section 2, for the case of the Poincaré symmetry ISO(1, 3).
The full dynamical theory, for spin zero case, under the Hamiltonian formulation is to
be presented from the symmetry perspective in Section 3. From there, in Section 4, we
provide a brief introduction to the language of approximating a symmetry: contractions
of Lie algebras/groups, and their representations. This is augmented by a continuation
of the exploration of special relativity, and in particular, the way in which the Newtonian
limit is to be understood within this context, before giving some concluding remarks in the
last section. Finally, we added an appendix (Appendix A) discussing what is, in essence,
the reverse procedure of what is described in this paper: symmetry deformations. This
is another fascinating facet of the overall story, which provides one with a reasonable
procedure for determining what sort of theories a given theory may be an approximation
of. We could have discovered Einstein’s Theory of Special Relativity from the deformation
of Galilean relativity if we had the idea [1,2]. Historically, however, careful studies of
symmetries and their role in physics barely started in the time of Einstein, and only began
to pick up momentum with the development of quantum mechanics in the 1930s.

The basic material treated here is, in our opinion, important for a good appreciation
of the physical theories, yet perhaps not as well known as it should be. The key parts
of the presentation were, apparently, not otherwise explicitly available in the literature,
not to say the full story in one place. Hence, we make this effort to present it, aiming at
making it accessible even to students with limited background. For the latter purpose, we
include an extra appendix (Appendix B) giving a physicist’s sketch of necessary group
theory background, to make the article more self-contained. We see the presentation
as useful to physicists in a couple of ways. Firstly, for the existing theories, it gives a
coherent and systematic way to organize all aspects of the theories within one framework,
highlighting their mutual relationship. That can improve our understanding of all aspects
of the theoretical structure. Secondly, a particular way to look at a theory, even if not in any
sense superior to the other ways, may provide a specific channel to go to theories beyond.
The authors’ attention on the subject matter is closely connected to our recent studies
essentially on the exact parallel constructions for the theories of quantum mechanics,
including retrieving of the ‘nonrelativistic’ from the ‘relativistic’ as well as classical from
quantum [3,4]. The Lorentz covariant theory of quantum mechanics resulted is new, with a
quantum notion of Minkowski metric. A better understanding of that actually gives also a
notion of Newtonian mass and a new insight into the Einstein on-shell mass condition, to
be reported in a forthcoming article [5]. The symmetry for the ‘nonrelativistic’ quantum
mechanics is essentially a U(1) central extension [6,7] of the Galilean symmetry, or the one
with the Newtonian time translation taken out—we called that HR(3) as the Heisenberg–
Weyl symmetry with three noncommuting X-P pairs supplemented by the SO(3) [3,5]. For
the ‘relativistic’ case, we found it necessary to go beyond the Poincaré symmetry to the
larger HR(1, 3) [4,5]. The last reference also addresses nonzero spin and composite systems.
Details of those are beyond the scope of the present article. All that illustrate well the value
of looking at the well-known theories from a somewhat different point of view seriously,
as done here.

2. From Relativity to Physical Spacetime and the Particle Phase Space

A conventional path to the formulation of a physical theory is to start with a certain
collection of assumptions about the geometry of the physical spacetime objects in this
theory occupy. That is to say, the theory starts with taking a mathematical model for the
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intuitive notions of the physical space and time. After all, dynamics means the study
of motion, which is basically the change of position with respect to time. In Newtonian
mechanics, Newton himself followed the basic definitions in his Principia with his Scholium
arguing for Euclidean space coupled with absolute time as the foundation of the description
of the physical world; the study of special relativity may be introduced via Minkowski
spacetime; general relativity typically assumes the universe is a (torsion-free) Lorentzian
manifold, and the list goes on. It is then from this ‘foundation’ that one infers the symmetries
present in the model. Note that in Newton’s time, Euclidean geometry is really the only
geometry known. What we hope to convince the reader of in this section is that the
opposite path can be just as fruitful, if not more so. In particular, we start with the relevant
(relativity) symmetry, given by a Lie group (and its associated Lie algebra), and couple
it to the representation that naturally captures the underlying geometry. Once the basic
definitions are in place, we use special relativity as an illustrative example of this procedure.
The approach is extended to present the full theory of particle dynamics in the next section.
Note that the model for the physical space or spacetime is closely connected to the theory of
particle dynamics on it. First of all, Newton introduced the notion of particle as point-mass
to serve as the ideal physical object which has a completely unambiguous position in his
model of the physical space. Conversely, in a theory of particle dynamics, there is no other
physical notion of the physical space itself rather than the collection of possible positions
for a free particle (or the center of mass for a closed system of particles which, however,
have to be defined based on the full particle theory; for example, the three Newton’s Laws).
It is and has to be the configuration space for the free particle.

2.1. The Coset Space Representation

In his seminal paper Raum und Zeit [2], Hermann Minkowski famously said,

The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.

In this statement, Minkowski reveals something of tremendous importance: the idea
of Lorentz symmetry as the right transformations sending inertial frames to inertial frames
directly alter the model geometry of the physical space and time, or spacetime, from the
Newtonian theory. The model for the physical spacetime itself depends on the explicit
form of the Principle of Relativity being postulated, i.e., the relativity symmetry of the theory.
In this subsection, we take this realization to heart and explore precisely how one goes
about recovering the model for the physical spacetime naturally associated with a given
relativity structure for the classical theories.

Consider a Lie group G, with associated Lie algebra g, which we take as capturing
the finite and infinitesimal transformations, respectively, that we can perform on a given
physical system without changing the form of the physical laws. In other words, those
transformations which take a given (inertial) frame of reference into another equally valid
frame. G is then the relativity symmetry, or the symmetry group of the spacetime model of
the theory of particle dynamics.

The use of the word “transformation” above already hints at the need for a representation-
theoretic perspective of what, exactly, the relativity symmetry encodes. Indeed, as it stands
the mathematical group G is merely an abstract collection of symbols obeying certain rules—
a representation capturing the group structure is required to illuminate what these rules
really mean in terms of physical transformations, which are mathematically transformations
on a vector space. The best examples of the latter are our Minkowski spacetime and the
Newtonian space-time. The first, perhaps prosaic, step in this direction is simply to use the
group multiplication, thought of as a (left) action of G on itself:

g′ · g 7→ g′g.
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In other words, we can try to imagine that what we mean by a location/position in
the “physical spacetime” is nothing more than an element g ∈ G, and that a transformation
is then simply furnished directly by the group operation. We have at hand the Poincaré
symmetry denoted by ISO(1, 3) consisting of the rotations and translations conventional
defined as isometries of the Minkowski spacetime. However, to conform completely to the
perspective of taking the symmetry group as the starting point, we are going to simply see
the group as the Lie group obtained from the corresponding Lie algebra iso(1, 3) presented
in Equation (2) below as abstract mathematical objects. We can take each element of the
pure translations as a point in the Minkowski spacetime, which is equivalent to saying that
each point is to be identified as where you get to after a particular spacetime translation
from the origin. Note that while the rotations take any point other than the origin to a
different point, they do not move the origin. From the abstract mathematical point of view,
what we described here is called a coset space. The Minkowski spacetime is a coset space
of the Poincaré symmetry.

From here we consider the coset space M := G/H, defined mathematically as like a
quotient of the group G by a closed subgroup H < G. A coset gH containing the element g
is the collection of all group elements of the form gh where h is any element in H. Note

g′H = g(g−1g′H) = gH for g−1g′ ∈ H .

Observe that the above action descends to an action of the full group G on M in an
obvious way as

g′ · (gH) = (g′g)H .

It is more convenient to use the Lie algebra notation. We write a group element in
terms of

g = exp(aiXi) ,

where the Xi are the generators and ai real parameters (note that, as is typical, we are using
the Einstein summation convention). X = aiXi as a linear combination of the generators,
as basis elements, is an element of the Lie algebra g. Each coset then can be conveniently
identified with an element

exp(sjYj)

where Yj are the generators among the Xi set which serves as a basis for the vector subspace
p of g complementary to the subalgebra h for H, i.e., g = h+ p as a vector space. The real
numbers sj can be seen as coordinates for each coset as a point in the coset space (space
of the cosets) and the group action as symmetry transformations on the coset space, or
equivalently the reference frame transformations. Let us look at such a transformation at
the infinitesimal limit.

We are going to need a specific form of the Baker–Campbell–Hausdorff (BCH) series
for the case of products between a coset representative exp(Y) and an infinitesimal element
exp(X̄). In particular, the result

exp(X̄) exp(Y) = exp(Y− [Y, X̄]) exp(X̄) , (1)

can be easily checked to hold in general, though no similarly simple expression can be find
for two operators/matrices neither infinitesimal, with generic commutation relation.

2.2. From the Poincaré Algebra to Minkowski Space

The protagonists of our story are the Poincaré group and algebra ISO(1, 3) and
iso(1, 3). These describe the finite and infinitesimal transformations, respectively, that turn
one (relativistic) inertial frame into another, i.e., the symmetry which puts the “relativity”
in Einstein’s special relativity. Recall that the Lie algebra iso(1, 3) possesses 10 generators,
which are split up into the 6 generators of rotations, among the spacetime directions, Jµν

(where 0 ≤ µ < ν ≤ 3) and the 4 generators of translations along the 4 directions Eµ

(The conventional description of iso(1, 3) uses instead the “momentum” Pµ as generators,
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which are related to the generators as “energy” used here by Eµ = cPµ. As we will
see in the following sections, Eµ are the more natural choice from the perspective of
symmetry contractions), and which satisfy the following commutation relations (In the
mathematicians’ notation, the commutator is really the Lie product defining the real
Lie algebra to which the set of generators is a basis more naturally without all the ih̄.
Physicists version among to rescaling all the generators by the ih̄ factor, the mathematically
unreasonable i to have the generators correspond, in a unitary representation, to physical
observables and h̄ to give the proper (SI) units to them. Strictly speaking, we should be
thinking about − i

h̄ Eµ and − i
h̄ Jµν as our basis vectors, i.e., the true generators, of the real

Lie algebra, which is the real linear combination of them, with parameters in the proper
physical dimensions):

[Jµν, Jλρ] = −ih̄(ηνλ Jµρ − ηµλ Jνρ + ηµρ Jνλ − ηνρ Jµλ) ,

[Jµν, Eρ] = −ih̄(ηνρEµ − ηµρEν) , [Eµ, Eν] = 0 ,
(2)

with Jµν with µ > ν to be interpreted as −Jνµ, and we use ηµν = {−1, 1, 1, 1} as like the
Minkowski metric. For easy reference, we take a notation convention which is essentially
the same as that of the popular text book by Tung [8], besides using Eµ and an explicit h̄.

It is intuitively clear (and easy to check) that the subset so(1, 3) generated by the
Jµν generators forms a subalgebra of iso(1, 3)—the subalgebra of spacetime rotations
called Lorentz transformations. Thus, if we are interested in the coset representation
introduced in the previous section, the candidate for our Minkowski spacetime should be
the coset space M := ISO(1, 3)/SO(1, 3). We write a generic element X ∈ iso(1, 3) and
Y ∈ iso(1, 3)− so(1, 3) (as the complementary space p) as

X = − i
h̄

(
1
2

ωµν Jµν + bµEµ

)
and Y = − i

h̄
tρEρ ,

respectively. Note that we have put in a factor of 1
2 in the sum ωµν Jµν, with ωµν = −ωνµ, to

lift the µ < ν condition for convenience. Distinct elements in the form Y are in one-to-one
correspondence with the distinct cosets. Next, as we saw in the preceding discussion, we
pass from this to an action on the corresponding coset space M (which, as seen below, is
isomorphic to Minkowski space, R1,3). Consider an infinitesimal transformation given
in the group notation as g′ = exp(X̄H + Ȳ) = 1 + X̄H + Ȳ = exp(Ȳ) exp(X̄H), with X̄H =
− i

2h̄ ω̄µν Jµν and Ȳ = − i
h̄ t̄µEµ. We first check that

[X̄H, Y] = − 1
2h̄2 ω̄µνtρ[Jµν, Eρ]

=
i

2h̄
tρ(ω̄µνηνρEµ + ω̄νµηµρEν)

=
i
h̄

ω̄
µ
ρtρEµ ,

and [Y, [X̄H, Y]] = 0. Applying our BCH Formula (1) for the case, we have

exp(X̄H) exp(Y) = exp(Y− [Y, X̄H]) exp(X̄H)

= exp([X̄H, Y]) exp(Y) exp(X̄H)

as exact in the infinitesimal parameters in X̄H . Thus, the multiplication g′ · (gSO(1, 3)) yields
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exp
(
− i

h̄
t̄µEµ

)
exp
(
− i

2h̄
ω̄µν Jµν

)
exp
(
− i

h̄
tρEρ

)
SO(1, 3)

= exp
(
− i

h̄
t̄µEµ

)
exp
(

i
h̄

ω̄
µ
ρtρEµ

)
exp
(
− i

h̄
tρEρ

)
exp
(
− i

2h̄
ω̄µν Jµν

)
SO(1, 3)

= exp

− i
h̄

(
tµEµ

=

original tµ part

+ (t̄µ − ω̄
µ
ρtρ)Eµ

=

infinitesimal change

)SO(1, 3) ,

which is the resulted coset of

exp
(
− i

h̄
(tµ + dtµ)Eµ

)
SO(1, 3)

where the infinitesimal change in coordinate tµ is given by dtµ = −ω̄
µ
νtν + t̄µ. The last

equation can be seen as giving a representation of iso(1, 3) on M by identifying the coset
represented by Y with the column vector (tµ, 1)T and X̄ = X̄H + Ȳ with the matrix:

X̄ =
i
h̄
(
− ω̄µν Jµν + t̄µEµ

) represented by−−−−−−−−→
(
−ω̄

µ
ν t̄µ

0 0

)
so that (

dtµ

0

)
=

(
−ω̄

µ
ν t̄µ

0 0

)(
tν

1

)
=

(
−ω̄

µ
νtν + t̄µ

0

)
. (3)

We have derived above the representation of the Lie algebra iso(1, 3) for the infinitesi-
mal transformations of the coset space M, which obviously can be seen as a vector space
with tµ being the four-vector. The elements of iso(1, 3) associated with the infinitesimal
transformations with t̄µ = 0, i.e., elements of the Lorentz subalgebra so(1, 3), indeed
exponentiate into a SO(1, 3) Lorentz transformation on tµ as(

−ω
µ
ν 0

0 0

)
exp−−−−−→

(
Λµ

ν 0
0 1

)
leads to−−−−−→

the action

(
Λµ

ν 0
0 1

)(
tν

1

)
=

(
Λµ

νtν

1

)
.

Similarly, the infinitesimal translations exponentiate into the finite translations

exp
(

0 bµ

0 0

)
=

(
δ

µ
ν Bµ

0 1

)
.

In fact, the Poincaré symmetry is given in physics textbooks typically as the transfor-
mations

xµ → Λµ
νxν + Aµ .

from which one can obtain the same infinitesimal transformations with d(Λµ
ν) = (−ω

µ
ν)

and 1
c dAµ similarly associated with bµ, switching from xµ to our tµ = 1

c xµ. That is actually
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defining a symmetry group through a representation of its generic element. Putting that in
the matrix form, we have(

Λµ
νtν + Bµ

1

)
=

[(
δ

µ
ρ Bµ

0 1

)(
Λρ

ν 0
0 1

)](
tν

1

)
= exp

(
0 bµ

0 0

)
exp
(
−ω

ρ
ν 0

0 0

)(
tν

1

)
,

from which we can see the infinitesimal limit of the transformation matrix being[
I +

(
0 bµ

0 0

)][
I +

(
−ω

µ
ν 0

0 0

)]
= I +

(
−ω

µ
ν bµ

0 0

)
.

In fact, we can think of each point (tµ, 1)T in M as being defined by the action of the
above matrices on the coordinate origin (0, 1)T by taking Bµ = tµ. Indeed,(

tµ

1

)
≡
(

Λµ
ν tµ

0 1

)(
0
1

)
=

(
tµ

1

)
; (4)

hence, the tµ-space is essentially isomorphic to the collection of matrices of the form(
Λµ

ν tµ

0 1

)
.

Then, each of the translational elements can be taken as the standard representative
for the coset (

δ
µ
ν tµ

0 1

)
SO(1, 3) .

The latter, therefore, describes a full coset, and the vector space of all such cosets is

isomorphic to that of the collection of all e(−
i
h̄ tµEµ)SO(1, 3) from the abstract mathematical

description we start with.
When the Minkowski spacetime is taken as the starting point, it is a homogeneous

space in the physical sense that every point in it is really much the same as another. Each
can be taken as the origin on which we can put in a coordinate system fixing a frame of
reference. The symmetry of it as a geometric space is caught in the mathematical definition
of a homogeneous space as a space with a transitive group of symmetry, meaning every
two points in it can be connected through the action of a group element. For a particular
point like the origin, there is a subgroup of the symmetry that does not move it, which
is called the little group. It is a mathematical theorem that the homogeneous space is
isomorphic to the coset space of the symmetry group “divided by” the little group. Our
result of the Minkowski spacetime as ISO(1, 3)/SO(1, 3), whether in terms of the tµ or the
xµ coordinates, is just a case example.

Indeed, using tµ as the coset space coordinates is really no different from using Pµ as
generators and xµ. This is because we can write Lorentz transformations as

x′0 = γ(x0 + βixi)

x′i = γ(xi + βix0) ,
(5)

or equivalently as
t′0 = γ(t0 + βiti)

t′i = γ(ti + βit0) ,
(6)
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with βi =
vi
c , βi = vi

c , and γ = 1√
1−βi β

i
. Both of the above are equivalent to

t′ = γ(t + βi
c xi) = γ(t + vi

c2 xi)

x′i = γ(xi + βict) = γ(xi + vit) ,
(7)

where t ≡ t0. In other words, tµ and xµ describe the same spacetime “position” four-vector,
they are simply expressed in time and space units, respectively. Einsteinian relativity
says space and time are coordinates of a single spacetime, hence they are naturally to be
expressed in the same units. It does not say that the spatial units are preferable, or in
some sense more natural, than the time units. Straight to the spirit of special relativity, we
should rather use the same unit to measure tµ and xµ in which c = 1. With the different
units, although textbooks typically use xµ, what we show below is that we should indeed
start with tµ as coordinates for Minkowski spacetime, as we have done above, if we want
to directly and naturally recover t and xi as coordinates of the representation space of
Newtonian physics in the Newtonian limit, i.e., under the symmetry contraction described
in the following section.

In physical terms, Jµν has the units of h̄, while the algebra element − i
h̄ (ω

µν Jµν + bµEµ)
has no units (for we do not want to exponentiate something that has units). Hence, ωµν

must also have no units, and bµEµ has the units of h̄, giving bµ the unit of time. Similarly,
aµ, and xµ, as well as Aµ, have the units of h̄ divided by that of Pµ. All quantities now have
the right units, and c of course has the units of xµ

tµ , i.e., distance over time.

2.3. The Phase Space for Particle Dynamics as a Coset Space

After the Minkowski spacetime M described above, we come to another important
coset space of the Poincaré symmetry, one that serves as the phase space for a single
particle. Besides the spacetime coordinates, we also need the momentum or equivalently
the velocity coordinates. However, the only parameters in the description of the group
elements that correspond to velocity are those for the components of the three-vector
βi = ωi0. The candidate coset space is ISO(1, 3)/SO(3) which is seven-dimensional. An
otherwise candidate is ISO(1, 3)/TH × SO(3) where TH denotes the one-parameter group
of (‘time’) translations generated by H = E0, which corresponds to the physical energy.
That space loses the time coordinate t0 which cannot be desirable. There is a further option
of extending ISO(1, 3)/SO(3). Let us first look carefully at the latter coset space. Instead
of deriving that coset space ‘representation’ from the first principle as for the Minkowski
spacetime above, however, we construct it differently. The coset space here is not a vector
space, hence the group action on it is not a representation. Without the linear structure, the
group transformations cannot be written in terms of matrices acting on vectors representing
the states each as a point in the space. Moreover, obtaining the resultant coset of a generic
group transformation on a coset following the approach above is a lot more nontrivial. A
vector space description of a phase space as a simple extension of the coset space can be
constructed from physics consideration.

Newtonian mechanics as the nonrelativistic limit to special relativity has of course a
six-dimensional vector space as the phase space, each point in which is described by two
three-vectors, the position vector xi and the momentum vector pi. The two parts are in fact
independent coset space representations of the corresponding relativity symmetry—the
Galilean relativity. Or the full phase space can be taken as a single coset space. Going
to special relativity, the three-vectors are to be promoted to Minkowski four-vectors. A
four-vector is an element in the four dimensional irreducible representation of the SO(1, 3)
symmetry, while a three-vector belongs to the three dimensional irreducible representation
of the SO(3) group as a subgroup of SO(1, 3). Promoting xi to xµ we get the Minkowski
spacetime M depicted with tµ = xµ

c as the ISO(1, 3)/SO(1, 3) coset space. Things for
the momentum four-vector pµ are somewhat different. It is a constrained vector with
magnitude square pµ pµ fixed by the particle rest mass m as −(mc)2, so long as the theory
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of special relativity is concerned. The actual admissible momenta only corresponds to
points on the hyperboloid pµ pµ = −(mc)2, which is a three-dimensional curved space.
This suggests using the eight-dimensional vector space of (xµ, pµ), or equivalently (tµ, uµ)

with uµ = pµ

mc , the velocity four-vector in c = 1 unit, for a Lorentz covariant formulation.
The dimensionless ‘momentum’ uµ is used for the conjugate variables mostly to match
better to the group coset language. The value of −(mc)2 though is a Casimir invariant
of the Poincaré symmetry which is a parameter for characterizing a generic irreducible
representation of the symmetry [8]. So, it makes good sense to use the momentum variables,
though it really makes no difference when only a single particle is considered.

The momentum or rather velocity hyperboloid uµuµ = −1, recall uµ = (γ, γβi)T, is
indeed a homogeneous space of SO(1, 3) corresponding to the coset space SO(1, 3)/SO(3).
SO(3) which keeps the point uµ = (1, 0, 0, 0)T fixed is the little group. A simple way to
see that is to identify each point in the hyperboloid by the Lorentz boost that uniquely
takes the reference point uµ = (1, 0, 0, 0)T to it, hence equivalently by the coset represented
by the boosts. Matching with the group notation as we have above, each coset is an
exp(− i

h̄ ω0i J0i)SO(3). In fact, the coordinate for the coset ω0i = −ωi0 can be identified with
−βi, for example from t′0 = γ(t0 + βiti) giving dt0 = β̄iti = −ω̄0

i ti. Putting together the
‘phase space’ as a product of the configuration space and the momentum space, we have

ISO(1, 3)/SO(1, 3)× SO(1, 3)/SO(3) ,

which is mathematically exactly ISO(1, 3)/SO(3). We cannot use it as the actual phase
space in the Hamiltonian formulation of the particle dynamics, which has to have coordi-
nates in conjugate pairs. Note that no parameter in the full Poincaré group can correspond
to u0 and βi cannot be part of a four-vector. But there is no harm using the redundant
coordinates uµ to describe points in the velocity hyperboloid. That is mathematically a
natural embedding of the velocity hyperboloid into the Minkowski four-vector velocity
space Mv.

Let us write down the explicit infinitesimal action of SO(1, 3) on SO(1, 3)/SO(3). Note
that the translations generated by Eµ in the Poincaré group do not act on the velocity four-
vector uµ. The action hence can be seen as the full action of the Poincaré group. Obviously,
we have simply duµ = −ω̄

µ
νuν. Rewriting that by taking out a γ = u0 factor, we have

dβi + βi dγ

γ
= −ω̄i

jβ
j + β̄i , (8)

and dγ
γ = β̄kβk. The latter as the extra term in the dβi expression shows the complication

of the description in terms of the coset coordinates βi or ω0i versus the simple picture in
terms of uµ.

3. Special Relativity as a Theory of Hamiltonian Dynamics

The Hamiltonian formulation of a dynamical theory is a powerful one which is also
particularly good for a symmetry theoretical formalism. Here, we consider a coset space
of the relativity symmetry group as the particle phase space, one bearing the geometric
structure of a so-called symplectic space. The structure can be seen as given by the existence
of a Poisson bracket as an antisymmetry bilinear structure on the algebra of differentiable
functions F on the space to be given under local coordinates zn as

{F(zn), F′(zn)} = Ωmn ∂F
∂zm

∂F′

∂zn , Ωmn = −Ωnm , det Ω = 1 .

In terms of canonical coordinates, for example, the position and momentum of a single
(‘nonrelativistic’) Newtonian particle, we have

{F(xi, pi), F′(xi, pi)} = δij
(

∂F
∂xi

∂F′

∂pj −
∂F
∂pj

∂F′

∂xi

)
.
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General Hamiltonian equation of motion for any observable F(zn) is given by

d
dt

F(zn) = {F(zn), Ht(zn)} , (9)

where Ht(zn) is the physical Hamiltonian as the energy function on the phase space, which
for case of F being xi or pi reduces to

d
dt

xi =
∂Ht

∂pi ,
d
dt

pi = −∂Ht

∂xi .

Note that the configuration/position variables xi and momentum variables pi are to
be considered the basic independent variables while the Newtonian particle momentum
being mass times velocity is to be retrieved from the equations of motion for the standard
case with the pi dependent part of Ht being pi pi/2m.

3.1. Dynamics as Symmetry Transformations

The key lesson here is to appreciate that the phase space (symplectic) geometric
structure guarantees that for any generic Hamiltonian function Hs, points on the phase
space having the same value for the function lie on a curve of the Hamiltonian flow
characterized by the monotonically increasing real parameter s on which any observables
F(zn) satisfy the equation

d
ds

F(zn) = {F(zn),Hs(zn)} . (10)

The equation of motion for the usual case is simply the case forHt, i.e., time evolution.
Such a physical Hamiltonian can have more than one choice, so long as the evolution
parameter is essentially a measure of time. The class of Hamiltonian flows each generated
by a Hamiltonian function having a vanishing Poisson bracket with the physical Hamil-
tonian function are then the symmetries of the corresponding physical system and the
Hamiltonian functions the related conserved quantities. In fact, a Hamiltonian flow is the
one-parameter group of symmetry transformations with Hs the generator function. We
have the Hamiltonian vector field

Xs = −{Hs(zn), ·} (11)

as a differential operator being the generator and the collection of such Xs being a repre-
sentation of the basis vectors of the symmetry Lie algebra. Hence, we have

dF
ds

= Xs(F) . (12)

The structure works at least for any theory of particle dynamics with any background
relativity symmetry, including, for example, Newtonian and Einsteinian ones of our focus
here, as well as quantum mechanics. Mathematics for the latter case is quite a bit more
involved, and in many ways is more natural and beautiful from the symmetry point of
view. Interested readers are referred to Refs. [3–5].

3.2. Particle Dynamics of Special Relativity

For the phase space formulation of particle dynamics of special relativity, we can
have a picture of the particle phase space as the coset space P := ISO(1, 3)/TH × SO(3)
with canonical coordinates (tk, uk). The standard Hamilton’s equations in our canonical
coordinates are

dti
dt

=
∂Ht(tk, uk)

∂ui ,
dui
dt

= −∂Ht(tk, uk)

∂ti , (13)
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where Hamiltonian function Ht(tk, uk) =
√

1 + ukuk, which is basically energy per unit

mass in the dimensionless velocity unit (mc2Ht = c
√

m2c2 + pk pk = c p0). The equations

are only special cases of Equation (10). Note that the first equation really gives dti
dt =

ui√
1+ukuk

= βi as
√

1 + ukuk = γ, and the second dui
dt = 0. For the extended phase space

Pe := M×Mv, with canonical coordinates (tµ, uµ), we have

dtµ

dζ
=

∂H̃ζ(tν, uν)

∂uµ ,
duµ

dζ
= −

∂H̃ζ(tν, uν)

∂tµ , (14)

with the extended Hamiltonian H̃ζ(tν, uν) = Ht − u0 giving, besides the same results as
fromHt above, du0

dζ = 0 for consistency and dt0
dζ = −1, hence ζ as essentially the coordinate

time t0 ≡ t, and the same dynamics [9]. Alternatively, we can have a covariant description
with the proper time evolution

dtµ

dτ
=

∂H̃τ(tν, uν)

∂uµ = uµ ,
duµ

dτ
= −∂H̃τ(tν, uν)

∂tµ = 0 , (15)

where H̃τ(tν, uν) = uνuν

2 . All formulations have equations of the form (10). In fact, they
can be seen all as special cases of the single general equation from the symmetry of the
symplectic manifold coordinated by (tµ, uµ).

We only write free particle dynamics here. The reason being special relativity actually
does not admit motion under a nontrivial xµ or tµ dependent potential without upsetting
uµuµ = −1. Motion under gauge field, like electromagnetic field, modifies the nature of
the conjugate momentum and the story is somewhat different.

3.3. Hamiltonian Flows Generated by Elements of the Poincaré Symmetry

We first look at the (tµ, uµ) phase space picture. With the canonical coordinates, we
have from Equation (11)

dtµ = s̄
∂H̃s

∂uµ , duµ = −s̄
∂H̃s

∂tµ , (16)

where s̄ = ds is the infinitesimal parameter in line with the notation of our coset descriptions
above. We can see that the canonical transformations given by the equations for the
generators of the Poincaré symmetry exactly agree with our coset picture above. For
H̃ωµν = tµuν − tνuµ, we have dtρ = −δ

ρ
µω̄

µ
νtν + δ

ρ
νω̄ ν

µ tµ and duρ = −δ
ρ
µω̄

µ
νuν + δ

ρ
νω̄ ν

µ uµ,
while for H̃bµ = uµ, we have dtρ = δ

ρ
µ b̄µ, duρ = 0—note that here we are talking about

specific H̃s functions with specific infinitesimal parameters s̄ on specific phase space
variables and there is no summation over any of the indices involved in the expressions.

The 10 Hamiltonian functions H̃ωµν and H̃bµ combined together gives a full realization
of the action of the Poincaré symmetry as transformations on the covariant phase space
of (tµ, uµ). One can check that with the Poisson bracket as the Lie bracket, they span a
Lie algebra:

{H̃ωµν , H̃ωλρ}4 = −(ηνλH̃ωµρ − ηµλH̃ωνρ + ηµρH̃ωνλ − ηνρH̃ωµλ) ,

{H̃ωµν , H̃bρ}4 = −(ηνρH̃bµ − ηµρH̃bν) , {H̃bµ , H̃bν}4 = 0 ,
(17)

where we have explicitly

{H̃1, H̃2}4 = ηµν

(
∂H̃1

∂tµ

∂H̃2

∂uν
− ∂H̃1

∂uν

∂H̃2

∂tµ

)
.

Matching H̃ωµν to ih̄Jµν and H̃bµ to ih̄Eµ we can see that the Lie algebra is that of the
Poincaré symmetry given by Equation (2). In fact, it is a representation of the symmetry on
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the space of functions of the phase space variables. If the phase space P is taken, however,
we can have only as Hamiltonian functions Hωij and Hbi , with identical expressions to
H̃ωij and H̃bi , illustrating only the ISO(3) symmetry of translations and rotations, with the
Lie product

{H1,H2}3 = ηij
(

∂H1

∂ti
∂H2

∂uj −
∂H1

∂uj
∂H2

∂ti

)
.

The time translation symmetry can be added with Ht given above, which has the
right vanishing Lie product as {Hωij ,Ht}3 = 0 and {Hbi ,Ht}3 = 0. Not being able to have
the boosts as Hamiltonian transformations is one of the short-coming of not using the
covariant phase space.

4. Contractions as Approximations of Physical Theories

With an understanding of how the principle of relativity informs our notion of phys-
ical spacetime and the theory of particle dynamics behind us, we can move on to the
important connection this language provides us between different theories from the rela-
tivity symmetry perspective. Broadly speaking this can be put as: it is commonplace to
find phrases like “Newtonian physics arises from special relativity when c→ ∞” and we
place such comments on a firm mathematical foundation within the relativity theoretical
symmetry setting.

4.1. A Crash Course on Symmetry Contractions

Imagine we are standing on a perfectly spherical, uninhabited planetary body (This ex-
ample, and indeed the entire examination of contractions found here, is strongly influenced
by the wonderful discussion found in [7]). The transformation that arise as symmetries of
said body are nothing more than the SO(3) group elements as rotations about the center.
Now consider what we can say if this body began to rapidly expand without limit. It is
intuitively clear that as the radius of the sphere becomes larger and larger, making the
surface of the sphere more and more flat, the symmetries of this body should be approach-
ing, in some sense, those of the Euclidean plane, i.e., ISO(2). It might not, however, be
immediately clear how exactly this is encoded in the structure of the Lie algebras. How
might one achieve such a description? It is ultimately this question, applied to a general Lie
algebra g, that we are concerned with in this section. The notion of a contraction is precisely
the answer we are looking for.

In particular, we focus on the simplest form of contractions: the so-called Inönü-Wigner
contractions [10]. The setup is as follows: consider a Lie algebra g with a decomposition
g = h+ p, where h is an n-dimensional subalgebra and p the complementary m-dimensional
vector subspace. In terms of our example above, the idea is that we collect the portion of
the symmetries that do not change in the limit (which are the rotations around the vertical
axis through where we stand on the planet, for the example at hand) and call their Lie
algebra h. The rest, or the span of the independent generators is p. Then, we can form a
one-parameter sequence of base changes, corresponding directly to the change in scale of
the physical system, of the form(

h

p′

)
=

(
In 0
0 1

R Im

)(
h

p

)
for any nonzero value of R here taken conveniently as positive. For any finite R, the Lie
algebra hence our symmetry is not changed. In the R→ ∞ limit, however,we obtain the
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contracted algebra g′ = h⊕ p′. Note that, although the change of basis matrix is singular in
the limit, the commutation relations still make sense:

[h, h] = [h, h] ⊆ h
R→∞−−−−−−→ h ,

[h′, p′] =
1
R
[h, p] ⊆ 1

R
(h+ p) =

1
R
h+ p′

R→∞−−−−−−→ p′ ,

[p′, p′] =
1

R2 [p, p] ⊆ 1
R2 (h+ p) =

1
R2 h+

1
R
p′

R→∞−−−−−−→ 0 .

Though the vector space is the same, the Lie products, or commutators, change. p is
in general not even a subalgebra of g. p′ is however an Abelian subalgebra of g′ and is an
invariant one.

Take the explicit example we have. The Lie algebra so(3) for the group SO(3) is given
by the commutation relations

[Jx, Jy] = ih̄Jz, [Jy, Jz] = ih̄Jx, and [Jz, Jx] = ih̄Jy .

Under the rescaling Px = 1
R Jx, Py = 1

R Jy, and Jz as the generator of h is not changed
(taking a coordinate system with where we stand as the on the positive z-axis), the commu-
tators become

[Px, Py] =
1

R2 [Jx, Jy] =
ih̄
R2 Jz → 0 ,

[Jz, Px] =
1
R
[Jz, Jx] = ih̄Py ,

[Jz, Py] =
1
R
[Jz, Jy] = −ih̄Px ,

in the limit as R → ∞. Therefore, we recover precisely commutation relations of the Lie
algebra iso(2) (Our notation is such that it has a nice matching to the Poincaré symmetry
ones used above, with the identification of Jx, Jy, Jz, Px and Py as J23, J31, J12, E1 and E2, respec-
tively). From the physical geometric perspective, we see that what is really happening in
the limit is that the ratio of the characteristic distance scales we have chosen, like the length
of our foot step or the distance we can travel and that of the radius, is becoming zero. The
radius R is effectively infinity to us if we can only manage to explore a distance tiny in
comparison. The planet is as good as flat to us then, though it is only an approximation.

4.2. The Poincaré to Galilean Symmetry Contraction

Our starting point for describing the transition from Einsteinian relativity to Galilean
relativity is the following natural choice of a contraction of the Poincaré algebra to the
Galilean algebra. Moreover, we see that this takes Minkowski spacetime, viewed as a coset
space of ISO(1, 3), to ordinary Newtonian space-time, viewed as a coset space of G(3).
Actually, it goes all the way to take the full dynamical theory as given by the symplectic
geometry of the phase space as a representation space from that of special relativity to the
Newtonian one.

The contraction is performed via the new generators Ki =
1
c Ji0 and Pi =

1
c Ei, keeping

Jij and E0 is renamed −H. Then, we have

[Jij, Jhk] = −ih̄(δjh Jik − δih Jjk + δik Jjh − δjk Jih) ,

[Jjk, H] = 0 ,
(18)
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which is the subalgebra that is not rescaled (ηij = δij). As for the other commutators,
we have

[Jij, Kk] =
1
c
[Jij, Jk0] = −ih̄(δjkKi − δikKj) ,

[Ki, Kj] =
1
c2 [Ji0, Jj0] = −ih̄

1
c2 Jij ,

[Jij, Pk] =
1
c
[Jij, Ek] = −ih̄(δjkPi − δikPj) ,

[Jij, H] = 0 ,

[Ki, Pj] =
1
c2 [Ji0, Ej] = −ih̄

1
c2 ηijH ,

[Ki, H] = −1
c
[Ji0, E0] = −ih̄Pi ,

[H, Pi] = −
1
c
[E0, Ei] = 0 ,

[Pi, Pj] =
1
c2 [Ei, Ej] = 0 .

(19)

When we take the c → ∞ limit, we have [Ki, Kj] = 0 and [Ki, Pj] = 0. That is, we
recover the Galilean symmetry algebra. Note that we need the 1

c factor in Ki =
1
c Ji0 to

get [Ki, Kj] = 0, hence, Lorentz boosts becoming commutating Galilean boosts. Moreover,
this will give [Ki, Pj] = 0 as well if we simply take Pi = Ei. However, this will also yield
[Ki, H] = 0 in the contraction limit which cannot be the Galilean symmetry. By taking
Pi =

1
c Ei though, one can see that this saves [Ki, H] = −ih̄Pi, as needed. This is actually

precisely the reason we wanted to start with Eµ, instead of Pµ! Indeed, the momentum Pi
are not the generators of the Poincaré algebra we started with before the introduction of
the nontrivial factor of c.

The mathematical formulation of the contraction above can also be understood from
a geometric picture. It is about an approximation when the relevant velocities of particle
motion have magnitudes small relative to the speed of light c, i.e., βi << 1. The velocity
space for particle motion under special relativity is the three-dimensional hyperboloid
of ‘radius’ c—the four-velocity cuµ is a timelike vector of magnitude c. When we are
only looking at a small region around zero motion of uµ = (1, 0, 0, 0)T, the velocity space
seems to be flat, like the Euclidean space of Newtonian three-velocity vi, and the boosts as
commuting velocity translations.

4.3. Retrieving Newtonian Space-Time from Minkowski Spacetime

Now we can parse the changes in the Minkowski spacetime coordinates tµ, as a
representation, under the contraction. First of all, we have to write our algebra elements in
terms of these new generators to paint a coherent picture. We have

− i
h̄

(
1
2

ωµν Jµν + bµEµ

)
= − i

h̄

(
1
2

ωij Jij + b0E0 + ω0i J0i + biEi

)
= − i

h̄

(
1
2

ωij Jij + b0E0 + c ωi0Ki + c biPi

)
= − i

h̄

(
1
2

ωij Jij + b0E0 + viKi + aiPi

)
,

(20)

where vi = c ωi0 and ai = c bi are the new parameters for the boosts and spatial translations
(i.e., the xi translations). The representation for the algebra is given by
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 dt
dxi = c dti

0

 ≡

 0 − 1
c ω̄0

j b̄
−c ω̄i

0 −ω̄i
j āi = c b̄i

0 0 0


 t

xi = c ti

1

 =

 − 1
c ω̄0

jx
j + b̄

−c ω̄i
0t− ω̄i

jx
j + āi

0


=

 0 1
c2 v̄j b̄

v̄i −ω̄i
j āi

0 0 0


 t

xi

1

 =

 1
c2 v̄jxj + b̄

v̄it− ω̄i
jx

j + āi

0

 .

(21)

where we have used

c ω̄i
0 = −c ω̄i0 = −c β̄i = −v̄i , ω̄0

j = ω̄0j = −1
c

vj .

Lastly, we take the limit c→ ∞ and get dt
dxi

0

 =

 0 0 b̄
v̄i −ω̄i

j āi

0 0 0

 t
xi

1

 =

 b̄
v̄it− ω̄i

jx
j + āi

0

 . (22)

The group of finite transformations can be written in the form t′

x′i

1

 =

 1 0 B
Vi Ri

j Ai

0 0 1

 t
xi

1

 =

 t + B
Vit + Ri

jx
j + Ai

1

 . (23)

Newtonian space-time with transformations under a generic element in the Galilean
group was retrieved. Now we can see that the Newtonian space-time ‘points’ can be
described by the coset 1 0 t

Vi Ri
j xi

0 0 1

 =

 1 0 t
0 δi

k xi

0 0 1

 1 0 0
Vk Rk

j 0
0 0 1

 ,

as  1 0 t
Vi Ri

j xi

0 0 1

 0
0
1

 =

 t
xi

1

 .

Indeed, the matrix expressed as that product of two is exactly in the form of the
first matrix representing a particular element exp

(
− i

h̄ (tH + xiPi)
)

of pure translations
multiply to any element with the rotations and Galilean boosts, as translations on the space
of Newtonian velocity, only, hence any element of the coset exp

(
− i

h̄ (tH + xiPi)
)

ISOv(3).
The Newtonian space-time as a coset space is given by G(3)/ISOv(3), and the ISOv(3)
subgroup is exactly the result of the contraction from SO(1, 3), i.e., we have

ISO(1, 3)/SO(1, 3) −→ G(3)/ISOv(3) .

The infinitesimal action of the G(3) group on the coset here obtained from the contrac-
tion may also be obtained directly from first principle. The simpler commutation relations
actually make the calculation easier.

In Einstein relativity, spacetime should be described by coordinates with the same
units. The natural units are given by the c = 1 units, which identifies each spatial distance
unit with a time unit, and vice versa. If one insists on using different units for the time
and space parts, c has then the unit of distance over time and can be written as any value
in different units, like ∼ 3 × 108 ms−1, or ∼ 3 × 1028 A yr−1, or ∼ 3 × 10−7 km ps−1, or
∼10−26 Mpc ps−1. The exact choice of units is arbitrary. The structure of the physical
theory is independent of that. Hence, any finite value of c describes the same symmetry
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represented by spacetime coordinates in different units. The c → ∞ limit is different.
Infinity is infinity in any units, and the algebra becomes the contracted one, which is to say
that the relativity symmetry becomes Galilean. The latter is practical as an approximation
for physics at velocity much less than c. Pictured in the Minkowski spacetime, such lines of
motion hardly deviate from the time axis, giving the idea of the Newtonian absolute time.
The relativity symmetry contraction picture gives a coherent description of all aspects of
that approximate theory, including the dynamics to which we turn below.

4.4. Hamiltonian Transformations and Particle Dynamics at the Newtonian Limit

Turning to the phase space pictures, we have already dtµ = −ω̄
µ
ν tν + t̄µ giving at the

contraction limit dt = t̄ and dxi = v̄it−ωi
jx

j + x̄i. Similarly, we can see that

du0 = −ω̄0
i ui = β̄iui =⇒ dγ = v̄iviγ

c2 → 0 ,

dui = −ω̄i
νuν =⇒ dvi = −vi dγ

γ − ω̄i
jv

j + v̄i → −ω̄i
jv

j + v̄i ,
(24)

where we have used Equation (8). The phase space P at the contraction limit should be
described with coordinates (xi, vi). The coset space of ISO(1, 3)/SO(3) or Pe with (t, xi, vi)
as γ→ 1 can no longer have t as a meaningful coordinate. We have then only one sensible
phase space as the Newtonian one here with (xi, vi).

To look at the Hamiltonian symmetry flows or the dynamics at the contraction limit,
the notation of the Hamiltonian vector field is convenient. On P with {·, ·}3 we have

X(3)
s = −{Hs(ti, ui), ·}3 = −ηij

(
∂Hs(ti, ui)

∂ti
∂

∂uj −
∂Hs(ti, ui)

∂uj
∂

∂ti

)
= −δij

(
∂c2Hs(xi, vi)

∂xi
∂

∂(γvj)
− ∂c2Hs(xi, vi)

∂(γvj)

∂

∂xi

)
.

(25)

For Ht =
√

1 + ukuk in particular, we have c2Ht = c2 + 1
2 γ2vkvk + . . . where the

terms not shown contain negative powers of c2 and vanish at the c→ ∞ contraction limit.
Multiply by the mass m and take the expression to the contraction limit, the first term is
diverging, but is really the constant rest mass contribution to energy, while the finite second
term is the kinetic energy mHt =

1
2 mvkvk. Anyway, the c2 term being constant does not

contribute to X(3)
t , which then reduces to

X(3)
t → Xt = −δij

(
∂Ht

∂xi
∂

∂vj −
∂Ht

∂vj
∂

∂xi

)
. (26)

The Hamilton’s equations of motion are more directly giving dxi
dt = vi and dvi

dt = 0. We
have retrieved free particle dynamics of the Newtonian theory, though with the mass m
dropped from the description. The case with a nontrivial potential energy V can obviously
be given by taking Ht =

1
2 vkvk + V

m . The fact that the case cannot be retrieved from the
contraction limit of special relativity is a limitation of the latter which cannot describe
potential interaction other than those from gauge fields [11].

On the Lorentz covariant phase space, we have

X(4)
s = −{H̃s(tµ, uµ), ·}4 = −{H̃s, ·}3 − η00

(
∂H̃s

∂t0

∂

∂u0
− ∂H̃s

∂u0

∂

∂t0

)
. (27)

This, together with the above, shows that for c→ ∞

X(4)
ζ = X(3)

t +
∂

∂t0
→ Xt +

∂

∂t
, (28)
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giving the same dynamics. Similarly, we have X(4)
τ giving the same limit, as c2H̃τ =

Ht +
c2γ2

2 → Ht +
c2

2 . The exact limits of the X(4)
s are generally vector fields on the space

of (t, xi, vi) though. The space can be seen as an extension of the Newtonian phase space
with the time coordinate, and a Poisson bracket defined independent of the latter. The
true Hamiltonian vector field as a vector field on the phase space should have the t part
dropped from consideration, like Xt +

∂
∂t projected onto Xt.

Further extending the analysis to the Hamiltonian functionsHωij = H̃ωij ,Hbi = H̃bi ,
Ht, H̃ωi0 , and H̃b0 , one can retrieve

{Hωij , Hωhk} = −(δjh Hωik − δih Hω jk + δik Hω jh − δjk Hωih) ,

{Hωij , Hvk} = −(δjk Hvi − δik Hvj) , {Hvi , Hvj} = 0 ,

{Hωik , Hak} = −(δjk Hai − δik Haj) , {Hai , Haj} = 0 ,

{Hvi , Haj} = −δij , {Hvi , Ht} = −Hai , {Ht, Hai} = 0 ,

{Hωij , Ht} = 0 ,

(29)

with Hωij = xivj − xjvi, Hvi = −xi, and Hai = vi. We have already looked at Ht from
c2Ht. H̃b0 = u0 can of course be rewritten as −Ht, which is in line with the Galilean
generator H as −E0. Note that the set of Hamiltonian vector fields as differential operators
serve as a representation of the Lie algebra generators, as infinitesimal transformations
on the phase space, with their commutators as the Lie product/brackets. While the
corresponding Hamiltonian functions are usually talked about as generating function or
even generators for the Hamiltonian flows on the phase space, they are really elements of
the observable algebra as the corresponding representation of the universal enveloping
algebra or some extension of the group algebra with the simple functional product. The Lie
product/brackets is there represented again as the commutator which vanishes between
all Hamiltonian functions. The Poisson bracket as an alternative Lie bracket on the latter
realizes rather the Lie bracket of the representation of the U(1) central extension of the
Galilean symmetry [6,7]. The latter is essentially the relativity symmetry for the in quantum
mechanics. In fact, the ‘mismatch’ between the two parts, as {Hvi , Haj} = −δij versus
[Xvi , Xaj ] = [Ki, Pj] = 0 can be better understood from the symmetry contraction of the
quantum theory, hence can be seen to have a quantum origin [3]. Hωij and Hai = vi are
from the limit of c2H̃ωij and cH̃bi , respectively. We can see from the above Hamiltonian
vector field analysis that using the (xi, vi) instead of (ti, ui) as canonical coordinates implies
a c2 factor for the matching Hamiltonian function. The 1

c extra factor in Hai is from the
symmetry contraction of Pi =

1
c Ei. The a bit more complicated case is with the Hamiltonian

generator for the Galilean boosts Hvi . We are supposed to take again cH̃ω0i to the c→ ∞
limit, which gives vit− xi and the Hamiltonian vector field as ∂

∂vi − t ∂
∂xi . Projecting that

vector field on space of (t, xi, vi) to a Hamiltonian vector field on the phase space gives
only ∂

∂vi , which corresponds to our Hamiltonian function of Hvi = −xi. If vit− xi is naively
taken, all expressions would be the same except {Hvi , Hvj}, which would then be −2tδij.

5. Concluding Remarks

As we have seen above, quite a lot of information about our description of physical
systems is actually encoded in the underlying relativity symmetry algebra. What we
hope to emphasize here is that this is really a great, if not the only correct, perspective
from which one can classify a physical paradigm, as well as the possible extensions and
approximations.

It is also important to note that this story is not unique to special relativity and the
Newtonian limit. There is, indeed, an additional question motivating this note, namely,
how the symmetry perspective can be used to understand better quantum mechanics and
its classical limit. The relativity symmetry contraction picture can be seen as a way to un-
derstand the classical phase space as an approximation to the quantum phase space [3], and
even suggests a notion of a quantum model for the physical space [12]. In a broader scope,
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relativity symmetry deformations was much pursued as a probe to possible dynamical
theories at the more fundamental levels [13–17].

Concerning the classical theories with some coset spaces serving essentially as the
phase spaces for dynamical theories under the corresponding symmetries, it should be
mentioned that the so-called coadjoint orbits of Lie groups are essentially the only non-
trivial mathematical candidates for symplectic geometries. The full structures of all such
symplectic geometries, and hence, dynamical theories can be derived [6,18,19], though the
detailed mathematics are not so easily appreciable to many students. Coset spaces are also
the natural candidates for homogeneous geometric spaces.
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Appendix A. Deformations as Probes of More Fundamental Physics

We would expect the symmetry of a physical system to be robust under small per-
turbations, as otherwise our limited precise in measurements would imply that we can
never actually correctly determine or identify the symmetry of a given system. Indeed,
the fact that a minute perturbation—too small to be detected by our best measuring
apparatuses—could yield a different symmetry Lie algebra than the actual one means that
we are epistemologically blind to the underlying physics. As such, it makes sense to focus
our attention on algebras that are significantly robust under small perturbations.

For a Lie algebra, a perturbation can be taken as a (small) modification of the structural
constants. For example, taking the Lorentz symmetry of SO(1, 3) with generators at the
standard physical units, the commutators/Lie brackets among the infinitesimal Lorentz
boost generators is proportional to 1/c2, as can be seen in the main text. Actually, for any
finite value of c, the symmetry is the same mathematical group/algebra. Again, at 1/c2 = 0,
i.e., speed of light being infinity, it is a different symmetry, the ISO(3) of rotations and
Galilean boosts. If we have not measured the finite speed of light, we would only be able to
have an experimental lower bound for it. Confirming 1/c2 = 0 requires infinite precision,
which can never be available. It makes sense then to prefer the Lorentz symmetry and see
the Galilean one as probably only an approximation at physical velocities small compared
to the yet undetermined large speed of light. That is more or less the argument Minkowski
had [1,2] on one could have discovered special relativity from mathematical thinking alone.
Here it is only about the idea of the zero structural constant in the Galilean symmetry
making it unstable upon perturbations, or deformations. The physical identification of
the constant as 1/c2 is not even necessary. It is straightforward to check that SO(1, 3) and
SO(4) are the only possible deformations of ISO(3) within the Lie group/algebra setting,
and they themselves are stable against deformation.

One can argue that we have a similar situation with the commutator between a pair of
position and momentum operators as generators for the Heisenberg–Weyl symmetry be-
hind quantum mechanics. Actually, the zero commutator limit of which can be essentially
identified as that between the Ki and Pi generators of the Galilean symmetry, with Ki = mXi
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and m being the particle mass. Then, one can also further contemplate deforming the zero
commutators among the position and momentum operators, all the way till reaching a
stable Lie algebra, one that no further deformation to a different Lie algebra is mathemati-
cally possible [15]. Within the Lie group/algebra symmetry framework, the scheme may
suggest a bottom-up approach to construct some plausible more fundamental theories.

Appendix B. A Physicist’s Sketch of the Necessary Group Theory Background

A group is the abstract mathematical description of a system of symmetries, or symme-
try transformations. Lie groups are continuous symmetry transformations, like a collection
of rotations through any possible real value of the angle. A symmetry group of a geometric
space can be seen as a set of transformations that do not change the space. Note that
apparently different groups of transformations on different spaces may be mathematically
the same group. For example, the group of rotations, around the origin, on a plane is math-
ematically identified with the group of translations along the circle as a one-dimensional
(curved) space. From the abstract mathematical point of view, each transformation is an
abstract element of the group as a collection, which is given with a set of conditions, the
group axioms, on the not necessarily commutative product defined between the element
to be satisfied. The latter is automatic for a Lie group defined as below. When a group is
described as transformations on a vector space, that is called a representation of the group.
Physicists often start formulating a group from one of its representations, like as symmetry
transformations on a model of the physical space or phase space for a particle.

For continuous symmetries, we would like to think about their infinitesimal counter-
parts. The mathematical description, or abstraction, is given by a (real) Lie algebra. It has a
set of generators Xi giving a generic element as a linear combination aiXi (summed over i)
for any set of real numbers ai. Or we talk about the ai as real parameters, and each distinct
set of values for them specifies an element. The Lie algebra is further defined by having a
Lie product, [·, ·], between its elements given with

[Xj, Xk] = ci
jkXi

which is antisymmetric ([X, Y] = −[Y, X]) and satisfies the Jacobi identity

[[X, Y], Z] + [[Y, Z], X] + [Z, X], Y] = 0 .

The real numbers ci
jk, not all independent, are called the structural constants of the Lie

algebra. A Lie algebra is hence an abstract vector space, with no notion of vector magnitude
or inner product, and the set of generators a basis of it.

A generic element of the Lie group G with an associated Lie algebra g can be written
as exp(aiXi), the formal power series, and an infinitesimal transformation as exp(āiXi) =
1 + āiXi for infinitesimals āi (1 being the identity transformation, i.e., no transformation).
Note that

Xk =
d

dak exp(aiXi)|ai=0
.

A word of caution: The Lie product is a commutator with respect to the formal product
XY, i.e., [X, Y] = XY−YX, which is however not an element of the g or G. It is straightly
speaking not otherwise defined mathematically unless within the context of the correspond-
ing universal enveloping algebra or a representation setting as a matrix/operator product.

A subgroup is a part of the group which makes a group in itself. A Lie subgroup H of
a Lie group is associated to a Lie subalgebra h of g. In general, a subgroup can be used to
divide the group into a, possibly infinite, number of distinct cosets. For the case of a Lie
group G, which can in itself obviously be seen as geometric space, the collection of cosets
of a Lie subgroup H also can be seen as a geometric space, the coset space denoted by G/H,
with each coset taken as an abstract point. A good picture of that was presented in the
main text. Note that coset spaces are not necessarily flat, i.e., may not be vector spaces, but
always homogeneous, i.e., look the same from every single point inside.
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