
symmetryS S

Article

Measure of Departure from Conditional Symmetry Based on
Cumulative Probabilities for Square Contingency Tables

Yusuke Saigusa 1,* , Yuta Teramoto 2 and Sadao Tomizawa 2

����������
�������

Citation: Saigusa, Y.; Teramoto, Y.;

Tomizawa, S. Measure of Departure

from Conditional Symmetry Based on

Cumulative Probabilities for Square

Contingency Tables. Symmetry 2021,

13, 1897. https://doi.org/10.3390/

sym13101897

Academic Editors: Jinyu Li and

Dalibor Štys

Received: 17 August 2021

Accepted: 4 October 2021

Published: 8 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biostatistics, Yokohama City University Graduate School of Medicine,
Yokohama 236-0004, Kanagawa, Japan

2 Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science,
Noda 278-8510, Chiba, Japan; 6316626@ed.tus.ac.jp (Y.T.); tomizawa@is.noda.tus.ac.jp (S.T.)

* Correspondence: saigusay@yokohama-cu.ac.jp

Abstract: For the analysis of square contingency tables with ordered categories, a measure was
developed to represent the degree of departure from the conditional symmetry model in which there
is an asymmetric structure of the cell probabilities with respect to the main diagonal of the table.
The present paper proposes a novel measure for the departure from conditional symmetry based on
the cumulative probabilities from the corners of the square table. In a given example, the proposed
measure is applied to Japanese occupational status data, and the interpretation of the proposed
measure is illustrated as the departure from a proportional structure of social mobility.

Keywords: conditional symmetry; contingency table; diversity index; measure; ordered category

1. Introduction

Symmetry and asymmetry issues frequently arise in square contingency tables with
the same row and column classifications from a broad range of scientific fields, for exam-
ple, medical, social, and geographical sciences [1,2]. A number of statistical approaches
were developed to find the symmetric and asymmetric relationships of the underlying
probability distribution for the square table. The authors in [3] considered the symmetry
model for cell (joint) probability in the square table, and, following that, various symmetry
and asymmetry models were investigated and evaluated through data analysis [4,5]. The
researchers in [1,6,7] considered the singular value decomposition of a skew-symmetric
matrix, which is composed of the residuals from the symmetry model. Regarding the
residuals from the symmetry model, [8] gave the index, which represents the degree of
residuals, and [9] considered the correspondence analysis of the residual matrix. The
present paper focuses on measuring the degree of departure from an asymmetric structure
for cumulative cell probabilities.

Consider an R× R contingency table with the same row and column classifications
with ordered categories. Let X and Y denote the row and column variables, respectively.
Let pij = Pr(X = i, Y = j) for i = 1, . . . , R; j = 1, . . . , R. The authors in [10] considered the
conditional symmetry (CS) model defined by

pij = ∆pji (i < j). (1)

In particular, if ∆ = 1 holds in the CS model, the symmetry model ([3,4], p. 282)
holds. The CS model indicates a structure in which a cell probability is proportional to the
symmetric cell probability with respect to the main diagonal with the common ratio to all
pairs of probabilities.

When the CS model does not hold, we are interested in measuring how far the
probability distribution is distant from the CS model. The authors in [11] gave a measure
to represent the degree of departure from the CS model. Let Φ(λ) denote the measure (see
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Appendix A for the details). The value of measure Φ(λ) is not invariant for re-ordering
the categories of table. Therefore, Φ(λ) is appropriate for applying to a square table with
ordered categories.

We introduce the cumulative probability from the upper-right and lower-left corners
of the square table. Let

Gij = Pr(X ≤ i, Y ≥ j) =
i

∑
s=1

R

∑
t=j

pst (i < j),

Gji = Pr(X ≥ j, Y ≤ i) =
R

∑
s=j

i

∑
t=1

pst (i < j).

The restriction of the CS model can be expressed by using the cumulative probabilities,
that is,

Gij = ∆Gji (i < j). (2)

Thus, the CS model indicates that each cumulative probability is proportionate to the
symmetric cumulative probability with the ratio of ∆.

The cross-classification of the father’s and his son’s occupational statuses in Japan
was explored in 1955 and 1965 [12] (p. 151). The occupational status was classified into five
categories: (1) capitalist; (2) new-middle; (3) working; (4) self-employed; and (5) farming.
These categories were treated as an ordinal scale by some statisticians; see for example, [13].

Thus, these data are given in the form of 5× 5 ordinal contingency tables. Noting
that the row variable is the father’s status and the column variable is the son’s status, the
father–son pairs in the off-diagonal cells indicate the social mobility to a different status
between the father and his son.

For the analysis of these data, if there is a conditional symmetric structure of the
cumulative probabilities underlying the occupational status data, there is a proportional
relation in which the probability of social mobility from father’s status i or below to son’s
status j or above is ∆ times higher than that from father’s status j or above to son’s status i
or below for any value of the parameter of ∆, i < j; i = 1, . . . , 4; j = 2, . . . , 5.

The present paper focuses on measuring the degree of departure from the proportional
structure of the cumulative probabilities (for the example described above) and comparing
the degrees of departure among different tables. The measure Φ(λ) would be useful to
determine the degree of departure from a conditional symmetric structure (1) for the cell
probabilities. On the other hand, because the CS model can also be expressed as (2), we
might also be interested in measuring the degree to which the cumulative probabilities
{Gij} are distant from those with a conditional symmetric structure.

Such a measure should be expressed as a function of the cumulative probabilities.
The present paper considers a new measure to represent the degree of departure from CS
based on the cumulative probabilities {Gij}. Such a new measure may be useful when we
determine the structure of the cumulative probabilities underlying the data rather than the
structure of cell probabilities.

The rest of this paper is organized as follows. In Section 2, we propose a new measure
that expresses the degree of departure from the CS model. In Section 3, we obtain the
large-sample confidence interval for the proposed measure. In Section 4, we apply the
measure to the actual data of the occupational status of father–son pairs in Japan and
illustrate the interpretation of the measure. Section 5 provides our discussion.

2. Measure

For the cumulative probabilities {Gij} for an R× R table, the CS model can be ex-
pressed as

GU
ij = GL

ji (i < j),
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where

GU
ij =

Gij

∆U
, GL

ji =
Gji

∆L
,

∆U = ∑ ∑
s<t

Gst, ∆L = ∑ ∑
s>t

Gst.

Assume that ∆U > 0, ∆L > 0 and {Gij + Gji > 0}. Let Qij = (GU
ij + GL

ji)/2 for i < j.
Consider the measure defined by

Ψ(λ) = ∑ ∑
i<j

Qij

(
1− λ2λ

2λ − 1
H(λ)

ij

)
(λ > −1),

where

H(λ)
ij =

1
λ

[
1− (Gc

ij)
λ+1 − (Gc

ji)
λ+1
]
,

Gc
ij =

GU
ij

GU
ij + GL

ji
, Gc

ji =
GL

ji

GU
ij + GL

ji
.

Note that H(λ)
ij is the Patil and Taillie’s [14] diversity index of degree λ, which is a

real value chosen by the user. Which value of λ to use will be discussed in Section 5.
The component H(λ)

ij reflects the degree to which the weighted cumulative probabilities
(Gc

ij, Gc
ji) are distant from uniform, (1/2, 1/2), and these are rescaled in order to normalize

the value of measure. The measure Ψ(λ) is formulated by combining the rescaled indices
into the weighted mean with the weights of Qij, which is the relative magnitude of the
cumulative probabilities (Gij, Gji). The measure evaluated at λ = 0 is taken to be the limit
as λ→ 0, namely,

Ψ(0) = ∑ ∑
i<j

Qij

(
1− 1

log2
H(0)

ij

)
,

where

H(0)
ij = −Gc

ij log Gc
ij − Gc

ji log Gc
ji.

Note that H(0)
ij is the Shannon entropy.

It is satisfied that (i) 0 ≤ Ψ(λ) < 1 and (ii) Ψ(λ) achieves the minimum value of 0 if and
only if GU

ij = GL
ji (i < j), that is, there is a structure of the CS model in the table. We provide

a numerical experiment to determine the change of value of Ψ(λ) for departures from the
CS model in Section 5. It can be seen that the value of measure Ψ(λ) is not invariant for
re-ordering the categories of table and, thus, incorporates the information of the order
of categories.

3. Confidence Interval of Measure

Let nij denote the observed frequency in the ith row and jth column of the table
(i = 1, . . . , R; j = 1, . . . , R). The sample version of Ψ(λ), say Ψ̂(λ), can be obtained from
{ p̂ij}, where p̂ij = nij/n and n = ∑ ∑ nij. Assume that {nij} result from full multinomial
sampling. We shall consider an approximate standard error of Ψ̂(λ) and a large-sample
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confidence interval for Ψ(λ). Using the delta method [2] (p. 587),
√

n(Ψ̂(λ) −Ψ(λ)) asymp-
totically (as n→ ∞) has a normal distribution with mean 0 and variance σ2

[
Ψ(λ)

]
where

σ2
[
Ψ(λ)

]
=

R

∑
i=1

R

∑
j=1

pij

(
ω
(λ)
ij

)2
−
(

R

∑
i=1

R

∑
j=1

pijω
(λ)
ij

)2

(λ > −1),

with

ω
(λ)
ij =



∑ ∑
k<l

(
2λ(λ + 1)

2λ − 1
Qklθijkl

(
(Gc

kl)
λ − (Gc

lk)
λ
)

+
ξijkl + ξijlk

2

(
1− λ2λ

2λ − 1
H(λ)

kl

))
(λ 6= 0),

∑ ∑
k<l

(
1

log2
Qklθijkllog

(
GU

kl
GL

lk

)

+
ξijkl + ξijlk

2

(
1− 1

log2
H(0)

kl

))
(λ = 0),

θijkl =
Gc

lk
GU

kl + GL
lk

ξijkl −
Gc

kl
GU

kl + GL
lk

ξijlk,

ξijkl =
I(i ≤ k, j ≥ l)

∆U
− Gkl

∑ ∑s<t I(i ≤ s, j ≥ t)
∆2

U
,

ξijlk =
I(i ≥ l, j ≤ k)

∆L
− Glk

∑ ∑s>t I(i ≥ s, j ≤ t)
∆2

L
,

and I(·) is the indicator function. Let σ̂2
[
Ψ(λ)

]
denote σ2

[
Ψ(λ)

]
with {pij} replaced by

{ p̂ij}. We have the estimated approximate standard error of Ψ̂(λ), σ̂
[
Ψ(λ)

]
/
√

n, and the

approximate 100(1− p)% confidence interval for Ψ(λ),Ψ̂(λ) − zp/2

σ̂
[
Ψ(λ)

]
√

n
, Ψ̂(λ) + zp/2

σ̂
[
Ψ(λ)

]
√

n

,

where zp/2 is the 100(1− p/2)th percentile of the standard normal distribution.

4. Data Analysis

Consider the Japanese father’s and his son’s occupational status data examined in
1955 and 1965 [12] (p. 151) introduced in Section 1 again. Applying the measure Ψ(λ) might
be appropriate to evaluate the degree of departure from the proportional structure for the
cumulative probability of social mobility and to compare the degrees of departure between
in 1955 and in 1965. On the other hand, in order to evaluate the degree of departure from
the proportional structure for the cell probabilities, the measure Φ(λ) should be applied.

Table 1 gives the estimated values and the confidence intervals for Ψ(λ) applied to the
occupational status data for some fixed λ. Similarly, Table 2 gives the estimated values and
the confidence intervals for Φ(λ). We compare the degrees of departure from CS between
the occupational statuses in 1955 and in 1965 using the confidence intervals for Ψ(λ) given
in Table 1. It is inferred that the degree of departure from CS in 1965 would be larger than
that in 1955. Therefore, it can be interpreted from these results that the degree of departure
from the proportional structure for the cumulative probabilities is larger for 1965 than for
1955. On the other hand, the results in Table 2 show that the degree of departure from the
CS for the cell probabilities may be larger for 1965 than for 1955.
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Table 1. Estimates of Ψ(λ), the estimated standard errors of Ψ̂(λ), and 95% confidence intervals for
Ψ(λ), applied to each of the occupational status data (a) in 1955 and (b) in 1965.

(a) Applied to the occupational status data in 1955.

Standard Confidence
λ Estimate Error Interval

−0.8 0.023 0.004 (0.016, 0.030)
−0.6 0.042 0.006 (0.029, 0.055)
−0.4 0.058 0.009 (0.041, 0.075)
−0.2 0.071 0.010 (0.050, 0.091)

0 0.081 0.012 (0.058, 0.105)
0.2 0.090 0.014 (0.065, 0.115)
0.4 0.097 0.014 (0.070, 0.124)
0.6 0.102 0.014 (0.074, 0.130)
0.8 0.105 0.015 (0.076, 0.134)
1 0.108 0.015 (0.078, 0.138)
1.2 0.109 0.015 (0.080, 0.139)
1.4 0.110 0.015 (0.080, 0.140)
1.6 0.110 0.015 (0.080, 0.140)

(b) Applied to the occupational status data in 1965.

Standard Confidence
λ Estimate Error Interval

−0.8 0.046 0.006 (0.033, 0.058)
−0.6 0.082 0.011 (0.061, 0.104)
−0.4 0.113 0.015 (0.084, 0.142)
−0.2 0.137 0.018 (0.103, 0.171)

0 0.156 0.020 (0.118, 0.195)
0.2 0.172 0.021 (0.130, 0.213)
0.4 0.183 0.022 (0.140, 0.227)
0.6 0.192 0.023 (0.147, 0.237)
0.8 0.198 0.023 (0.152, 0.244)
1 0.203 0.024 (0.156, 0.249)
1.2 0.205 0.024 (0.158, 0.252)
1.4 0.206 0.024 (0.159, 0.253)
1.6 0.206 0.024 (0.159, 0.253)
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Table 2. Estimates of Φ(λ), the estimated standard errors of Φ̂(λ), and 95% confidence intervals for
Φ(λ), applied to each of the occupational status data (a) in 1955 and (b) in 1965.

(a) Applied to the occupational status data in 1955.

Standard Confidence
λ Estimate Error Interval

−0.8 0.058 0.008 (0.042, 0.074)
−0.6 0.104 0.014 (0.077, 0.131)
−0.4 0.140 0.018 (0.105, 0.175)
−0.2 0.168 0.021 (0.127, 0.209)

0 0.190 0.023 (0.145, 0.235)
0.2 0.207 0.025 (0.158, 0.255)
0.4 0.219 0.026 (0.169, 0.270)
0.6 0.229 0.026 (0.177, 0.281)
0.8 0.236 0.027 (0.183, 0.288)
1 0.240 0.027 (0.187, 0.294)
1.2 0.243 0.027 (0.189, 0.297)
1.4 0.244 0.028 (0.190, 0.298)
1.6 0.244 0.028 (0.190, 0.297)

(b) Applied to the occupational status data in 1965.

Standard Confidence
λ Estimate Error Interval

−0.8 0.096 0.011 (0.074, 0.118)
−0.6 0.169 0.019 (0.132, 0.206)
−0.4 0.224 0.024 (0.178, 0.271)
−0.2 0.266 0.027 (0.214, 0.319)

0 0.298 0.029 (0.242, 0.355)
0.2 0.322 0.030 (0.263, 0.381)
0.4 0.340 0.031 (0.279, 0.401)
0.6 0.353 0.032 (0.291, 0.414)
0.8 0.362 0.032 (0.299, 0.424)
1 0.367 0.032 (0.305, 0.430)
1.2 0.371 0.032 (0.308, 0.434)
1.4 0.372 0.032 (0.309, 0.435)
1.6 0.372 0.032 (0.309, 0.435)

5. Discussion

For a square contingency table with the same ordered row and column classifications,
we have proposed the measure to represent the degree of departure from the CS model
based on the cumulative probability. The proposed measure Ψ(λ) is useful for comparing
the degrees of departure from CS among different ordinal tables as shown in the example.

The measure Ψ(λ) can be reformulated using the power divergence [15] as follows.

Ψ(λ) =
λ(λ + 1)

2λ − 1
· 1

2

[
I(λ)(GU

ij ; Qij) + I(λ)(GL
ji ; Qij)

]
(λ > −1),

where

I(λ)(aij; bij) =
1

λ(λ + 1) ∑ ∑
i<j

aij

( aij

bij

)λ

− 1

.
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When λ = 0, using the Kullback–Leibler (KL) divergence,

Ψ(0) =
1

2 log 2

[
I(0)(GU

ij ; Qij) + I(0)(GL
ji ; Qij)

]
,

where

I(0)(aij; bij) = ∑ ∑
i<j

aij

(
aij

bij

)
.

Especially when λ = 0, it can be easily seen that

Ψ(0) =
1

2 log 2
min
Wij

[
I(0)(GU

ij ; Wij) + I(0)(GL
ji ; Wij)

]
,

where ∑ ∑i<j Wij = 1 and Wij > 0. Therefore, Qij in Ψ(λ) is the value of Wij such that it
minimizes the sum of the two KL divergences between {GU

ij } and {Wij}, and {GL
ji} and

{Wij} with the conditional asymmetric structure. Note that Qij does not minimize the
power divergence for any λ (λ > −1; λ 6= 0).

The reader may be interested in how to select the value of the parameter λ in Ψ(λ) to
compare different tables in a practical situation. It is recommended to compare the results
using the various values of λ rather than to see the result from a specified value of λ. This
is because it would be impossible to conclude which table has a larger departure from CS if
the results differ depending on the value of λ (although the authors have not experienced
such a case yet). On the other hand, it would be possible to draw a conclusion when the
results agree for all the used values of λ. Thus, it seems to be safe to use various values
of λ and to compare the obtained results. If the reader considers the interpretation of the
measure to be important, adopting λ = 0 may be recommended from the discussion in the
previous paragraph.

Consider the artificial cell and cumulative probability tables given in Table 3. This
table has unspecified probabilities, p12 and p21, where p12 + p21 = 0.61. In Table 3 (b),
the ratios G13/G31 and G23/G32 are equal to 2. Figure 1 shows the value of measures Φ(0)

and Ψ(0) for different values of the ratio G12/G21. It can be seen from this figure that (1)
the value of Ψ(0) takes 0 when G12/G21 = 2, which is the same as G13/G31 and G23/G32;
namely, the CS model holds; (2) the value of Ψ(0) takes a larger value as G12/G21 moves
away from 2. The results for λ 6= 0 are similar and, thus, are not reported here.

From these results, the measure Ψ(λ) would be appropriate to represent the degree of
departure from the CS model, because it is natural to consider that the departure from CS
increases as G12/G21 moves away from 2 in Table 3. Figure 1 shows that the measure Ψ(0)

has a trend similar to the measure Φ(0) in this artificial example.

Table 3. Artificial cell and cumulative probability tables; the cumulative probabilities in Table 3 (b)
are calculated from the cell probabilities in Table 3 (a).

(a) Cell probability table.

0.10 p12 0.02
p21 0.10 0.04
0.01 0.02 0.10

(b) Cumulative probability table.

0.02 + p12 0.02
0.01 + p21 0.06

0.01 0.03



Symmetry 2021, 13, 1897 8 of 10

V
a
lu

e
 o

f 
m

e
a
su

re

G12 G21

0.0
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0.5

0.6

0.05 0.2 0.5 1 2 5 20

Value of Φ(0)

Value of Ψ(0)

Figure 1. Values of measure Φ(0) and Ψ(0) for values of G12/G21 in Table 3.

We present another artificial example to clarify the difference between the two mea-
sures Φ(λ) and Ψ(λ). Consider the artificial cell and cumulative probability tables given
in Table 4. Figure 2 shows the values of the measures Φ(0) and Ψ(0) for different values
of the probability p13. When p13 = 0.1, the ratios of the symmetric cell and cumulative
probabilities are almost the same, and then the values of the two measures are nearly 0.
When the value of p13 increases toward 0.5, the proportional structure of the cumulative
probabilities is almost preserved.

Consequently, the value of Ψ(0) remains nearly 0. On the other hand, the value of Φ(0)

increases. This may be because the proportional structure of the cell probabilities is not
preserved when the probability p13 increases. The results for λ 6= 0 are similar and, thus,
are not reported here. Hence, the measure Ψ(λ) is appropriate to represent the degree of
departure from a conditional symmetric structure of cumulative probabilities where the
measure Φ(λ) is not appropriate.

Table 4. Artificial cell and cumulative probability tables; the cumulative probabilities in Table 4 (b)
are calculated from the cell probabilities in Table 4 (a).

(a) Cell probability table.

0.05 0.02 p13
0.10 0.05 0.02

0.61− p13 0.10 0.05

(b) Cumulative probability table.

0.02 + p13 p13
0.71− p13 0.02 + p13
0.61− p13 0.71− p13
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Figure 2. Values of measure Φ(0) and Ψ(0) for values of p13 in Table 4.
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Appendix A

To introduce the measure proposed by [11], we consider the reformulated restriction
of the CS model using the conditional cell probabilities, that is,

pU
ij = pL

ji (i < j),

where

pU
ij = Pr(X = i, Y = j|X < Y) =

pij

δU
,

pL
ji = Pr(X = j, Y = i|X > Y) =

pji

δL
,

δU = ∑ ∑
s<t

pst, δL = ∑ ∑
s>t

pst.

Assume that δU > 0, δL > 0, and {pij + pji > 0}. Let qij = (pU
ij + pL

ji)/2 for i < j. The
measure is defined by

Φ(λ) = ∑ ∑
i<j

qij

[
1− λ2λ

2λ − 1
I(λ)ij

]
(λ > −1),
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where

I(λ)ij =
1
λ

[
1− (pc

ij)
λ+1 − (pc

ji)
λ+1
]
,

pc
ij =

pU
ij

pU
ij + pL

ji
, pc

ji =
pL

ji

pU
ij + pL

ji
.

Noting that I(λ)ij is the diversity index of degree λ [14], this represents the degree to

which the conditional probabilities (pc
ij, pc

ji) are distant from (1/2, 1/2). The measure Ψ(λ)

is the weighted mean of I(λ)ij with the weights of qij. The value of the measure evaluated at
λ = 0 is taken to be the limit as λ→ 0, namely,

Φ(0) = ∑ ∑
i<j

qij

[
1− 1

log 2
I(0)ij

]
,

where

I(0)ij = −pc
ij log pc

ij − pc
ji log pc

ji.

Note that I(0)ij is the Shannon entropy, which is a special case of the diversity index I(λ)ij .
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