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Abstract: In this paper, a new method for the exact solution of the stationary, one-dimensional
Schrödinger equation is proposed. Application of the method leads to a three-parametric family of
exact solutions, previously known only in the limiting cases. The method is based on solutions of the
Ricatti equation in the form of a quadratic function with three parameters. The logarithmic derivative
of the wave function transforms the Schrödinger equation to the Ricatti equation with arbitrary
potential. The Ricatti equation is solved by exploiting the particular symmetry, where a family of
discrete transformations preserves the original form of the equation. The method is applied to a
one-dimensional Schrödinger equation with a bound states spectrum. By extending the results of the
Ricatti equation to the Schrödinger equation the three-parametric solutions for wave functions and
energy spectrum are obtained. This three-parametric family of exact solutions is defined on compact
support, as well as on the whole real axis in the limiting case, and corresponds to a uniquely defined
form of potential. Celebrated exactly solvable cases of special potentials like harmonic oscillator
potential, Coulomb potential, infinite square well potential with corresponding energy spectrum and
wave functions follow from the general form by appropriate selection of parameters values. The first
two of these potentials with corresponding solutions, which are defined on the whole axis and half
axis respectively, are achieved by taking the limit of general three-parametric solutions, where one of
the parameters approaches a certain, well-defined value.

Keywords: Schrödinger equation; Ricatti equation; symmetry of equations; exact solutions

1. Introduction

One of the main open problems in nonrelativistic quantum mechanics is finding exact
bound states to microscopic systems. The early attempts concerned the energy spectrum of
the hydrogen atom and were successfully concluded using the Bohr-Sommerfeld quantiza-
tion rule [1]. The introduction of the Schrödinger equation enabled the application of the
theory of orthogonal polynomials to the bound state problem.

Over the years, new techniques have been introduced [2,3], like algebraic methods
connected with annihilation and creation operators or the factorization method introduced
by Infeld and Hull [4–6]. Using supersymmetry [7,8], another method was proposed,
namely the so-called shape invariance condition [9–11], which is an integrability condition
generalizing the operator method employed for solving the harmonic oscillator. Shape
invariance allowed to find new exact solutions [12–16], as well as gave a novel insight
into the problem of solvability of the Schrödinger equation. In particular, all the popular
analytically solvable potentials, such as harmonic oscillator potential, Coulomb potential,
and infinite square well potential are known to be solvable using this method [12].
Furthermore, the shape invariance condition provides an answer to the question whether
WKB and SWKB approximations methods are exact [17].

Exact solutions of the Schrödinger equation are widely researched also for their
applications [18]. As an example, study of the deformations to exactly solvable potentials
is facilitated by the existence of analytical solutions [19]. A comprehensive book by Bagrov

Symmetry 2021, 13, 1879. https://doi.org/10.3390/sym13101879 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6995-0704
https://doi.org/10.3390/sym13101879
https://doi.org/10.3390/sym13101879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13101879
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13101879?type=check_update&version=2


Symmetry 2021, 13, 1879 2 of 11

and Gitman discusses several methods used to find exact solutions in nonrelativistic and
relativistic quantum mechanics [20].

This paper introduces a three-parametric family of potentials that encompasses, as
special cases, all of the potentials mentioned in the previous paragraph. The considered
method uses the Ricatti equation to obtain a general set of solutions, that in the limit-
ing cases is transformed into the known solutions by taking the appropriate values of
parameters.

Solving the Schrödinger equation through the Ricatti equation is popular. Ricatti equation
was also used to find approximations to the stationary Schrödinger equation [18,21]. Here,
a new formalism is proposed where all so different solutions, like the ones mentioned
above, emerge from a unique form of the potential, that admits parametrization by three
real numbers.

The methods to solve the Schrödinger equation using continued fractions are utilized
since the 1970s [22,23]. In this contribution, continued fractions are used to solve the general
form of the potential and allow one to find the exact solutions of the Schrödinger equation
simultaneously, which previously was obtained only in the special, isolated cases [24]. It is
conjectured that all of the potentials that can be solved using orthogonal polynomials are
special cases of this three-parametric family and can be therefore obtained employing the
presented method.

The present work goes beyond the results of [25,26]. This technique not only proves
interesting from the point of view of new exactly solvable potentials but also can be
extended to the potentials that do not satisfy the shape invariance condition [27].

2. The Ricatti Equation

One of the most interesting nonlinear differential equations of the first order is the Ri-
catti equation, which is applied in many different branches of mathematics and physics [28].
The general form of the Ricatti equation is:

y′ = a(x)y2 + b(x)y + c(x), (1)

where a(x), b(x), and c(x) are continuous functions of x. The scope of this paper is
restricted to constant real functions a(x) = A, b(x) = B, and c(x) = C, which simplifies
the Ricatti equation to the following form

W ′0 = AW2
0 + BW0 + C. (2)

The symbol W0 refers to a function called in the other papers as superpotential.

2.1. Solutions to Special Ricatti Equation

The solution of this equation is sought in the compact interval I, while the conditions

W ′0(x) > 0 for x ∈ I ⊂ R
W0(x) has a zero in I

(3)

are satisfied.
For unspecified constant of integration x0, Equation (2) admits the following solution

W0(x) = − B
2A

+

√
−B2 + 4AC

2A
tan
(

1
2

√
−B2 + 4AC(x− x0)

)
, (4)

with compact support I given by

x0 −
π√

−B2 + 4AC
≤ x ≤ x0 +

π√
−B2 + 4AC

. (5)
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The main goal of this section is to find all solutions Wn and positive parameters an of
the following family of equations for n ∈ N

W ′n(x)−W2
n(x) = W ′0(x)−W2

0 (x) + an, (6)

having the solution W0 as the initial function, determined by the real parameters A, B, and
C. In the following reasoning, W with lower indices denote functions on the support I.

The solution of Equation (6) for n = 1 is written by means of the initial function W0

W1 = W0 −
a1

W01
, (7)

which transforms Equation (6) to

W ′01 + 2W0W01 − a1 = W2
01. (8)

This equation has the form of the Ricatti equation, given by Equation (2), if the
unknown function W01 is linear in W0

W01 = b1W0 − c1. (9)

Then, using the linearity of W01, Equation (8) can be transformed to the form of
Equation (2), producing the coefficients a1, b1, and c1

a1 = (A + 2)C− (A + 2)2B2

4(A + 1)2 ,

b1 = A + 2,

c1 = − (A + 2)B
2(A + 1)

.

(10)

Extending the above notation to the case of n = 0 one notes that a0 = 0, b0 = 1, and
c0 = 0 yields W00 = W0 with (6) transformed into an identity equation. To find the next
solution W2 of the Equation (6), it is crucial to postulate the following form

W2 = W0 −
a2

M2
= W0 −

a2

W01 −
α2

W02

, (11)

with the function M2 defined by the already found function W01 and the unknown function
W02 with a real parameter α2.

Similar to the previous case, using the above assumptions concerning W2, from
Equation (6) one obtains

W ′02 + 2(W01 −W0)W02 − α2 = W2
02. (12)

Proceeding as before, the postulate that W02 is linear in W0,

W02 = b2W0 − c2, (13)

transforms Equation (12) into the form of the Ricatti Equation (2), allowing to obtain the
coefficients a2, b2, and c2. Furthermore, one immediately gets α2 = a2 − a1.

The general form of the results is further illustrated by the next solution,

W3 = W0 −
a3

W01 −
a3 − a1

W02 −
a3 − a2

W03

, (14)



Symmetry 2021, 13, 1879 4 of 11

while assuming that W03 = b3W0 − c3 is linear in W0 with real parameters b3 and c3. The
coefficients of the above solution (a3 − a1) and (a3 − a2) can be deduced using similar
differential equation to (12)

W ′03 + 2
(
W02 − (W01 −W0)

)
W03 − (a3 − a2) = W2

03. (15)

In general, the solution Wn is derived, by analogy, in iterative reasoning and reads

Wn = W0 −
an

W01 −
an − a1

W02 −
an − a2

. . . −
W0n−1 −

an − an−1

W0n

, (16)

where the coefficients bn and cn of the auxiliary function W0n can be determined from the
differential equation

W ′0n + 2
(

W0n−1 −
(
W0n−2 − . . . (W01 −W0)

))
W0n − (an − an−1) = W2

0n (17)

assuming W0n = bnW0 − cn is linear in the initial function W0. The real coefficient an is also
inferred from the above equation.

2.2. Coefficients of the Continued Fraction

The symmetry of Equation (16) is striking, with the real coefficients (an − aj) forming
consecutive terms in the continued fraction. That is true even for the numerator, where a0 is
simply equal to zero. Using Equation (17) for n > 0 to accomplish the values of coefficients
an, bn, and cn, one gets the solution of bn and the recursive equations for an and cn, where

an = an−1 + bnC + 2cn

(
n−1

∑
i=0

(−1)i+n+1ci

)
− c2

n,

bn = (2n− 1)A + 2b0,

cn =
(2n− 1)A + 2b0

nA + b0

(
n−1

∑
i=0

(−1)i+n+1ci −
B
2

)
.

(18)

Solutions of the above recursive equations can be written as

an =
B2

4A2 +
(−B2 + 4AC)n

2A
+

(−B2 + 4AC)n2

4
− B2

4A2(1 + An)2 ,

bn = (2n− 1)A + 2,

cn = −
B
(
(2n− 1)A + 2

)(
n
(
(n− 1)A + 2

)
− 1
)

2(nA + 1)
(
(n− 1)A + 1

) ,

(19)

with initial parameters a0, b0, and c0.
To sum up, the family of Equation (6), labeled by the natural number n, has been

solved in full, general form, yielding a family of solutions Wn. This result holds provided
the initial function W0 satisfies the Ricatti Equation (2).
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3. The Schrödinger and the Ricatti Equations

The time-independent Schrödinger equation is used throughout quantum physics, in
particular, to find the bound states of various microscopic systems. Its one-dimensional
version describes the complex amplitude of the n-th wavefunction ψn(x) that has the
energy En in the presence of the potential V(x)

− ψ′′n (x) =
(
En −V(x)

)
ψn(x), (20)

where h̄2/(2m) = 1.
The wavefunction is used to determine the density of probability of finding a particle

in the position x, given by the Born rule |ψ(x)|2. Since it describes the physical reality its
normalizability is required, and the wavefunctions of different energy are orthogonal over
the support I ⊂ R ∫

I
ψn(x)ψ∗m(x) dx = cδnm, (21)

where c < ∞ is a positive real value.
This section shall be devoted to solving the Schrödinger equation by transforming it

into the Ricatti equation via the logarithmic derivative Wn(x) = −ψ′n(x)
ψn(x) , which produces

W ′n(x) = W2
n(x) + En −V(x). (22)

The normalizability condition of the wavefunction ψ0 results in the positivity of the
derivative W ′0(x) > 0, which implies the existence of the inverse function in the region I.
Then, the crucial step is the transformation of the function W0 into a variable W0 = g(x) by
x = g−1(W0).

Therefore, a new form of Equation (22) for n = 0 is obtained

W ′0(x) = W2
0 (x) + f (W0), (23)

where the notation f (W0) = E0 −V
(

g−1(W0)
)

denotes a function depending on variable
W0. Restricting to the case of f quadratic in W0 transforms the above equation into

W ′0 = AW2
0 + BW0 + C, (24)

described by three real parameters A, B, and C.
Taking into account the common potential for all solutions Wn, one eliminates it from

the general solution to the Schrödinger Equation (22), which takes the form of

W ′n(x)−W2
n(x) = W ′0(x)−W2

0 (x) + En − E0. (25)

Note that this equation has identical form to Equation (6), where an = En − E0, while
the initial function W0 admits the starting condition for the superpotential (2). Thus, the
procedure explained in the previous section may be used for finding all solutions Wn.

Now, as a final step for acquiring the wavefunctions of the first bound state, the
solution to the Ricatti equation W0 is integrated and exponentiated, resulting in

ψ0(x) ∝ e
B(x−x0)

2A

(
cos

(1
2

√
−B2 + 4AC(x− x0)

)) 1
A

, (26)

where A, B, and C are real parameters that encode the wavefunction implicit dependence
on the potential. For simplicity, the constants of two integrations are not included.

Similarly, for n = 1 one gets
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ψ1(x) ∝
e

B(x−x0)
2A(A+1)√

B2

(A+1)2 + (−B2 + 4AC)

(
cos

(1
2

√
−B2 + 4AC(x− x0)

)) 1
A

×
[

B
A + 1

cos
(1

2

√
−B2 + 4AC(x− x0)

)
−
√

B2 + 4AC sin
(1

2

√
−B2 + 4AC(x− x0)

)]
.

(27)

The general solution reads

ψn(x) ∝ eα0n(x−x0)

(
cos

(1
2

√
−B2 + 4AC(x− x0)

)) 1
A

×
n

∏
i=1

(
αi cos

(1
2

√
−B2 + 4AC(x− x0)

)
+ βi sin

(1
2

√
−B2 + 4AC(x− x0)

)
+ γi

)
,

(28)

where all coefficients written in Greek letters depend on the A, B, and C parameters and
must be determined by a cumbersome integration of Wn for each bound state separately.
Analytical and numerical calculations suggest that the functions ψn are orthogonal and
normalizable,

∫
I ψnψ∗m dx = δnm, which is additional proof of correctness of the procedure.

Based on the previously found expression of W0 and the Schrödinger Equation (22), it
is possible to evaluate the general form of the three-parametric potential V in the variable
(x− x0)

V(x) =
(−B2 + 4AC)(1− A)

4A2 tan2
(

1
2

√
−B2 + 4AC(x− x0)

)
− B
√
−B2 + 4AC

2A2 tan
(

1
2

√
−B2 + 4AC(x− x0)

)
.

(29)

Note that the starting Equation (2) has three parameters A, B, and C, while its solution
has an additional one x0. The above formula admits bound states only if the potential V(x)
opens upwards, i.e. V(x) tends to infinity at the boundaries of the domain I. Therefore, the
trigonometric potentials are obtained using the following condition

−B2 + 4AC > 0. (30)

The hyperbolic potentials, such as the Morse potential, are obtained by a complemen-
tary constraint on the parameters,

− B2 + 4AC < 0. (31)

Finally, the energies of the bound states are given by a simple relation

E0 = C− B2(A + 1)
4A2 (32)

and, for excited states,

En = E0 + an = C− B2

4A
+

(−B2 + 4AC)n
2A

+
(−B2 + 4AC)n2

4
− B2

4A2(1 + An)2 . (33)

The above concludes the considerations of the general form of the Schrödinger Equa-
tion (22), quadratic in W0. The abundance of the solutions that use orthogonal polynomials
makes it unfeasible to check every one of them. Nonetheless, to convince the reader that
the exhibited method is comprehensive, the next section is focused on its connection to
three well-known examples via a proper choice of parameters.
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4. Examples of Potentials

This section shall be devoted to the study of specific examples of trigonometric
potentials arising from the careful choice of parameters. Both relationships (29) and (33)
between the potential/energy and the parameters A, B and C respectively, can be used to
adjust the parameters in order to obtain known potentials.

However, in this contribution, the equation for energy will be used, where the depen-
dence on n is three-fold: linear n, quadratic n2, or inverse quadratic 1

n2 . Each corresponds
to a different, solvable potential: harmonic oscillator, infinite square well potential, and the
Coulomb potential, respectively.

4.1. Infinite Square Well Potential

For instance, if one takes A = 1, B = 0, and C = 1, then the Schrödinger equation for
the infinite square well potential is acquired. The solutions, resulting from Equations (26)–(28)
and (33) that are dedicated to the wavefunctions and energy spectrum, read

ψ0 ∝ cos(x− x0),

ψ1 ∝ sin
(
2(x− x0)

)
,

...

ψn ∝ cos
(
(n + 1)(x− x0) +

πn
2

)
,

(34)

where (x− x0) ∈ [−π/2, π/2] and energy En = (n + 1)2. Alternatively, this solution can
be obtained by the continued fraction (16). This example is generally considered to be the
simplest solution of the Schrödinger equation and, in the case at hand, was achieved by
the special choice of all three parameters together.

4.2. Harmonic Oscillator Potential

The next example is related to the harmonic oscillator potential. The choice B = 0 and
C = 1 is made while, to simplify calculations, x0 = 0. From the general expressions (26)
and (27) for the ground state and the first excited state one obtains

ψ0(x) ∝ (cos
√

Ax)
1
A ,

ψ1(x) ∝
(cos
√

Ax)
1
A sin (

√
Ax)√

A
,

(35)

where x ∈ [−π/(2
√

A), π/(2
√

A)], and energy En = An2 + 2n + 1.
The exact expression for the second excited state can be evaluated using the continued

fraction (16)

ψ2(x) ∝
(cos
√

Ax)
1
A (−1 + (1 + A) cos (2

√
Ax))

A
. (36)

By analogy, this scheme can be applied to the higher excited states as well. In addition,
to simplify the limiting procedure, every denominator of the function ψn included the
constant of integration equal An/2.

Finding the limit of the wavefunctions as A approaches zero

lim
A→0

ψn(x) = φn(x), (37)
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one acquires the Hermite polynomials Hn multiplied by the weight function

φ0(x) ∝ e−
x2
2 ,

φ1(x) ∝ xe−
x2
2 ,

φ2(x) ∝ (2x2 − 1)e−
x2
2 ,

...

φn(x) ∝ Hn(x)e−
x2
2 ,

(38)

where x ∈ (−∞, ∞), and energy En = 2n + 1. One observes a change in the shape and in
the domain of the wavefunctions by varying the parameter A as shown in Figure 1.

A = 0.8

A = 0.4

A→ 0

-4 -2 2 4
x

-0.6

-0.4

-0.2

0.2

0.4

0.6

ψ(x)

A = 0.8

A = 0.4

A→ 0

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

ψ(x)(a) (b)

Figure 1. The solutions of the Schrödinger equation with potential given by Equation (29) for certain
values of parameter A (dotted lines). The wavefunctions: the ground state ψ0 (a) and the first excited
state ψ1 (b) both approach the solutions to the harmonic oscillator potential (solid lines) as A→ 0.

4.3. Coulomb Potential

The last example of well-known potentials presented in this section is the Coulomb
potential.

By choosing C = B2/4, x0 = π/
√
−B2 + 4AC, and changing the sign of the parameter

B (B 7→ −B, B > 0), one obtains from Equations (26) and (27) the first two wavefunctions:

ψ0 ∝ e−
Bx
2A

(
sin
( 1

2

√
A− 1Bx

)) 1
A

√
A− 1

,

ψ1 ∝ e−
Bx

2A(A+1)

(
sin
( 1

2

√
A− 1Bx

)) 1
A

A− 1

×
(

sin
(1

2

√
A− 1Bx

)
− (A + 1)

√
A− 1 cos

(1
2

√
A− 1Bx

))
,

(39)

As a consequence of the choice of x0, the cosine function shifts to the sine function.
Moreover, like in the above example, in denominator of the function ψn the constant of
integration is attached, now equal (A− 1)(n+1)/2. The corresponding energy is

En =
B2

4A

(
1− 1

A

)
+

B2(A− 1)n
2A

+
B2(A− 1)n2

4
− B2

4A2(1 + An)2 . (40)

By applying the same reasoning as in the previous case, one arrives at the reformula-
tion of the wavefunctions and the energy as A approaches unity.
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Finding the limit of the wavefunctions, one obtains the generalized Laguerre polyno-
mials multiplied by the weight function

κ0(x) ∝ xe−
Bx
2 ,

κ1(x) ∝ x(4− Bx)e−
Bx
4 ,

κ2(x) ∝ x(54− 18Bx + B2x2)e−
Bx
6 ,

...

κn(x) ∝ L(−1)
n+1 (x)e−

Bx
2(n+1) ,

(41)

noting that limA→1 ψn(x) = κn(x), x ∈ (0, ∞), and energy En = − B2

4(n+1)2 .
As in the previous example, by varying the parameter A, one observes that wavefunc-

tions given by Equation (39) tend to the standard solutions of the Coulomb potential, see
Figure 2.

A = 1.10

A = 1.05

A→ 1

5 10 15 20 25 30 35
x

-0.5

0.5

1.0

ψ(x)

A = 1.5

A = 1.3

A→ 1

2 4 6 8 10 12 14
x

0.2

0.4

0.6

ψ(x)
(a) (b)

Figure 2. The solutions of the Schrödinger equation with potential given by Equation (29) for certain
values of parameter A (dotted lines), while the parameter B = 1. The wavefunctions: the ground
state ψ0 (a) and the first excited state ψ1 (b) both approach the solutions to the Coulomb potential
(solid lines) as A→ 1.

The above examples do not exhaust all possibilities of the exact solutions to the
Schrödinger equation obtainable by this procedure, which also encompass the Morse
potential. The presentation of the solutions to these potentials is aimed at convincing the
reader of the comprehensiveness and usefulness of this method. Subsequent section is
devoted to discussion of the applicability of the method.

5. Applications

The calculations for the potentials examined in the previous section prove that the
method can successfully determine the ground state and the excited bound states from a
new perspective. The solution to the hyperbolic potentials, such as the Morse potential, can
also be recovered by the presented technique. Furthermore, the method can be generalized
by extending the starting Equation (2) from the Ricatti equation to a different type [27],

W ′0 =
Pl+2(W0)

Ql(W0)
. (42)

Instead of a quadratic function, the right-hand side admits a rational function in W0,
with the lower index denoting the degree of the corresponding polynomial.
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Finally, applying the Equation (42) for l = 1 with fixed parameters, one obtains a new
exactly solvable potential of the inverse square root,

V(x) = − 2√
x + 1

4

for x ≥ 0. (43)

The form of the ground state is particularly simple,

ψ0(x) = e−x+2
√

x+ 1
4

(
2

√
x +

1
4
− 1

)
, (44)

while the excited states are also expressible by analytic terms [27]. Similar calculations, albeit
more tedious, can be carried out to arrive at a more general version of the inverse square root
potential. Moreover, by extending the order of the polynomial, l > 1, it is possible to acquire
exactly solvable potentials consisting of inverse of the higher degree roots.

Thus, the Ricatti equation studied in the present paper can be thought of as one of the
simplest examples of starting equations for a more general procedure. Hopefully, future
research will shed light on the subject of exact solutions of the Schrödinger equation.

However, hitherto used starting Equations (2) and (42) do not allow to achieve the
Airy functions for the constant force field, V(x) ∝ x. Not much is known about the
applicability of the presented method for continuous spectrum. It would be interesting
to explore other limitations of the method since this would put bounds on any technique
using shape-invariance.

On the other hand, 3D potentials with the shape-invariance property are known [12].
Therefore, one is tempted to believe that the method considered in this paper shall also
have extension to the three dimensional case. To this end, one can employ separation of
variables, widely used to solve the Schrödinger equation. As an example, in the case of 3D
Coulomb potential with spherical symmetry the radial part satisfies the shape-invariance
condition. Thus, the function Wn admits continued fraction form.

The possible applications of the method and its results extend to the domain of
numerical calculations as analytical basis functions [29]. One of the most widely used
technique to solve differential equations is the finite element method of B-spline type,
applied with great success in numerical atomic calculations [30,31]. Newly found functions
might be convenient for generating bases used in finite element technique.

6. Concluding Remarks

For many years, a lot of efforts have been devoted to solving the Schrödinger equation
for various potentials. In this contribution, the general form of the potential given by
Equation (29) was found and solved. It is stressed that there is only one form of the
potential, which means that all special cases (the harmonic oscillator potential, the Coulomb
potential, and others) are obtained by an appropriate choice of parameters.

The results presented in this contribution are a continuation and generalization of the
previous work [27]. In this earlier paper, the expressions for the coefficients an, bn, and cn
were not presented in the general form. The improvement, shown in the present article,
enables one to derive the general form of the family of potentials that are exactly solvable
using the described method. One of the most interesting contributions of this paper is
the derivation of explicit Equation (16) for Wn in the case of excited states, n > 0, as the
consequence of the particular symmetry of the Ricatti equation.

Finally, it is worth noting that the formalism can be generalized to achieve the new
exactly solvable potentials by another choice of the equation involving W ′0. The present
contribution can be modified by choosing a rational function instead of the quadratic one,
following similar steps as in [27]. It is conjecture that every potential that admits solutions
to the Schrödinger equation expressible via orthogonal polynomials can be obtained by
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this method. Furthermore, there are several possible extensions that might lead to exactly
solvable potentials yet unknown.
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