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Abstract: Previous studies have demonstrated, experimentally and theoretically, the existence of
slow–fast evolutions, i.e., slow chaotic spiking sequences in the dynamics of a semiconductor laser
with AC-coupled optoelectronic feedback. In this work, the so-called Flow Curvature Method was
used, which provides the slow invariant manifold analytical equation of such a laser model and also
highlights its symmetries if any exist. This equation and its graphical representation in the phase
space enable, on the one hand, discriminating the slow evolution of the trajectory curves from the
fast one and, on the other hand, improving our understanding of this slow–fast regime.

Keywords: slow–fast dynamical systems; singularly perturbed systems; Flow Curvature Method

1. Introduction

More than ten years ago, Al-Naimee et al. [1] studied “the occurrence of chaotic
spiking in a semiconductor laser with ac-coupled nonlinear optoelectronic feedback. The
solitary laser dynamics is ruled by two coupled variables (intensity and population in-
version) evolving with two very different characteristic timescales. The introduction of
a third degree of freedom (and a third timescale) describing the ac-feedback loop, leads
to a three-dimensional slow–fast system displaying a transition from a stable steady state
to periodic spiking sequences as the dc-pumping current is varied (. . . ) The timescale of
these dynamics, much slower with respect to typical semiconductor laser timescales (few
ns), is fully determined by the highpass filter in the feedback loop.” Then, they provided
a minimal physical model qualitatively reproducing the experimental results. Since this
model involves two time scales, it can be considered a slow–fast dynamical system or a
singularly perturbed system.

At the end of the nineteenth century, Henri Poincaré originally developed, in his New
Methods of Celestial Mechanics [2], singular perturbation methods. During the thirties and in
the following decades, Andronov & Chaikin [3], Levinson [4] and Tikhonov [5] generalized
Poincaré’s ideas and stated that slow–fast dynamical systems, also called singularly perturbed
systems, possess invariant manifolds on which trajectories evolve slowly, and toward which
nearby orbits contract exponentially in time (either forward or backward) in the normal
directions. Then, from the beginning of the sixties, the seminal works of Wasow [6],
Cole [7], O’Malley [8,9] and Fenichel [10–13], to name but a few, gave rise to the so-called
Geometric Singular Perturbation Theory. Fenichel [10–13] established the local invariance
of slow invariant manifolds that possess both expanding and contracting directions and
which were labeled slow invariant manifolds while using his theory for the persistence of
normally hyperbolic invariant manifolds. Let us note that the theory of invariant manifolds
for an ordinary differential equation was independently developed by Hirsch et al. [14].
Since the beginning of the eighties, two kinds of approaches have been developed: singular
perturbation-based methods and curvature-based methods. The former include the Geometric
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Singular Perturbation Theory (GSPT), the Successive Approximations Method (SAM) [15,16]
and the Zero-Derivative Principle (ZDP) [17,18], and the latter, the Intrinsic Low-Dimensional
Manifold (ILDM) [19], the Inflection Line Method (ILM) [20] and the Tangent Linear System
Approximation (TLSA) [21]. In 2005, a new approach of n-dimensional singularly perturbed
dynamical systems or slow–fast dynamical systems based on the location of the points where
the curvature of trajectory curves vanishes, called the Flow Curvature Method, was developed
by Ginoux et al. [22–24] and then by Ginoux [25–27]. In a recent publication, Ginoux [28]
proved, on the one hand, the identity between all the methods belonging to the same
category (i.e., belonging to singular perturbation-based methods or to curvature-based methods)
and, on the other hand, that between both categories. Moreover, he also established, on
the one hand, that his Flow Curvature Method encompasses the three other methods (IDLM,
TLSA, and ILM) and, on the other hand, the identity between his Flow Curvature Method
and Geometric Singular Perturbation Method.

Thus, the aim of this work was to provide the slow invariant manifold analytical equation
of the semiconductor laser model with AC-coupled optoelectronic feedback introduced by
Al-Naimee et al. [1]. Let us observe that, since this three-dimensional model has two small
multiplicative parameters in the right hand side of its velocity vector field, it has two fast
variables and one slow. Thus, as highlighted by Ginoux and Rossetto [22], in this specific
case, one of the hypotheses of Tihonov’s theorem [5] is not checked since the fast dynamics
of the singular approximation, i.e., the zero-order approximation of the slow invariant manifold,
have a periodic solution. As a consequence, Geometric Singular Perturbation Theory fails
to provide its analytical equation. To overcome such difficulty, we used, in this work,
the so-called Flow Curvature Method. This paper is organized as follows: in Section 2, the
laser model and its parameters are presented. In Section 3, the main features of the Flow
Curvature Method are recalled and the slow invariant manifold of the laser model is provided
as well as its graphical representation in the phase space. In the last section, the results are
discussed, and perspectives on this work are given.

2. Slow–Fast Dynamical System

Following the work of Al-Naimee et al. [1], we will use the dynamical system:

dx
dt

= x(y− 1),

dy
dt

= ν(δ0 − y + f (x, z)− xy),

dz
dt

= −ε(x + z),

(1)

where
f (x, z) = α

x + z
1 + s(x + z)

(2)

and the parameters s = 11, α = 1, ν = 10−3, and ε = 2× 10−5 as well as the bifurcation
parameter δ0 = 1.017 are exactly the same as in [1]. Due to the presence of the two small
parameters ν and ε, the dynamical system (1) is considered slow–fast. However, let us
observe that ε = κν where κ = 2× 10−2. Thus, by posing τ = νt, system (1) reads:

dx
dτ

= x′ =
x
ν
(y− 1),

dy
dτ

= y′ = δ0 − y + f (x, z)− xy,

dz
dτ

= z′ = −κ(x + z),

(3)
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Thus, x′ = O(ν−1) � 1 since ν � 1, y′ = O(1) and z′ = O(κ) � 1 since κ � 1. It
follows that x is a (very) fast variable and y is a fast variable, while z is a slow variable.

3. Stability Analysis
3.1. Fixed Points, Jacobian Matrix and Eigenvalues

Fixed points are determined while using the classical nullclines method. System (1)
has two fixed points: I1(0, δ, 0) and I2(δ− 1, 1, 1− δ).

The Jacobian matrix of system (1) reads:

J =


y− 1 x 0

ν

(
∂ f
∂x
− y
)
−ν(1 + x) ν

∂ f
∂z

−ε 0 −ε

 (4)

Let us observe that for both the fixed points I1 and I2:

∂ f
∂x

=
α

[1 + s(x + z)]2
=

∂ f
∂z

= α = 1, (5)

since nullcline ż = −ε(x + z) = 0 and the parameter α = 1.
By replacing the coordinate of the fixed point I1 in the Jacobian matrix (4), the Cayley–

Hamilton eigenpolynomial can be easily factorized and reads:

[λ− (δ− 1)](λ + ν)(λ + ε) = 0 (6)

Thus, there are three real eigenvalues:

λ1 = δ− 1 ; λ2 = −ν ; λ3 = −ε. (7)

Thus, the fixed point I1 is a saddle-node provided that δ > 1.
Then, upon replacing the coordinate of the fixed point I2 in the Jacobian matrix (4),

the Cayley–Hamilton eigenpolynomial reads:

λ3 − (νδ + ε)λ2 + νδελ− (1− δ)νε = 0 (8)

Numerically solving this third-degree eigenpolynomial (8) leads to:

λ1 = −0.00124128; λ2,3 = 0.000102141± 0.000513301i. (9)

Thus, the fixed point I2 is a saddle-focus.
By using perturbation methods [29], the real root λ1 of the eigenpolynomial (8) may be

approximated by:

λ1 = −νδ + O(ε), (10)

where O(ε) = −kε with k� ε. Moreover, the trace of the Jacobian matrix (4), evaluated at
the fixed point I2, provides:

Tr(J) = λ1 + λ2 + λ3 = −νδ− ε. (11)

Since λ2,3 = σ± iω is a complex conjugate, this trace reads:

Tr(J) = λ1 + 2σ = −νδ− ε. (12)
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Thus, by replacing, in the previous Equation (12), λ1 with the expression (10), we obtain:

2σ = (k− 1)ε > 0. (13)

It follows that the real part of the eigenvalues λ2,3 is necessarily positive and, thus,
the fixed point I2 is a saddle-focus.

3.2. Bifurcation Diagram

Following the work of Al-Naimee et al. [1], we used δ as a bifurcation parameter and
computed the bifurcation diagram, which is presented in Figure 1. Such a diagram, which
is exactly the same as that produced in [1], provides information that can be used to have a
better understanding of the phase space orbits plotted in Figure 2.
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From Figure 1, we observe that, for δ ∈ [1.006, 1.0082], the attractor is a limit cycle of
period one (see Figure 2a). For δ ∈ [1.0082, 1.0105] and δ ∈ [1.0117, 1.0137], the period of the
limit cycle becomes of period two (see Figure 2b). For δ ∈ [1.0105, 1.0117], the limit cycle is of
period four (see Figure 2c). When δ > 1.037, the attractor becomes chaotic (see Figure 2d).
To confirm these results, Lyapunov characteristic exponents were computed in each case.

3.3. Numerical Computation of the Lyapunov Characteristic Exponents

The numerical computation of the Lyapunov characteristic exponents (LCEs) of the
system (1) was performed in each case with the algorithm developed by Sandri [30] for
Mathematica® and the Lyapunov Exponents Toolbox (LET) developed by Siu for MatLab®

and involving the two algorithms proposed by Wolf et al. [31] and Eckmann and Ruelle [32]
(see https://fr.mathworks.com/matlabcentral/fileexchange/233-let 15 September 2021).
The results obtained by both algorithms are consistent. The LCE values were computed
within each considered interval δ ∈ [1.006, 1.02]. As an example, for δ = 1.007, 1.010, 1.011
and 1.017, both algorithms provided, respectively, the following LCEs: (0,−0.15,−0.82),
(0,−0.17,−0.81), (0,−0.16,−0.80) and (0.025, 0,−1.06). Then, the classification of (au-
tonomous) continuous-time attractors of the dynamical system (6) on the basis of their
Lyapunov spectrum, together with their Hausdorff dimension, is presented in Table 1
according to the work of Klein and Baier [33].

https://fr.mathworks.com/matlabcentral/fileexchange/233-let
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(a) δ = 1.007 (b) δ = 1.010

(c) δ = 1.011 (d) δ = 1.017
Figure 2. Phase portraits of system (1) in the phase space for various values δ.

Figure 2. Phase portraits of system (1) in the phase space for various values δ.

Table 1. Lyapunov characteristic exponents of dynamical system (6) for various values of δ.

δ LCE Spectrum Dynamics of the Attractor Hausdorff Dimension

δ ∈ [1.0060, 1.0082] (0,−,−) Limit cycle of period 1 D = 1
δ ∈ [1.0082, 1.0105] (0,−,−) Limit cycle of period 2 D = 1
δ ∈ [1.0105, 1.0117] (0,−,−) Limit cycle of period 4 D = 1
δ ∈ [1.0117, 1.0137] (0,−,−) Limit cycle of period 2 D = 1

δ ∈ [1.0137, 1.02] (+, 0,−) 2-Chaos D = 2.02

4. Slow Invariant Manifold

In recent publications, a new approach to n–dimensional singularly perturbed systems
of ordinary differential equations, called the Flow Curvature Method, has been developed
by Ginoux et al. [22–27,34–37]. It consists of considering the trajectory curves integral of
such systems as curves in Euclidean n–space. Based on the use of local metric properties of
curvatures inherent to Differential Geometry, this method, which does not require the use
of asymptotic expansions, states that the location of the points where the local curvature
of the trajectory curves of such systems is null defines an (n − 1)–dimensional manifold
associated with this system and called the flow curvature manifold. The invariance of this
manifold is then stated according to a theorem introduced by Gaston Darboux [38] in
1878. Moreover, as stated in Ginoux [25], if the slow–fast dynamical system has a symmetry
such as (−x,−y, z), its flow curvature manifold has the same, i.e., φ(−x,−y, z) = φ(x, y, z).
Thus, as previously stated (see Section 2), the system (1) is a three-dimensional singularly
perturbed dynamical system with two fast variables. However, in such a specific case, one
of the hypotheses of Tikhonov’s theorem [5] is not checked since the fast dynamics of
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the singular approximation have a periodic solution. Nevertheless, while using the Flow
Curvature Method, an approximation up to order three in νε2 and ν2ε of the slow invariant
manifold equation of the system (1) can been computed for various values of the bifurcation
parameter δ.

According to the Flow Curvature Method, the following proposition holds for any
n-dimensional singularly perturbed dynamical system comprising small multiplicative param-
eters in its velocity vector field:

Proposition 1. The location of the points where the (n− 1)th curvature of the flow, i.e., the curva-
ture of the trajectory curve ~X integral of any n–dimensional singularly perturbed dynamical systems
vanishes, providing a p-order approximation of its slow manifold, the equation of which reads

φ(~X) = ~̇X · (~̈X ∧
...
~X ∧ . . . ∧

(n)
~X ) = det(~̇X, ~̈X,

...
~X, . . . ,

(n)
~X ) = 0, (14)

where
(n)
~X represents the time derivatives up to order n of the velocity vector field.

For a proof of this proposition and that of the invariance of the slow manifold (14), see
Ginoux [22–28,34]. Let us observe that the p-order approximation depends on the number
of small multiplicative parameters in the velocity vector field. In the particular case of
system (1), it can be easily stated that, since the plane x = 0 is invariant with respect to the
flow and due to the presence of two small multiplicative parameters, i.e., ν and ε, the slow
invariant manifold Equation (14) can be simply and directly expressed by:

φ(~X) = (~̇X ∧ ~̈X) ·~i = 0, (15)

where~i is the unit vector along the x-axis. Thus, by using the Flow Curvature Method and
Equation (15), the slow invariant manifold equation of system (1) reads:

φ(x, y, z, ν, ε) = x(1− y)(δ + δs2x2 + s2x2yz− s2x2y + 2s2xyz2 − 2s2xyz + 2δs2xz

+ s2yz3 − s2yz2 + δs2z2 + sx2 + 2δsx + 2sxyz− 2sxy + 2sxz + 2syz2 − 2syz

+ sz2 + 2δsz + yz− y)− ε(x + z)(−δ + s2x3y− δs2x2 + 2s2x2yz + s2x2y

+ s2xyz2 + 2s2xyz− 2δs2xz + s2yz2 − δs2z2 + 2sx2y− sx2 − 2δsx + 2sxyz

+ 2sxy− 2sxz + 2syz− sz2 − 2δsz + xy + y) + ν(x + 1)(x + z)(sx + sz + 1)

× (−δ + sx2y− δsx + sxyz + sxy + syz− δsz + xy− x + y− z). (16)

The slow invariant manifold equations (16) of the system (1) have been plotted in the fig-
ures below (see Figure 3) for various values of the bifurcation parameter δ = 1.007, 1.010, 1.011
and 1.017.

We observe that, for δ = 1.007, the trajectory curve integral of system (1) is a periodic
stable limit cycle that lies partly on the left side and right side of the slow invariant manifold;
see Figure 3a. For a bifurcation parameter δ equal to 1.010 and 1.011 (see Figure 3b,c), the
same evolution appears. Let us observe that the kind of funnel in Figure 3a,c corresponds
to the attractive eigendirection of the fixed point I2. When δ = 1.017, the attractor becomes
chaotic and the trajectory curve evolves slowly from the bottom to the top on nearly all
the left part of the slow invariant manifold. Then, it jumps on the upper right part of slow
invariant manifold and starts spiraling around the attractive eigendirection corresponding to
the negative real eigenvalues λ1 ≈ −νδ of fixed point I2; see Equations (9) and (10). When
the trajectory curve reaches the lower right part of the slow invariant manifold, it jumps on its
left part. Let us observe that, during its descent, it lies in the vicinity of the slow invariant
manifold; see Figures 3d and 4.



Symmetry 2021, 13, 1898 7 of 9

Version September 24, 2021 submitted to Symmetry 7 of 10

The slow invariant manifold equations (16) of the system (1) have been plotted in the figures152

below (see Figs. 3) for various values of the bifurcation parameter δ = 1.007, 1.010, 1.011153

and 1.017.154

(a) δ = 1.007 (b) δ = 1.010

(c) δ = 1.011 (d) δ = 1.017
Figure 3. Slow invariant manifolds of system (1) in the phase space for various values δ.

We observe that for δ = 1.007, the trajectory curve integral of system (1) is a periodic155

stable limit cycle lies partly on the left side and right side of the slow invariant manifold156

[see Fig. 3(a)]. For the bifurcation parameter δ equal to 1.010 and 1.011 [see Figs. 3(b)-157

(c)] the same evolution appears. Let us notice that the kind of funnel in Figs. 3(a)-(c)158

corresponds to the attractive eigendirection of the fixed point I2. When δ = 1.017, the159

attractor becomes chaotic and the trajectory curve evolves slowly from the bottom to160

the top on nearly all the left part of the slow invariant manifold. Then, it jumps on the161

upper right part of slow invariant manifold and starts spiraling around the attractive162

eigendirection corresponding to the negative real eigenvalues λ1 ≈ −νδ of fixed point163

I2 (see Eq. (9-10)). When the trajectory curve reaches the lower right part of the slow164

invariant manifold, it jumps on its left part. Let us notice that during its descent, it lies in165

the vicinity of the slow invariant manifold [see Figs. 3(d) & Fig. 4].166

Figure 3. Slow invariant manifolds of system (1) in the phase space for various values of δ.

Version September 24, 2021 submitted to Symmetry 8 of 10

Figure 4. Evolution of the trajectory curve integral of system (1) for δ = 1.017.
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according to the bifurcation parameter δ is rather weak (see Figs. 3). This confirms an175

assumption made by Al-Naimee et al. [35] according to which:176

“Therefore, it is expected that they should not imply strong modifications of177

the slow-manifold shape which, as discussed above, is responsible for the178

observed dynamics.”179

At last, our mathematical analysis also enabled to confirm another assumption made180

by Al-Naimee et al. [35], according to which “since (x1, y1, z1) is located precisely on the181

slow manifold, the exact homoclinic connection does not occur.”182
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5. Discussion

In this work, by using the so-called Flow Curvature Method, we provide the slow
invariant manifold analytical equation of a laser model. This equation and its graphical
representation in the phase space enable, on the one hand, discriminating the slow evo-
lution of the trajectory curves from the fast one and, on the other hand, improving our
understanding of this slow–fast regime. Thus, the repelling and attracting branches of the
slow invariant manifold have been specified. We also highlighted that the deformation of
the surface representing, in the phase space (x, y, z), the slow invariant analytical manifold
according to the bifurcation parameter δ is rather weak (see Figure 3). This confirms an
assumption made by Al-Naimee et al. [1] according to which:

“Therefore, it is expected that they should not imply strong modifications of the
slow-manifold shape which, as discussed above, is responsible for the observed
dynamics.”

Finally, our mathematical analysis also enabled confirming another assumption made
by Al-Naimee et al. [1], according to which “since (x1, y1, z1) is located precisely on the
slow manifold, the exact homoclinic connection does not occur”.
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