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Abstract: An improved affine projection sign algorithm (APSA) was developed herein using a Lp-
norm-like constraint to increase the convergence rate in sparse systems. The proposed APSA is
robust against impulsive noise because APSA-type algorithms are generally based on the L1-norm
minimization of error signals. Moreover, the proposed algorithm can enhance the filter performance
in terms of the convergence rate due to the implementation of the Lp-norm-like constraint in sparse
systems. Since a novel cost function of the proposed APSA was designed for maintaining the similar
form of the original APSA, these have symmetric properties. According to the simulation results,
the proposed APSA effectively enhances the filter performance in terms of the convergence rate of
sparse system identification in the presence of impulsive noises compared to that achieved using the
existing APSA-type algorithms.

Keywords: adaptive filter; affine projection sign algorithm; sparse system; impulsive noise; conver-
gence rate; filter performance

1. Introduction

The adaptive filtering theory has been widely applied in several domains such as
system identification, channel estimation, as well as noise and echo cancellation [1–6]. As
shown in Figure 1, the main purpose of an adaptive filter is to accomplish the precise
estimation of filter coefficients to minimize error signals with the same input signals. Rep-
resentative adaptive filtering algorithms include the least-mean-squares (LMS) algorithm
and normalized LMS algorithm, which have a low computational complexity and can
be easily implemented. In addition, the affine projection algorithm (APA) [7–9] has been
developed to enhance the convergence performance associated with correlated input sig-
nals. However, because LMS-type and APA-type algorithms are based on the L2-norm
optimization of error signals, their performance deteriorates in the presence of system
output noise, which includes impulsive noise.

To ensure satisfactory filter performance even in the presence of impulsive noise,
several adaptive filtering algorithms derived from L1-norm optimization have recently
been proposed [10–13]. A representative algorithm that is robust against impulsive noises
is the affine projection sign algorithm (APSA) [11]. However, the APSA is not particularly
useful in sparse system identification as network echo cancellation or underwater acoustic
channel estimation, in which the impulse response is primarily composed of near-zero
coefficients and only a few large coefficients. In this context, many adaptive filters have
been proposed to optimize filter performance by considering the system sparsity [12–17].
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Among such frameworks, adaptive filtering algorithms based on the concept of an L0-norm
constraint have been considered to enhance the convergence rate of sparse systems [13,14].
In accordance with the L0-norm constraint, a Lp-norm-like concept has been introduced
to enhance the filter performance of LMS-type algorithms [18–20] and it has been demon-
strated that the Lp-norm-like concept can contribute to the performance enhancement of
adaptive filters in sparse systems. However, due to the inherent characteristics of LMS-type
algorithms, their performance remains unsatisfactory in cases involving impulsive noise.

Considering these aspects, this paper reports on an improved APSA for sparse system
identification. The algorithm is based on a novel cost function derived from L1-norm
optimization including the Lp-norm-like constraint. Unlike the original APSA, the pro-
posed cost function uses the a priori error instead of the a posteriori error. Consequently,
the proposed APSA does not employ the approximation of the a posteriori error with the
a priori error while formulating the equation to update the filter coefficient vectors. The
performance of the proposed APSA in a general sparse system was evaluated and com-
pared with those of the APSA [11], real-coefficient proportionate APSA (RP-APSA) [12],
real-coefficient improved proportionate APSA (RIP-APSA)[12] and L0-APSA [13].

This paper is organized as follows. In the following Section 2, the original APSA
is described. In Section 3, the proposed Lp-norm-like APSA is explained in detail. In
Section 4, we present the simulation results to verify the performance of the proposed
APSA. Finally, Section 5 gives the conclusions of this paper.

Figure 1. Structure of an adaptive filter in the presence of impulsive noise ni.

2. Original APSA

The data vector di from an unknown target system is defined as

di = uT
i wo + vi, (1)

where wo is the n-dimensional column vector to be estimated, vi indicates the measurement
noise with a variance σ2

v , and the input vector ui = [ui ui−1 · · · ui−n+1]
T . The output error

vector is denoted by ei, where the desired output data vector is denoted by di, the data
matrix is denoted by Ui, and ŵi is the estimate of wo at iteration i, as follows:

ei = di −UT
i ŵi, (2)

di = [di di−1 · · · di−M+1]
T , (3)

Ui = [ui ui−1 · · · ui−M+1], (4)

ŵi = [ŵi(0), . . . , ŵi(n− 1)]T . (5)

The original APSA [11] is derived by minimizing the L1-norm of the a posteriori error
vector with a constraint on the filter coefficient vectors, as shown below:

min
ŵi+1

||di −UT
i ŵi+1||1 subject to ||ŵi+1 − ŵi||22 ≤ µ2. (6)
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where µ2 ensures that the filter coefficient vectors do not abruptly change. Using the
gradient descent method, the filter coefficient vector of the original APSA is recursively
defined using the following updating Equation [11]:

ŵi+1 = ŵi + µ
Uisgn(ei)√

sgn(eT
i )U

T
i Uisgn(ei)

, (7)

where µ represents the step size, sgn(·) is the sign function and sgn(ei) = [sgn(ei), . . . ,
sgn(ei −M + 1)]T .

3. Proposed Lp-Norm-like APSA

The proposed affine projection sign algorithm is newly formulated by minimizing the
L1-norm of the apriori error vector with the Lp-norm-like constraint [18] as follows:

min
ŵi

||di −UT
i ŵi||1 + γ||ŵi||

p
p, (8)

where || · ||pp denotes the Lp-norm-like entity that exerts zero attraction, p denotes the order
of the norm, and γ is used to adjust the effect of the Lp-norm-like constraint. The proposed
cost function can be derived from (8) as

J(ŵi) = ||ei||1 + γ||ŵi||
p
p. (9)

The derivative of the proposed cost function (9) with respect to the filter coefficient
vector ŵi is as follows:

∇ŵi J(ŵi) =
∂J(ŵi)

∂ŵi
= −Uisgn(ei) + γ

∂||ŵi||
p
p

∂ŵi

, −Uisgn(ei) + γf(ŵi), (10)

where f(ŵi) , [ f (ŵi(0)), . . . , f (ŵi(n− 1))]T .
The Lp-norm-like entity is widely defined as

||ŵi||
p
p =

n−1

∑
k=0
|ŵi(k)|p, 0 ≤ p ≤ 1. (11)

The derivative of (11) with respect to the filter coefficient vector can be expressed in a
component-wise manner as

f (ŵi(k)) =
∂||ŵi||

p
p

∂ŵi(k)

=
psgn(ŵi(k))
|ŵi(k)|1−p + ε

, ∀0 ≤ k < n, (12)

where ε is an extremely small positive parameter that is introduced to avoid division
by zero.

Moreover, the normalized gradient descent method is used to modify the updating
equation of the filter coefficient vectors derived from the proposed cost function:

ŵi+1 = ŵi − µ
∇ŵi J(ŵi)

||∇ŵi J(ŵi)||2

= ŵi + µ
(Uisgn(ei)− γf(ŵi))√

(Uisgn(ei)− γf(ŵi))T(Uisgn(ei)− γf(ŵi))
, (13)
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where µ is a step-size parameter of the proposed APSA. As can be seen in (7) and (13),
the original APSA and proposed APSA have a symmetric relationship to maintain their
robustness against impulsive noise. Moreover, owing to the Lp-norm-like constraint,
the proposed APSA has the zero-attraction property for increasing the convergence rate in
the sparse system.

4. Simulation Results

The filter performance of the proposed APSA was evaluated through computer simula-
tions involving system-identification scenarios. An unknown target system was randomly
generated with 128 taps (n = 128) and the adaptive filter and unknown target system
were considered to have the same number of taps. Moreover, we set 96 near-zero filter
coefficients among the 128 taps to establish a general sparse system. The general sparse
system has the property of sparsity as shown in Figure 2.

Figure 2. Characteristics of a general sparse system (n = 128).

Each adaptive filter was tested for a projection order M = 4. In our simulations,
three types of input signal—white input, autoregressive (AR) and autoregressive–moving-
average (ARMA)—were used, and correlated input signals for AR and ARMA models
were generated by filtering white Gaussian noise through the following systems as

G1(z) =
1

1− 0.7z−1 , (14)

G2(z) =
1 + 0.6z−1

1 + z−1 + 0.21z−2 . (15)

The signal-to-noise ratio (SNR) was set to 30 dB for adding the measurement noise at
the output signal yi. The SNR is defined by yi = uT

i wo as follows:

SNR , 10log10

(
E[y2

i ]

E[v2
i ]

)
. (16)
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The impulsive noise ni was generated as ni = ki Ai where ki represents a Bernoulli
process with a probability of success P[ki = 1] = Pr, and Ai represents zero-mean Gaussian
noise with the power σ2

A = 1000σ2
y [11,13]. Pr, which denotes the probability of the

occurrence of impulsive noise, was set to 0.001. The normalized mean squared deviation
(NMSD) was defined as

NMSD , 10 log10

(
E[w̃T(k)w̃(k)]

wT
o wo

)
, (17)

where the filter-coefficient error vector w̃i , wo − ŵi. The results were obtained via
ensemble averaging over 100 trials.

4.1. System Identification for Sparse System in Presence of Impulsive Noises

Figure 3 shows the NMSD learning curves for the original APSA [11], RP-APSA [12],
RIP-APSA [12], L0-APSA [13] and proposed APSA with white input signals. Figures 4 and 5
also indicate the NMSD learning curves for the original APSA, RP-APSA, RIP-APSA, L0-
APSA and the proposed APSA with correlated input signals G1(z) and G2(z), respectively.
According to Figures 3–5, the proposed Lp-norm-like APSA has a faster convergence rate than
the existing algorithms when the representative white, AR and ARMA input signals were used.
Because the convergence rate and steady-state estimation errors have a trade-off relationship,
we focus on the comparison in aspects of the convergence rate. To ensure a fair comparison of
the convergence rate of the proposed APSA and other algorithms, the algorithm parameters
were selected such that the steady-state errors for all the algorithms were identical. Specifically,
the parameters were set as follows: APSA (µ = 0.005); RP-APSA (µ = 0.007, p = 0.1); RIP-
APSA (µ = 0.009, α = 0); L0-APSA (µ = 0.022, β = 20, γ = 0.003); and the proposed APSA
(µ = 0.017 for the white input/µ = 0.02 for G1(z), G2(z) and speech input, γ = 0.03, p = 0.1,
ε = 0.01). To set almost the same convergence rate for all algorithms, the step sizes of the
proposed algorithm for the white input are slightly slight difference compared to those of the
AR and ARMA cases. The p parameter of RP-APSA and the α parameter of RIP-APSA were
set with reference to an existing study [12] for fair comparison. As shown in Figures 1 and 2,
the proposed APSA exhibited a higher convergence rate than those of the other algorithms. In
addition, the proposed APSA maintains filter performance in terms of the convergence rate
even though the system change suddenly occurs—as shown in Figures 6–8.

Figure 3. NMSD learning curves for the white input in a sparse system with impulsive noises (Pr = 0.01).
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Figure 4. NMSD learning curves for the correlated input generated using G1(z) in a sparse system
with impulsive noises (Pr = 0.01).

Figure 5. NMSD learning curves for the correlated input generated using G2(z) in a sparse system
with impulsive noises (Pr = 0.01).
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Figure 6. NMSD learning curves for the white input in a sparse system with impulsive noises
(Pr = 0.01). The system suddenly changes (wo → −wo) at iteration 3.8× 103).

Figure 7. NMSD learning curves for the correlated input generated using G1(z) in a sparse system
with impulsive noises (Pr = 0.01). The system suddenly changes (wo → −wo) at iteration 3.8× 103.
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Figure 8. NMSD learning curves for the correlated input generated using G2(z) in a sparse system
with impulsive noises (Pr = 0.01). The system suddenly changes wo → −wo) at iteration 3.8× 103.

4.2. Speech Input Test Including a Double-Talk Situation

The proposed APSA was subjected to an experiment using a speech input signal to
ensure the filter performance in practical scenarios, as can be seen in Figure 9. Since speech
input signals are real human speech data, this simulation result for speech input increases the
reliability of the proposed APSA for the practical use. As can be seen in Figure 10, we can find
that the proposed APSA can accomplish a faster convergence rate and smaller steady-state
estimation errors compared to the other algorithms. The proposed algorithm was also tested
in a double-talk situation as shown in Figure 11. The far-end input signal and near-end input
signal were speech signals where the power of the near-end input signal was two times greater
than that of the far-end input signal. The near-end input signal was added between iterations
5.2× 103 and 6.2× 103. Figure 11 shows that the proposed APSA delivered better performance
than the other algorithms in terms of the convergence rate and the steady-state estimation
error. Even after the double-talk occurrence, we found that the proposed APSA consistently
has smaller steady-state estimation errors.

Figure 9. Speech input signal.
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Figure 10. NMSD learning curves for the speech input.

Figure 11. NMSD learning curves for the double-talk situation.

4.3. Practical Considerations for the p Parameter

Through Equation (19), we can analyze that when the p parameter is close to 0,
the proposed Lp-norm-like APSA is the same as the L0-norm APSA. Moreover, the better
filter performance of the proposed APSA compared to the L0-norm APSA is demonstrated
via Figures 3–8 and Figures 10 and 11. On the other hand, if the p parameter is close to 1 as
can be seen in Equation (20), the proposed Lp-norm-like APSA is similar to the L1-norm
APSA that does not have the advantages for the sparse system due to the characteristic of
the L1 norm. Therefore, it is meaningful to choose the specific p value between 0 and 1 to
improve the filter performance of the proposed APSA and there is no advanced research
for the APSA-type algorithms using the proposed Lp-norm-like concept. We find that
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the specific p value can maximize the improvement of our proposed algorithm through
the parameter tuning method, as shown in Figures 12–14. As shown in Figures 12–14,
the specific p value consistently verifies the improved filter performance regardless of the
white, ar and arma input signals. When the p parameter is set to 0.1, the proposed APSA
has the best filter performance, achieving a fast convergence rate and small steady-state
estimation errors. Even though the parameter tuning method cannot precisely provide
optimal value, p = 0.1 gives the best performance in our simulation scenarios. Since
the parameter p value has a restriction between 0 and 1, it is easy to find the proper p
value according to the variation of p values to adequately guarantee the improved filter
performance in each scenario.

It is important to decide the p parameter in the proposed APSA because the effect of
the p value is dominant in adjusting the filter performance in terms of convergence rate
and steady-state estimation errors. The Lp-norm-like definition can be represented by

||ŵi||
p
p =

n−1

∑
k=0
|ŵi(k)|p, 0 ≤ p ≤ 1. (18)

From Equation (18), we can derive the L0-norm term and the L1-norm term by adjusting
the p value as follows:

lim
p→0
||ŵi||

p
p = ||ŵi||0 = #{k|ŵi(k) 6= 0}, (19)

lim
p→1
||ŵi||

p
p = ||ŵi||1 =

n−1

∑
k=0
|ŵi(k)|. (20)

Figure 12. NMSD learning curves with several values of p to decide the p value to ensure the best
filter performance for the white input in a sparse system with impulsive noises (Pr = 0.01).
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Figure 13. NMSD learning curves with several values of p to decide the p value to ensure the best
filter performance for the correlated input generated using G1(z) in a sparse system with impulsive
noises (Pr = 0.01).

Figure 14. NMSD learning curves with several values of p to decide the p value to ensure the best
filter performance for the correlated input generated using G2(z) in a sparse system with impulsive
noises (Pr = 0.01).

5. Conclusions

An improved affine projection sign algorithm for sparse system identification was
developed using a Lp-norm-like constraint. The Lp-norm-like constraint could accelerate
the convergence of the near-zero coefficients of a general sparse system. Moreover, a novel
cost function including the Lp-norm-like constraint was used for the proposed APSA.
Consequently, the convergence rate of the proposed APSA was higher than those of the
original APSA, RP-APSA, RIP-APSA and L0-APSA, as demonstrated by simulation results.
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