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Abstract: A vertex-degree-based (VDB, for short) topological index ϕ induced by the numbers
{

ϕij

}
was recently defined for a digraph D, as ϕ(D) =

1
2 ∑

uv
ϕd+u d−v , where d+u denotes the out-degree of

the vertex u, d−v denotes the in-degree of the vertex v, and the sum runs over the set of arcs uv of D.
This definition generalizes the concept of a VDB topological index of a graph. In a general setting,
we find sharp lower and upper bounds of a symmetric VDB topological index over Dn, the set of all
digraphs with n non-isolated vertices. Applications to well-known topological indices are deduced.
We also determine extremal values of symmetric VDB topological indices over OT (n) and O(G), the
set of oriented trees with n vertices, and the set of all orientations of a fixed graph G, respectively.

Keywords: vertex-degree-based topological index; digraph; orientation of a graph; extremal value

MSC: 05C92; 05C09; 05C35

1. Introduction

A digraph D is a finite nonempty set V called vertices, together with a set A of ordered
pairs of distinct vertices of D, called arcs. If a = (u, v) is an arc of D, then we write uv and
say that the two vertices are adjacent. Given a vertex u of G, the out-degree of u is denoted
by d+u and defined as the number of arcs of the form uv, where v ∈ V. The in-degree
of u is denoted by d−u and defined as the number of arcs of the form wu, where w ∈ V.
A vertex u in D is called a sink vertex (resp. source vertex) if d+u = 0 (resp. d−u = 0). We
denote by q = q(D) the number of vertices of D which are sink vertices or source vertices.
If d+u = d−u = 0, then u is an isolated vertex. The set of digraphs with n non-isolated
vertices is denoted by Dn.

One special class of digraphs is the oriented graphs. A pair of arcs of a digraph D
of the form uv and vu are called symmetric arcs. If D has no symmetric arcs, then D is
an oriented graph. We note that D can be obtained from a graph G by substituting each
edge uv by an arc uv or vu, but not both. In this case, we say that D is an orientation of
G. For example, in Figure 1 we show the directed path

−→
P n and the directed cycle

−→
C n,

orientations of the path Pn and cycle Cn, respectively. A sink-source orientation of a graph
G is an orientation in which every vertex is a sink vertex or a source vertex. Clearly, when
we reverse the orientations of all arcs in a sink-source orientation, we obtain a sink-source
orientation again. For instance, the digraphs

−→
K 1,n−1 and

−→
K n−1,1 in Figure 1 are sink-source

orientations of the star Sn. Note that
−→
K n−1,1 is obtained by reversing all arcs of

−→
K 1,n−1.

Let D1 = (V1, A1) and D2 = (V2, A2) be digraphs with no common vertices. The direct
sum of digraphs D1 and D2, denoted by D1 ⊕ D2, is the digraph with vertex and arc sets
V1 ∪V2 and A1 ∪ A2, respectively. In general, ⊕k

i=1Di denote the direct sum of the digraphs
D1 = (V1, A1), . . . , Dk = (Vk, Ak). If Di = D for all i, then we simply write ⊕k

i=1Di = kD.
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−→
P n

−→
C n

−→
K n−1,1

−→
K 1,n−1

Figure 1. Orientations of Pn, Cn, and Sn.

The following notation and concepts were introduced in [1]. Let D ∈ Dn. Let us
denote by n+

i (resp. n−i ) the number of vertices in D with out-degree (resp. in-degree) i,
for all 0 ≤ i ≤ n− 1. For every 1 ≤ i, j ≤ n− 1, define the set

Aij =
{

uv ∈ A : d+u = i and d−v = j
}

.

The cardinality of Aij is denoted by aij. Clearly,

∑
1≤i,j≤n−1

aij = a ;
n−1
∑

j=1
aij = in+

i ; and
n−1
∑

i=1
aij = jn−j , (1)

where a is the number of arcs D has.
A VDB topological index is a function ϕ induced by real numbers

{
ϕij
}

, where
1 ≤ i, j ≤ n− 1, defined as [1]

ϕ(D) =
1
2 ∑

1≤i,j≤n−1
aij ϕij. (2)

Equivalently,

ϕ(D) =
1
2 ∑

uv∈A
ϕd+u d−v

. (3)

When ϕij = ϕji for all 1 ≤ i, j ≤ n− 1, we say that ϕ is a symmetric VDB topological
index. In this case, the expression given in (2) can be simplified. In fact, let

pij = aij + aji, (4)

for all 1 ≤ i, j ≤ n− 1, and
pii = aii, (5)

for all i = 1, . . . , n− 1. Then

ϕ(D) =
1
2 ∑

(i,j)∈K
pij ϕij, (6)

where
K = {(i, j) ∈ N×N : 1 ≤ i ≤ j ≤ n− 1}.

In particular, when D = G is a graph, it was shown in [1] that Formula (6) reduces to

ϕ(G) = ∑
(i,j)∈K

mij ϕij,

where mij is the number of edges in G which join vertices of degree i and j. So we recover
the degree-based-topological indices of graphs, a concept which has been, and currently
is, extensively investigated in the mathematical and chemical literature [2–4]. For recent
results, we refer to [5–12].

This paper is organized as follows. In Section 2, in a general setting (Theorem 1), we
find sharp lower and upper bounds of a symmetric VDB topological index over the set Dn.
As a byproduct, we obtain over Dn, sharp upper and lower bounds of well-known VDB
topological indices, which include the First Zagreb indexM1 (ϕij = i + j) [13], the Second
Zagreb index M2 (ϕij = ij) [13], the Randić index χ (ϕij = 1/

√
ij) [14], the Harmonic
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index H (ϕij = 2/(i + j)) [15], the Geometric-Arithmetic GA (ϕij = 2
√

ij/(i + j)) [16],
the Sum-Connectivity SC (ϕij = 1/

√
i + j) [17], the Atom-Bond-Connectivity ABC (ϕij =√

(i + j− 2)/ij) [18], and the Augmented Zagreb AZ (ϕij = (ij/(i + j− 2))3) [19].
In Section 3, based on Theorem 2, we give sharp upper and lower bounds of symmetric

VDB topological indices over the set OT (n), the set of oriented trees with n vertices.
In particular, we deduce sharp upper and lower bounds for the well-known indices
mentioned above over OT (n). Finally, in Section 4, we consider the problem of finding
the extremal values of a symmetric VDB topological index among all orientations in
O(G), the set of all orientations of a fixed graph G. In order to do this, we define strictly
nondecreasing (resp. nonincreasing) symmetric VDB topological indices and show that
for these indices, the value of any orientation at G is not greater (resp. smaller) than half
the value at G. Moreover, equality occurs, and only if the orientation is a sink-source
orientation of G. In particular, when G is a bipartite graph, we show that the sink-source
orientations of G attain extremal values.

2. Bounds of VDB Topological Indices of Digraphs

From now on, when we say that ϕ is a symmetric VDB topological index, we mean that
ϕ is induced by the numbers

{
ϕij
}

, where (i, j) ∈ K, and it is defined as in the equivalent
definitions (2), (3), or (6). In the first part of this section, we generalize several results of [20]
to digraphs.

Let ϕ be a symmetric VDB topological index. Consider the function fij =
ijϕij
i+j defined

over the set K. For each (r, s) ∈ K, consider the subset of K

Krs = {(i, j) ∈ K : (i, j) 6= (r, s)}.

Recall that q is the number of vertices which are sink or source vertices of a digraph D.

Lemma 1. Let ϕ be a symmetric VDB topological index and D ∈ Dn. Let (r, s) ∈ K. Then

2ϕ(D) = (2n− q) frs + ∑
(i,j)∈Krs

(
fij − frs

) i + j
ij

pij.

Proof. The numbers
{

pij
}

defined in (4) in (5) satisfy the relation (see (10) in [1])

∑
(i,j)∈K

(
1
i
+

1
j

)
pij = 2n−

(
n+

0 + n−0
)
. (7)

Note that q = n+
0 + n−0 . By (7),

r + s
rs

prs + ∑
(i,j)∈Krs

(
1
i
+

1
j

)
pij = 2n− q,

which implies

prs =
rs

r + s

2n− q− ∑
(i,j)∈Krs

(
1
i
+

1
j

)
pij

. (8)

On the other hand,

ϕ(D) =
1
2

prs ϕrs +
1
2 ∑

(i,j)∈Krs

pij ϕij. (9)
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Now, substituting (8) in (9), we deduce

ϕ(D) =
1
2

frs(2n− q) +
1
2 ∑

(i,j)∈Krs

pij
i + j

ij
(

fij − frs
)
.

Let ϕ be a symmetric VDB topological index with associated function fij =
ijϕij
i+j .

Define the sets

Kmin( f ) =
{
(r, s) ∈ K : frs = min

(i,j)∈K
fij

}
,

and

Kmax( f ) =
{
(r, s) ∈ K : frs = max

(i,j)∈K
fij

}
.

We will denote by Kc
min( f ) and Kc

max( f ) the complements of Kmin( f ) and Kmax( f ) in
K, respectively. We now generalize ([20], Theorem 2.3) to digraphs.

Theorem 1. Let ϕ be a symmetric VDB topological index and D ∈ Dn. Then

1
2
(2n− q) min

(i,j)∈K
fij ≤ ϕ(D) ≤ 1

2
(2n− q) max

(i,j)∈K
fij.

Moreover, equality on the left occurs, and only if pxy = 0 for all (x, y) ∈ Kc
min( f ). Equality

on the right occurs, and only if pxy = 0 for all (x, y) ∈ Kc
max( f ).

Proof. Assume that frs = max
(i,j)∈K

fij, where (r, s) ∈ K. By Lemma 1 and the fact that fij ≤

frs for all (i, j) ∈ K, we deduce

ϕ(D) =
1
2

(2n− q) frs + ∑
(i,j)∈Krs

(
fij − frs

) i + j
ij

pij


≤ 1

2
(2n− q) frs. (10)

On the other hand, since
(

fij − frs
) i+j

ij pij = 0 for all (i, j) ∈ Kmax( f ), it is clear that

∑
(i,j)∈Krs

(
fij − frs

) i + j
ij

pij = 0

if, and only if pxy = 0 for all (x, y) ∈ Kc
max( f ). By inequality (10), this is equivalent

to ϕ(D) = 1
2
(
2n− n+

0 − n−0
)

max
(i,j)∈K

fij. The proof of the left inequality (and the equality

condition) is similar.

So by Theorem 1, in order to find extremal values of a VDB topological index ϕ over

Dn, we must find Kmin( f ) and Kmax( f ), where f =
ijϕij
i+j . Fortunately, these were computed

for the main VDB topological indices in [21] (see Table 1).
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Table 1. Kmin( f ) and Kmax( f ) for some VDB topological indices.

VDB Index Notation ϕij Kmin( f ) Kmax( f )

First Zagreb [13] M1 i + j (1, 1) (n− 1, n− 1)

Second Zagreb [13] M2 ij (1, 1) (n− 1, n− 1)

Randić [14] χ 1√
ij

(1, n− 1) {(i, j) ∈ K : i = j}

Harmonic [15] H 2
i+j (1, n− 1) {(i, j) ∈ K : i = j}

Geometric-Arithmetic [16] GA 2
√

ij
i+j

(1, n− 1) (n− 1, n− 1)

Sum-Connectivity [17] SC 1√
i+j

(1, n− 1) (n− 1, n− 1)

Atom-Bond-Connectivity [18] ABC
√

i+j−2
ij

(1, 1) (n− 1, n− 1)

Augmented Zagreb [19] AZ
(

ij
i+j−2

)3
(1, n− 1) (n− 1, n− 1)

An important class of digraphs which occur frequently as extremal values of VDB
topological indices are the arc-balanced digraphs, which we define as follows.

Definition 1. A digraph D is arc-balanced if d+u = d−v , for every arc uv of D, and q = 0.

A regular digraph is a digraph D such that d+u = d−u = r, for all vertices u in D, where
r is a positive integer. Clearly, every regular digraph is arc-balanced.

Example 1. The digraphs in Figure 2 are arc-balanced but not regular digraphs.

Figure 2. Arc-balanced digraphs.

Now we can give sharp upper and lower bounds for all VDB topological indices listed
in Table 1. The following result is clear.

Lemma 2. Let D ∈ Dn.

1. pij = 0 for all (i, j) 6= (1, 1) if, and only if

D =
k1⊕

i=1

−→
P ni ⊕

k2⊕
j=1

−→
C nj ,

for some nonnegative integers k1 and k2.
2. pij = 0 for all (i, j) ∈ K such that i < j and q = 0⇔ D is an arc-balanced digraph;
3. pij = 0 for all (i, j) ∈ K such that (i, j) 6= (n− 1, n− 1)⇔ D = Kn;

4. pij = 0 for all (i, j) 6= (1, n− 1) and q = n⇔ D =
−→
K 1,n−1 or D =

−→
K n−1,1;

5. pij = 0 for all (i, j) 6= (1, 1) and q = n⇔ n is even and D = n
2
−→
P 2.

6. pij = 0 for all (i, j) 6= (1, 1) and q = n− 1⇔ n is odd and D = n−3
2
−→
P 2 ⊕

−→
P 3.

Lemma 3. Assume that n is odd. Let D ∈ Dn. If q = n, then p11 ≤ n−3
2 .
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Proof. Every vertex of D is a sink vertex or a source vertex. Consequently,

D = E⊕ p11
−→
P 2,

where p11(E) = 0. In particular,

n = n(E) + 2p11.

Since n is odd, then n(E) is also odd. Moreover, n(E) ≥ 3, since D has no isolated
vertices. Hence,

2p11 = n− n(E) ≤ n− 3.

Corollary 1. Let D ∈ Dn. Then

1. ⌈n
2

⌉
≤M1(D) ≤ n(n− 1)2.

(a) Equality on the left occurs ⇔ n is even and D = n
2
−→
P 2 or n is odd, and D =

n−3
2
−→
P 2 ⊕

−→
P 3;

(b) Equality on the right occurs⇔ D = Kn.

2.
n
4 if n even

n+1
4 if n odd

}
≤M2(D) ≤ 1

2
n(n− 1)3.

(a) Equality on the left occurs ⇔ n is even and D = n
2
−→
P 2 or n is odd and D =

n−3
2
−→
P 2 ⊕

−→
P 3;

(b) Equality on the right occurs⇔ D = Kn.

3.
1
2

√
n− 1 ≤ χ(D) ≤ n

2
.

(a) Equality on the left occurs⇔ D =
−→
K 1,n−1 or D =

−→
K n−1,1;

(b) Equality on the right occurs⇔ D is an arc-balanced digraph.

4.
n− 1

n
≤ H(D) ≤ n

2
.

(a) Equality on the left occurs⇔ D =
−→
K 1,n−1 or D =

−→
K n−1,1;

(b) Equality on the right occurs⇔ D is an arc-balanced digraph.

5.

(n− 1)
3
2

n
≤ GA(D) ≤ n

2 3
√
(n− 1)4

.

(a) Equality on the left occurs⇔ D =
−→
K 1,n−1 or D =

−→
K n−1,1;

(b) Equality on the right occurs⇔ D = Kn.

6.
n− 1
2
√

n
≤ SC(D) ≤ 1

4
n
√

2(n− 1).

(a) Equality on the left occurs⇔ D =
−→
K 1,n−1 or D =

−→
K n−1,1;

(b) Equality on the right occurs⇔ D = Kn.
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7.

0 ≤ ABC(D) ≤ n
2

√
2(n− 2).

(a) Equality on the left occurs⇔ D =
k1⊕

i=1

−→
P ni ⊕

k2⊕
j=1

−→
C nj , for some nonnegative integers

k1, k2.
(b) Equality on the right occurs⇔ D = Kn.

8.
1
2
(n− 1)4

(n− 2)3 ≤ AZ(D) ≤ 1
16

n
(n− 1)7

(n− 2)3 .

(a) Equality on the left occurs⇔ D =
−→
K 1,n−1 or D =

−→
K n−1,1;

(b) Equality on the right occurs⇔ D = Kn.

Proof. Recall that fij =
ijϕij
i+j is the associated function of the symmetric VDB topological

index ϕ. The expressions for fij are shown in Table 2.

Table 2. fij for some VDB topological Indices.

VDB Index M1 M2 χ H GA SC ABC AZ

fij ij (ij)2

i+j

√
ij

i+j
2ij

(i+j)2
2(ij)

3
2

(i+j)2
ij

(i+j)
3
2

√
ij(i+j−2)

i+j
(ij)4

(i+j)(i+j−2)3

Since 0 ≤ q ≤ n, we easily deduce the result from Theorem 1 and Lemma 2.
We only have to separately considerM1 andM2 when n is odd. By Theorem 1,

2M1(D) ≥ 2n− q ≥ n. (11)

Since n is odd, 2M1(D) > n, and so 2M1(D) ≥ n + 1. Equivalently,

M1(D) ≥ (n + 1)/2 = dn/2e.

For the equality condition, it is clear that M1

(
n−3

2
−→
P 2 ⊕

−→
P 3

)
= n+1

2 . Conversely,

suppose thatM1(D) = n+1
2 . Then by (11),

n + 1 ≥ 2n− q,

which implies q ≥ n− 1. So there are only two possibilities: q = n− 1 and q = n. If q = n,
then by Lemma 3, p11 ≤ n−3

2 . On the other hand, by Lemma 1 applied to (r, s) = (1, 2),

n + 1 = 2M1(D) = 2n + ∑
(i,j) 6=(1,2)

(ij− 2)
i + j

ij
pij

= 2n + (−1)2p11 + ∑
(i,j) 6=(1,2)
(i,j) 6=(1,1)

(ij− 2)
i + j

ij
pij.

Thus,

0 ≤ ∑
(i,j) 6=(1,2)
(i,j) 6=(1,1)

(ij− 2)
i + j

ij
pij = 2p11 − n + 1,



Symmetry 2021, 13, 1903 8 of 13

which implies p11 ≥ n−1
2 , a contradiction. Hence, q = n− 1. Consequently,

M1(D) =
n + 1

2
=

1
2
(2n− q).

It follows from Theorem 1 that pij = 0 for all (i, j) 6= (1, 1). Finally, by Lemma 2,

D =
n− 3

2
−→
P 2 ⊕

−→
P 3.

The case ofM2 when n is odd is similar.
In the case of the ABC index, note that ϕij = 0 if, and only if (i, j) = (1, 1). Then it is

clear that

ABC

 k1⊕
i=1

−→
P ni ⊕

k2⊕
j=1

−→
C nj

 = 0.

Conversely, if D is a digraph such that 0 = ABC(D), then

0 = ABC(D) =
1
2 ∑

(i,j)∈K
pij ϕij =

1
2 ∑

(i,j)∈K
(i,j) 6=(1,1)

pij ϕij,

which implies pij = 0 for all (i, j) 6= (1, 1). Hence, by part 1 of Lemma 2, D =
⊕k1

i=1
−→
P ni ⊕⊕k2

j=1
−→
C nj .

Remark 1. Using a linear programming modeling technique, the authors in [22] find some of the
extremal values given in Corollary 1.

Now we give bounds of VDB topological indices in terms of the number of arcs. Let ϕ
be a symmetric VDB topological index. Let us define

Lmax = Lmax(ϕ) =

{
(i, j) ∈ K : ϕij =max

K
ϕij

}
,

and

Lmin = Lmin(ϕ) =

{
(i, j) ∈ K : ϕij =min

K
ϕij

}
.

The complements in K are denoted by Lc
max and Lc

min, respectively.

Theorem 2. Let ϕ be a symmetric VDB topological index. If D is a digraph with a arcs, then

1
2

a
(

min
K

ϕij

)
≤ ϕ(D) ≤ 1

2
a
(

max
K

ϕij

)
.

Equality on the left occurs if, and only if pij = 0 for all (i, j) ∈ Lc
min. Equality on the right

occurs if, and only if pij = 0 for all (i, j) ∈ Lc
max.

Proof. From (2) and (1),

ϕ(D) =
1
2 ∑

K
pij ϕij ≤

1
2 ∑

K
pijmax

K
ϕij =

1
2

a
(

max
K

ϕij

)
. (12)

If ϕ(D) = 1
2 a
(

max
K

ϕij

)
, then by (12)

pij

(
ϕij −max

K
ϕij

)
= 0,
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for all (i, j) ∈ K. Hence, if (i, j) ∈ Lc
max, then ϕij −max

K
ϕij 6= 0 and so pij = 0.

Conversely, if pij = 0 for all (i, j) ∈ Lc
max, then

ϕ(D) =
1
2 ∑

K
pij ϕij =

1
2 ∑

Lmax

pij ϕij +
1
2 ∑

Lc
max

pij ϕij

=
1
2 ∑

Lmax

pij ϕij =
1
2

a
(

max
K

ϕij

)
.

The proof of the left inequality (and equality) is similar.

3. Bounds of VDB Topological Indices of Tree Orientations

The set of oriented trees with n vertices is denoted by OT (n). It is our interest in this
section to determine the extremal values of a VDB topological index over OT (n). Clearly,
a = n− 1 for every T ∈ OT (n). Hence, by Theorem 2 we deduce the following.

Corollary 2. Let T ∈ OT (n). Then

1
2
(n− 1)min

K
ϕij ≤ ϕ(T) ≤ 1

2
(n− 1)max

K
ϕij.

Equality on the left occurs if, and only if pij = 0 for all (i, j) ∈ Lc
min. Equality on the right

occurs if, and only if pij = 0 for all (i, j) ∈ Lc
max.

Now we can obtain a first list of sharp upper and lower bounds for some VDB
topological indices over OT (n).

Theorem 3. Let T ∈ OT (n). Then

1. 1
2

√
n− 1 ≤ χ(T) ≤ n−1

2 ;
2. n−1

n ≤ H(T) ≤ n−1
2 ;

3. (n−1)
3
2

n ≤ GA(T) ≤ n−1
2 ;

4. n−1
2
√

n ≤ SC(T) ≤
√

2
4 (n− 1);

5. 1
2
(n−1)4

(n−2)3 ≤ AZ(T).

Moreover, equality on the left of 1–5 occurs⇔ T =
−→
K 1,n−1 or T =

−→
K n−1,1. Equality on the

right of 1–4 occurs⇔ T =
−→
P n.

Proof. The inequalities on the left (and equality conditions) are immediate consequence of
Corollary 1. The inequalities on the right of 1–4 are consequence of Corollary 2 having in
mind Table 3.

Table 3. Lmax and max
K

ϕij for χ,H, GA, and SC.

VDB Index ϕij Lmax max
K

ϕij

χ 1√
ij

(1, 1) 1

H 2
i+j (1, 1) 1

GA 2
√

ij
i+j {(i, j) ∈ K : i = j} 1

SC 1√
i+j

(1, 1) 1√
2

We also use the fact that T ∈ OT (n) is such that pij = 0 for all (i, j) 6= (1, 1) if, and

only if T =
−→
P n. Similarly, pij = 0 for all (i, j) such that i < j if, and only if T =

−→
P n.
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Theorem 4. Let T ∈ OT (n). Then

1. 0 ≤ ABC(T) ≤ 1
2

√
(n− 1)(n− 2);

2. (n− 1) ≤M1(T);
3. 1

2 (n− 1) ≤M2(T).

Moreover, equality on the left of 1–3 occurs⇔ T =
−→
P n. Equality on the right of 1 occurs

⇔ T =
−→
K 1,n−1 or T =

−→
K n−1,1.

Proof. The inequalities on the left of 1–3 (and equality conditions) are a consequence of
Corollary 2, having in mind Table 4.

Table 4. Lmin and min
K

ϕij for ABC,M1, andM2.

VDB Index ϕij Lmin min
K

ϕij

ABC
√

i+j−2
ij (1, 1) 0

M1 i + j (1, 1) 2
M2 ij (1, 1) 1

And the fact that T ∈ OT (n) is such that pij = 0 for all (i, j) 6= (1, 1) if, and only if

T =
−→
P n. On the other hand, the right inequality in 1 holds again by Corollary 2, bearing

in mind Table 5.

Table 5. Lmax and max
K

ϕij for ABC.

VDB Index ϕij Lmax max
K

ϕij

ABC
√

i+j−2
ij (1, n− 1)

√
n−2
n−1

And the fact that T ∈ OT (n) is such that pij = 0 for all (i, j) 6= (1, n− 1) if, and only

if T =
−→
K 1,n−1 or T =

−→
K n−1,1.

The only extremal values we have not determined yet are the maximal values of
M1,M2, and AZ over OT (n). The problem in these indices is that Lmax = (n− 1, n− 1),
and there is no oriented tree such that pij = 0 for all (i, j) 6= (n− 1, n− 1). In the next
section we will show that the maximum value ofM1 andM2 over OT (n) is attained in
−→
K 1,n−1 or

−→
K n−1,1 (see Theorem 6). We propose the following problem.

Problem 1. Find the maximum value of AZ over OT (n).

4. Bounds of VDB Topological Indices over Orientations of a Fixed Graph

Let ϕ be a symmetric VDB topological index and G a graph. Let O(G) be the set of
orientations of the graph G. Our main concern now is to determine the extremal values of
a symmetric VDB topological index over O(G). In order to do this, let us define a partial
order over K as follows: if (i, j), (k, l) ∈ K, then

(i, j) � (k, l)⇔ i ≤ k and j ≤ l.

Definition 2. Let ϕ be a symmetric VDB topological index. We say that ϕ is nondecreasing (resp.
nonincreasing) over K, if for every (i, j), (k, l) ∈ K :

(i, j) � (k, l)⇒ ϕij ≤ ϕkl (resp. ϕij ≥ ϕkl).
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Furthermore, if for every (i, j), (k, l) ∈ K :

(i, j) � (k, l) and ϕij = ϕkl ⇒ (i, j) = (k, l),

we will say that ϕ is strictly nondecreasing (resp. strictly nonincreasing).

Example 2. Consider the generalized Randić index χα induced by the numbers (ij)α, where α ∈ R,
α 6= 0. Clearly, χα is strictly nondecreasing when α > 0, and strictly nonincreasing when α < 0.
In particular, the Randić index χ is strictly nonincreasing and the second Zagreb indexM2 is
strictly nondecreasing. Additionally, the harmonic index and the sum-connectivity index are strictly
nonincreasing, and the first ZagrebM1 is strictly nondecreasing.

Theorem 5. Let ϕ be a strictly nondecreasing (resp. nonincreasing) symmetric VDB topological
index and G a graph. Let D be any orientation of G. Then

ϕ(D) ≤ 1
2

ϕ(G) (resp. ϕ(D) ≥ 1
2

ϕ(G)).

Equality holds if, and only if D is a sink-source orientation of G.

Proof. We will assume that ϕ is strictly nondecreasing, and the other case is similar. Note
that

du = d+u + d−u (13)

for every vertex u of G. Hence, for any arc uv of D, (d+u , d−v ) � (du, dv). It follows by the
nondecreasing property of ϕ and (3),

ϕ(D) =
1
2 ∑

uv∈A
ϕd+u d−v

≤ 1
2 ∑

uv∈G
ϕdudv =

1
2

ϕ(G). (14)

If D is a sink-source orientation of G, then d+u = 0 or d−u = 0, for all vertices u of V.
If vw is an arc of D then d+v 6= 0 and d−w 6= 0. Hence, d−v = 0 and d+w = 0, which implies
by (13) that dv = d+v and dw = d−w . Hence,

ϕ(D) =
1
2 ∑

uv∈A
ϕd+u d−v

=
1
2 ∑

uv∈G
ϕdudv =

1
2

ϕ(G).

Conversely, assume that ϕ(D) = 1
2 ϕ(G). Then by (14), for every uv ∈ A(

d+u , d−v
)
� (du, dv) and ϕd+u d−v

= ϕdudv .

Now since ϕ is strictly nondecreasing, (d+u , d−v ) = (du, dv) for every uv ∈ A. Finally,
by (13), d−u = 0 and d+v = 0. This clearly implies that D is a sink-source orientation of
G.

Corollary 3. Let ϕ be a strictly nondecreasing (resp. nonincreasing) symmetric VDB topological
index and G a bipartite graph. Then the maximal (resp. minimal) value of ϕ over O(G) is attained
in a sink-source orientation of G.

Proof. We assume that ϕ is strictly nondecreasing, and the other case is similar. Since G
is a bipartite graph, G has a sink-source orientation which we call E [23]. Let D be any
orientation of G. Then by Theorem 5,

ϕ(E) =
1
2

ϕ(G) ≥ ϕ(D).
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Example 3. Consider the path tree Pn. By Example 2 and Corollary 3, the sink-source orientation
E ∈ O(Pn) depicted in Figure 3 attains the maximal value forM1, M2 and χα when α > 0,
over O(Pn). On the other hand, E attains the minimal value of H,SC and χα when α < 0, over
O(Pn).

n odd n even

Figure 3. Sink-source orientations of Pn.

Example 4. In [24] the authors studied the extreme values of χ on the set of all the orientations of
hexagonal chains with k hexagons.

Theorem 6. Let T ∈ OT (n). Then

1. M1(T) 6 1
2 n(n− 1);

2. M2(T) 6 1
2 (n− 1)2.

Moreover, equalities 1–2 occur⇔ T =
−→
K 1,n−1 or T =

−→
K n−1,1.

Proof. Let G be a tree of order n. If G is different from Sn, then [25]

M1(G) <M1(Sn) = n(n− 1)

M2(G) <M2(Sn) = (n− 1)2 .

Let T ∈ OT (n) and suppose that T is an orientation of a tree G. By Theorem 5 and
the above equation,

M1(T) 6
1
2
M1(G) 6

1
2

n(n− 1)

M2(T) 6
1
2
M2(G) 6

1
2
(n− 1)2.

Equality occurs if, and only if T is a sink-source orientation of Sn, in other words,
T =
−→
K 1,n−1 or T =

−→
K n−1,1.
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19. Furtula, B.; Graovac, A.; Vukičević, D. Augmented Zagreb index. J. Math. Chem. 2010, 48, 370–380. [CrossRef]
20. Rada, J.; Cruz, R. Vertex-degree-based topological indices over graphs. MATCH Commun. Math. Comput. Chem. 2014, 72, 603–616.
21. Cruz, R.; Pérez, T.; Rada, J. Extremal values of vertex-degree-based topological indices over graphs. J. Appl. Math. Comput. 2015,

48, 395–406. [CrossRef]
22. Deng, H.; Yang, J.; Tang, Z.; Yang, J.; You M. On the vertex-degree based invariants of digraphs. arXiv 2021, arXiv:2104.14742.
23. Monsalve, J.; Rada, J. Oriented bipartite graphs with minimal trace norm. Linear Multilinear Algebra 2019, 67, 1121–1131. [CrossRef]
24. Bermudo, S.; Monsalve, J.; Rada, J. Orientations of hexagonal chains with extremal values of the Randić index. Int. J. Quantum
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