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Abstract: Aiming at few-shot classification in the field of hyperspectral remote sensing images, this
paper proposes a classification method based on cross-scene adaptive learning. First, based on
the unsupervised domain adaptive technology, cross-scene knowledge transfer learning is carried
out to reduce the differences between source scene and target scene. At the same time, depthwise
over-parameterized convolution is used in the deep embedding model to improve the convergence
speed and feature extraction ability. Second, two symmetrical subnetworks are designed in the model
to further reduce the differences between source scene and target scene. Then, Manhattan distance
is learned in the Manhattan metric space in order to reduce the computational cost of the model.
Finally, the weighted K-nearest neighbor is introduced for classification, in which the weighted
Manhattan metric distance is assigned to the clustered samples to improve the processing ability to
the imbalanced hyperspectral image data. The effectiveness of the proposed algorithm is verified
on the Pavia and Indiana hyperspectral dataset. The overall classification accuracy is 90.90% and
65.01%. Compared with six other kinds of hyperspectral image classification methods, the proposed
cross-scene method has better classification accuracy.

Keywords: hyperspectral image; few-shot; cross-scene; depthwise over-parameterized convolution;
weighted K-nearest neighbor

1. Introduction

Hyperspectral sensor (i.e., spectral imager) images the object to be detected at the
same time in tens to hundreds of continuous and subdivided spectral bands of the elec-
tromagnetic spectrum. Hyperspectral sensing images (HSI) are three-dimensional images
combining space with spectrum information [1]. With rich third-dimensional information,
it can more accurately subdivide and identify ground objects from the spectral space and
has been widely used in military target reconnaissance [2], forestry monitoring [3], vegeta-
tion research [4], agriculture [5], chemistry [6–8], environmental science [9,10] and other
fields. However, the labeled samples of hyperspectral images are limited, and manual
collection of labeled samples for hyperspectral data is time-consuming and expensive.
Therefore, how to use limited samples for classification processing without expanding the
data source becomes important [11].

In the early stage of hyperspectral image classification, researchers only used spectral
information for classification, including K-nearest neighbor (KNN) [12], random forest
(RF) [13], support vector machine (SVM) [14,15], etc. Although these traditional methods
effectively solved the problem of spectral information redundancy, they still have limi-
tations. These methods do not deeply study the inherent spatial structure information
of hyperspectral data, and it is difficult for the classification model to effectively handle
the phenomena of “different body with same spectrum” or “same body with different
spectrum” [16,17]. To solve this problem, researchers incorporated spatial information
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into hyperspectral classification and developed methods such as extended morphological
profile (EMP). Liu et al., proposed a visual saliency-based extended morphological profile
(VS-EMP) model, which is combined with SVM to improve the classification accuracy [18].
However, the feature extraction of this method depends on manual settings, and the
implementation process is slightly complex.

In recent years, due to the powerful performance of deep learning in automatic
feature extraction and learning different hierarchical structures, it has been widely used
in the field of image classification [19]. In particular, convolutional neural networks
(CNN), with its powerful feature expression ability, has been successfully applied to HSI
classification [20–25]. In order to achieve better classification results, the above methods
often need a large number of training samples. However, it is difficult to obtain labeled
samples, which will make it more difficult for researchers to train network models. In
order to alleviate this problem, Pan et al., proposed the multi-grained network (MugNet)
network, which can be regarded as a simplified deep learning model. The multi-grained
scanning strategy makes full use of optical spectrum and spatial information to improve the
feature acquisition ability of the model and uses the semi supervised method to generate
convolution kernel for reducing the model’s dependence on samples [26]. Sun et al.,
combined the attention mechanism with CNN to suppress the influence of interfering pixels,
capture the most significant features, and improve CNN’s ability to distinguish ground
objects [27]. He et al., proposed a heterogeneous transfer learning method to fully train the
VGG-16Net network model on ImageNet and adjust the network parameters to transfer
to hyperspectral data sets to complete effective classification [28]. Although the above
methods reduce the dependence of models on samples to a certain extent, these models
still need a certain amount of training samples to achieve better classification results.

In order to further reduce the dependence of the model on samples, some researchers
have proposed a classification model suitable for small sample HSI data classification in
recent years. Yang et al., proposed a new network called relationship network, which can
learn and compare the categories of samples based on the similarity measure between
sample pairs [29]. Rao et al., proposed the space-spectral relationship network to measure
the deep similarity between samples and to increase the discrimination ability of the
model to a small number of features by exploring the similarity measure between different
samples [30]. Zhang et al., proposed a global prototype network, which projects the original
data space into the embedded feature space, learns the vectors represented by the global
prototype, and completes the classification by using KNN classifier through the similarity
between vectors [31]. Although these classification models are better for small samples
classification, it is easy to encounter the problem that the data to be classified does not have
labeled samples in practical applications. The above classification models cannot obtain
the similarity between samples and classify them effectively.

Because labeling samples is time-consuming and laborious, many HSI scenarios
contain a small number of or unlabeled samples. However, with the increase of the
number of HSI, a similar HSI scenario can still be found [32]. Some researchers have
proposed a cross-scene classification method, which uses a similar source hyperspectral
scene with large labeled samples to classify a target hyperspectral scene with no labeled
samples or only a few labeled samples [33]. Kemker et al., input a large number of source
scene data into the stacked convolution automatic encoder to learn similar features, and
the obtained encoder can be used to classify the target scene through the fine-tuning
process [34]. Due to the differences between different hyperspectral scenes, the source
scene cannot be directly used to train the classifier. However, this method does not fully
consider the differences between different scenes, which is also a major problem faced by
cross-scene HSI classification. Therefore, Du et al., proposed the idea of domain adaptation
to reduce the differences between different scenes and transfer knowledge for target scene
classification by learning the features of a public subspace [35]. Deng et al., proposed
a cross-scene classification model based on depth metric learning, using unsupervised
domain adaptation technology to reduce the differences between different scenes and
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effectively use the source scene to classify the target scene [36]. However, this method still
has shortcomings, such as ignoring the insufficient feature acquisition ability of traditional
2D convolutional neural network [37] and the imbalance of data categories in hyperspectral
data [38].

This paper proposes a cross-scene adaptive learning classification model, which can
reduce the dependence of the model on samples and enhance the processing ability of the
model to handle the imbalance of data categories. Compared with the traditional methods
(RBF-SVM, EMP-SVM) and deep learning methods (DCNN, ED-DMM-UDA, MDDUK,
MDUWK), the classification accuracy has been significantly improved. The rest of this
paper is organized as follows. Section 2 briefly introduces the relevant algorithms and
improvements in this paper. Section 3 describes the experimental results and analysis of
this paper. Section 4 summarizes the conclusions and future work.

2. The Proposed Methods

The cross-scene classification model proposed in this paper is shown in Figure 1. It can
be seen from the figure that the model is composed of four core parts: deep hyperparameter
embedding model, discriminator model, Manhattan metric model and WKNN classifier.
The scene with training samples is called source scene, and the scene without training
samples is called target scene.

Figure 1. The proposed cross-scene classification model for hyperspectral image.

First, the samples of different scenes are input into the depth hyperparametric embed-
ding model, and the multi-dimensional feature extraction of the depth hyperparametric
convolution layer is used to generate clusters with the same category, The same size embed-
ding spaces are generated through the network with symmetrical structure to reduce the
difference between the source scene and the target scene. Then, the clustered samples are
projected into the discriminator, and the unsupervised domain adaptive technology is used
to transfer cross-scene knowledge, such that the target scene forms a distribution similar to
the source scene. Then, the processed target scene samples are mapped into Manhattan
metric space to learn metric distance of any two samples, and the samples close to the
cluster center are given greater weight. Finally, the final classification result is obtained by
weighted K-nearest neighbor classifier.

2.1. The Deep Hyperparametric Embedding Model

The deep hyperparametric embedding model is composed of deep convolution neural
network (DCNN) and depthwise over-parameterized convolution (DO-Conv). After the
introduction of DO-Conv, the ability of automatic feature extraction across scene models
is retained, and the problem of slow convergence caused by the depth of embedded
model layers is made up. The model can also be regarded as a feature extractor in the
cross-scene model. In order to extract the features of small samples more effectively, a
smaller convolution kernel will be set in the feature extractor. The small convolution
kernel will reduce the receptive field of the neural network, but increasing the size of
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the convolution kernel will also increase the parameter of the network model, which
is not conducive to small sample training. Therefore, Li et al., proposed a depthwise
over-parameterized convolution. Using the depthwise over-parameterized convolution
instead of the conventional convolution layer without changing the size of the convolution
kernel can accelerate the convergence speed of the model, add learnable parameters to the
model, and will not increase the computational complexity [39]. There are two composition
methods in DO-Conv, namely feature composition and convolution kernel composition.
This paper trains the network by using the composition of convolution kernel in the depth
hyperparametric embedding model to improve computation efficiency.

First, in order to learn the embedded features, the training samples are defined as
Xtrain =

{
xi, xj, yi, yj

}n, where n is the total number of training samples. Each source
training sample xi and target training sample xj have the corresponding tag values yi
and yj. The embedded source features are defined as Eϕ(xi) and the target features are
defined as Eϕ(xj). In this space, the data reconstruction of the original samples is realized
to form clusters with similar samples, as to better project the samples to the Manhattan
metric space. The depth hyperparametric embedding model is shown in Figure 2, dots of
different colors represent different categories, and red circles represent cluster centers. The
output of each layer of deep hyperparametric embedding model is given in Figure 2. The
deep superparametric embedding model in this paper is composed of two subnetworks,
DO-CNN1 and DO-CNN2, with symmetrical structure. Symmetrical structure means that
the layers and parameter settings of each sub network are the same, which is to obtain
samples with the same output size and reduce the differences of the source scene and the
target scene, such that the source scene can better guide the classification of target scenes.

Figure 2. The deep hyperparametric embedding model.

DO-CNN1 consists of a deep hyperparametric convolution layer, batch normalization
(BN), ReLU activation function, average pooling(AvgPool) and full connection layer (FC). In
order to train a small number of samples more effectively, the size of depth hyperparametric
convolution kernel is set to 1× 1, where padding is 0, stripe is 1, the size of average pooling
kernel is 5× 5, and the size of full connection layer is 1× 128. Assuming that the input
sample is 5× 5× nBand, the low-level features are extracted through the first layer of
hyperparametric convolution, and the feature map with size 5× 5× 200 is output. Then
higher-level features are extracted from the samples by the second, third and fourth layers
to generate a feature map with a size of. The sample size is compressed in the input to the
average pooling layer, and the output feature map with is size of 1× 1× 200. Finally, the
full connection layer is connected to the network output size of 1× 128. The output of each
layer of DO-CNN2 is the same as that of DO-CNN1. Finally, an embedding space with
the size of 1× 128 is formed, which is the source embedding space Eϕs(S) and the target
embedding space EϕT(T ).
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Depthwise over-parameterized convolution is composed of a conventional convolu-
tion W ∈ RCout×Dmul×Cin and a depthwise convolution D ∈ R(M×N)×Dmul×Cin . In conven-
tional convolution, the convolution layer processes the input data in a sliding way, and
each element of the output feature is obtained from the horizontal section of a convolution
kernel and the dot product of image blocks P. In the deep convolution layer, the deep
convolution kernel is convoluted with each input channel in the training stage. After the
training stage, the multi-layer composite linear operation used for over parameterization
is folded into a compact single-layer representation. Then, only a single layer is used in
reasoning, which reduces the calculation to complete equivalence with the conventional
layer.

In Figure 3, M and N is the spatial dimension of P, Cin is the number of input
feature map, Dmul is the number of depth convolutions, Cout is the number of output
feature map, DT ∈ RDmul×(M×N)×Cin is the transpose of D ∈ R(M×N)×Dmul×Cin , and the
convolution kernel of DO-Conv is W ′. First combine the depth convolution kernel DT with
the convolution kernel of ordinary convolution W to generate W ′, then W ′ convolutes P to
output features O.

O= (D, W)~ P

=
(

DT ◦W
)
∗ P

(1)

Figure 3. The depthwise over-parameterized convolution.

2.2. The Discriminator Model

The purpose of the discriminator model is to reduce the difference between the source
scene and the target scene through unsupervised domain adaptive technology, such that
the target scene forms a distribution similar to the source scene, as to better project it
into the metric space. The network structure is shown in Figure 4. It is composed of
full connection layer (FC), batch normalization (BN) and ReLU activation function. The
input is two isolated embedding spaces, which are the source embedding space Eϕ(xi)
and the target embedding space Eϕ(xj) size of 1 × 128. The two isolated embedding
spaces are mapped into common embedding space1 through the first full connection layer
(FC = 1× 128) to learn the characteristics of the source scene in this space. After optimizing
common embedding space 1 by the second full connection layer of (FC = 1× 64), the
size of common embedding “space2” is 1 × 64. Then, the third full connection layer
(FC = 1× 64) further optimizes the common embedding space2 to make the target scene
form a distribution similar to the source scene, such as common embedding space 3.
However, it contains the samples of the source scene. Therefore, the samples of the source
scene are removed through the last full connection layer (FC = 1× 2), and the samples of
the target scene are left alone to generate common embedding space4.
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Figure 4. The structure of discriminator model.

The difference between different scenes is reduced by the confusion discriminator.
The definition of the domain confusion loss function is shown in Equation (2), where, ϕT
and θ are the parameters of the target embedding model EϕT and the discriminator module
Dθ , respectively, and the feature embedding distribution between the source Eϕs(S) and
target EϕT(T ) is adjusted by θ.

L(ϕT, θ) = LA(ϕT, θ) + LC(ϕT) (2)

The discriminator Dθ trains ϕT to confuse the source scene and the target scene, and
trains θ to distinguish the embedding features Eϕs(S) and EϕT(T ) of the two scenes in the
projected space, and constantly update the embedding space of the target scene.

LA(ϕT, θ) = min
θ

max
ϕT
− ∑

xi∈S
log Dθ(EϕS(xi))− ∑

xj∈T
log(1− Dθ(EϕT(xj))) (3)

The clustering center CK is calculated by the average value of the measurement of
K class embedding features. The minimization Equation (4) will promote the T scene
embedding to form a distribution similar to the scene S , which helps the discriminator to
confuse the differences between the data of the source scene and the target scene, such that
the target scene can better learn the source scene.

LC(ϕT) = ∑
xj∈T

min
k
‖ EϕT

(
xj
)
− Ck ‖

2 (4)

2.3. Manhattan Metric Model

Manhattan metric model converts the metric distance of samples into a beneficial
structure of metric space by learning the metric distance of samples because the distance
metric has the characteristics of small intraclass spacing and large interclass spacing [40].
The reconstructed space still has the characteristics of high dimension of hyperspectral
data. In order to retain the characteristic information of different dimensions, this paper
uses Manhattan metric to obtain the attributes of samples, which has less computation
than the commonly used European measurement and makes up for the shortcoming
that the European measurement method does not consider the variability of values in all
dimensions [41]. Manhattan distance metric will reduce the calculation cost of cross-scene
model, which is defined as follows:

mp,q =
∣∣EϕT(xp)− EϕT(xq)

∣∣ (5)

After any xp and xq two samples are embedded in the Manhattan metric model of the
reconstructed space, their metric values can be calculated through the Manhattan metric
model, as shown in Figure 5. EϕT(xp) are the EϕT(xq) embedding features formed by
different samples after embedding the model, and the corresponding metric values mp,q
are generated after passing the metric model.
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Figure 5. The metric model.

The triplet loss where samples xp and xq have the same label, xp and xl have a different
label. It is clear that Equation (6) encourages the embedding of xp to be closer to xq than to
xl by at least margin 1. Optimizing such term results in moving the samples with the same
label into a cluster and push those with different labels far away from each other. Therefore,
an expected embedding is shown in Figure 5, which allows us to efficiently implement
classification by using the KNN classifier based on the metric distance that we defined in
(5) (Manhattan distance would be in this case).

ϕ← arg min
ϕ

∑
(xp ,xq ,xl)

max(mp,q −mp,l + 1, 0) (6)

2.4. The Weighted K-Nearest Neighbor

In order to improve the processing ability of the cross-scene model for unbalanced
data of data categories, different weights are given to the samples after passing through
the Manhattan metric model. The weighted classifier is called the weighted K-nearest
neighbor (WKNN). First, this paper defines the adaptive weight of each class of sample
in hyperspectral data set as shown in Equation (7), where WCk is the weight of each class
sample, K is the category of sample and CNK is the number of Kth class samples.

WCi =
CNi

CN1 + CN2 + · · · · · ·+ CNK
(i ∈ 1, 2, . . . , K) (7)

It can be seen from Table 1 that the weight of each type of sample in the Indiana
and Pavia dataset. In the Indiana dataset, wheat is 3.65, 6.86 and 6.55 times higher than
concrete/asphalt, orchard, soybeans and cleantill EW. It can be found that these two data
have the characteristics of data category imbalance. However, the traditional KNN classifier
is difficult to effectively process the category imbalance data [42]. This is bound to make it
difficult to classify cross-scene hyperspectral data and the loss of feature information of
some sample points will reduce the discrimination ability of the model to ground objects.
Therefore, this paper gives adaptive weight to different sample points in Manhattan metric
space, in which the weight is automatically transformed according to sample distance.
As shown in Figure 6, the darker the color of the sample points, the greater the weight.
This kind of sample points provide the most significant feature information for the model,
which will improve the robustness of the model.

In order to enable KNN to process the category imbalance data more effectively, this
paper increases the weight of the samples close to the embedding center CK, which are
considered to contribute more to the classification, and give less weight to the samples
with less contribution. In WKNN, the Manhattan distance calculated by the metric model
is sorted and the corresponding weight WCk is assigned, and then the nearest K neighbor
sample points are found to calculate the occurrence probability of the category, the category
to which the sample with the highest probability of occurrence belongs is the category
of the ground object finally determined by KNN classifier. The weight is as shown in
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Equation (8), and the weighted distance is as shown in Equation (9) where Dc
WCk

represents

the distance information of the Kth class sample.

Table 1. The weight of category.

Indiana Scene Pavia Scene

Category Target Scene Category Target Scene

C1 Concrete/Asphalt 8.24% Trees 30.97%
C2 Corn cleanTill 16.89% Asphalt 21.77%
C3 Corn cleanTill EW 22.41% Parking lot 3.67%
C4 Orchard 4.38% Bitumen 8.75%
C5 Soybeans cleanTill 13.42% Meadow 15.99%
C6 Soybeans cleanTill EW 4.59% Soil 18.85%
C7 Wheat 30.08%

Figure 6. The weighted K-nearest neighbor.

WCk =
1∣∣EϕT(xp)− Ck

∣∣ (8)

Dc
WCk

= mp,q
1∣∣EϕT(xp)− Ck

∣∣ (9)

3. Experimental Results and Analysis
3.1. Experimental Datasets Description

In order to verify the effectiveness of the proposed model for hyperspectral data
classification, two public hyperspectral data sets, Indiana and Pavia, are used to test the
classification algorithm. Indiana scene data was acquired by AVIRIS sensor in Northwest
Tippecanoe country [43]. Two separate datasets were selected as the source scene and the
target scene, both of which have the same size 400 × 300 and 220 bands. The two scenarios
share seven land cover classes for classification. Pavia scene data is obtained from the DAIS
sensor over the area of Pavia City, Italy. The size of Pavia University was 243 × 243 × 72 as
the source scene image for training, the size of the central area of Pavia is 400 × 400 × 72 as
the target scene image [44]. The two scenarios share six land cover classes for classification.
The details of the two data sets are shown in Table 2, and the ground truth diagrams are
shown in Figures 7 and 8. C1 to C7 represent different category.

Figure 7. Indiana dataset. (a) False color image of source scene. (b) Ground truth of source scene. (c) False color image of
target scene. (d) Ground truth of target scene.
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Table 2. The description Indiana and Pavia datasets.

Indiana Dataset Pavia Dataset

Category Source Scene Target Scene Category Source Scene Target Scene

C1 Concrete/Asphalt 4867 2942 Trees 266 2424
C2 Corn cleanTill 9822 6029 Asphalt 266 1704
C3 Corn cleanTill EW 11414 7999 Parking lot 265 287
C4 Orchard 5106 1562 Bitumen 206 685
C5 Soybeans cleanTill 4731 4792 Meadow 273 1251
C6 Soybeans cleanTill EW 2996 1638 Soil 213 1475
C7 Wheat 3223 10739

Figure 8. Pavia dataset (a) False color image of source scene. (b) Ground truth of source scene. (c) False color image of
target scene. (d) Ground truth of target scene.

3.2. Experimental Platform Parameters Setting

In this paper, Windows 7 is used as the operating system. The experimental envi-
ronment is Intel (R) core (TM) i5-6500 CPU @ 3.2 GHz processor, 16 GB running memory
(RAM), NVIDIA geforce GTX 1060 GPU. The deep learning framework pytorch, which
is programmed in Python. All experimental results are the average of 10 experiments.
Because reducing the parameters in the network is conducive to small sample training, the
size of all input data is set to 5 × 5. Epoch is set to 1000, SGD is optimized, momentum
is set to 1 and learning rate is set to 0.001. The training samples of all experiments are
randomly selected from hyperspectral data. Through a large number of experiments, it
is found that when the number of training samples is 180, the accuracy and running time
reach a balance.

In addition, in order to evaluate the performance of the proposed unsupervised do-
main adaptive weighted KNN cross-scene classification method (MDDUWK) combined
with Manhattan metric and depthwise over-parameterized convolution, this paper uses
six different methods for comparison, including traditional classification algorithms Ra-
dial Basis Function Support Vector Machine (RBF-SVM) and Extended Morphological
Profile Support Vector Machine (EMP-SVM) and four classification algorithms based on
depth learning: Deep Convolutional Neural Network (DCNN) and unsupervised domain
adaptive classification based on European metric (ED-DMM-UDA). Unsupervised do-
main adaptive K-nearest neighbor classification (MDDUK) based on Manhattan metric
depthwise convolution and unsupervised domain adaptive weighted K-nearest neighbor
classification (MDUWK) based on Manhattan metric. The evaluation indexes are overall
accuracy (OA), average accuracy (AA) and kappa coefficient (k).

In this paper, DO-Conv neural network is introduced as the main feature extraction
network of deep hyperparametric embedding model, which is composed of four depthwise
over-parameterized convolution layers, average pooling layers and full connection layers.
In order to extract more feature information and improve the convergence performance
of the model, DO-Conv is introduced into the neural network, which not only does not
increase the parameters of the embedded model, but also improves the feature extraction
ability of the model. In order to make full use of the spectral and spatial information of
hyperspectral, each pixel of hyperspectral and its Band number (nBand) are set as the
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input, and the model input size is 5 × 5 × nBand, pooling core is 5 × 5. The output
of the final full connection layer is 1 × 128. At the same time, set the number of filters
per layer to 200 and the depth convolution multiplier to 5. Table 3 shows the parameter
settings of the depth hyperparametric embedding model. The discriminator consists of
three fully connected layers, two activation functions (ReLU) and one Softmax layer, in
which the output of the fully connected layer is 1 × 64. The output of softmax layer is
1 × 2. The Manhattan metric model contains three conventional convolution (Conv) layers
and convolution kernel 1 × 1, two BN layers and one Sigmoid layer. The training sample
in this paper is 180, which is 0.42% compared to the 42,159 training samples in the Indiana
data set, and 8.27% compared to the 1489 training samples in the Pavia data set. Compared
with the total training samples, the number of samples selected for training in this paper is
small; thus, we called it “small sample classification” or “few-shot classification”.

Table 3. Parameters of depthwise hyperparametric embedding model.

Model Input
DO-Conv

BN ReLU
AvgPool FC

OutputOutput Output

Parameter 5 × 5 × nBand
1 × 1

Yes Yes No No5 × 5 × 200

de

5 × 5 × 200
1 × 1

Yes Yes No No5 × 5 × 200

5 × 5 × 200
1 × 1

Yes Yes No No5 × 5 × 200

5 × 5 × 200
1 × 1

Yes Yes
5 × 5

1 × 1285 × 5 × 200 1 × 1 × 200

3.3. Comparison Experiments and Analysis

In this paper, the values of OA, AA and kappa coefficients are compared and analyzed.
It can be found from Tables 3 and 4 that the classification accuracy of cross-scene learning
method has been greatly improved compared with RBF-SVM and EMP-SVM because the
convolution kernel in conventional convolution is only size of 1 × 1. The receptive field
is small; thus, this paper proposes to introduce DO-Conv into the depth hyparametric
embedding model, in which DO-Conv convolutes each channel of the input data to extract
more fine spatial information, which makes up for the poor feature acquisition ability of
the model limited by the small convolution kernel size. At the same time, weighted KNN is
introduced to increase the weight of small samples in HSI and enhance the processing ability
of the network model for unbalanced data. Due to the high complexity of the network
model, Manhattan distance measurement is introduced to reduce the calculation cost of the
model and ensure the balance between accuracy and running time. Therefore, compared
with the six comparative classification methods, this model has stronger classification
accuracy and less running time.

Table 4. Classification results of Indiana dataset.

Class RBF-SVM EMP-SVM DCNN ED-DMM-UDA MDDUK MDUWK MDDUWK

C1
C2
C3
C4
C5
C6
C7

51.34
22.74
45.32
71.85
31.24
57.62
56.43

52.73
28.32
36.43
91.32
40.15
60.42
80.14

57.13
32.56
44.39
85.51
45.32
63.47
82.36

64.13
34.90
38.41
94.36
42.52
69.47
85.09

63.83
34.12
51.36
95.07
45.18
72.68
87.65

64.31
37.84
50.26
93.82
55.96
71.77
88.09

64.77
38.29
51.33
94.31
57.42
70.43
88.57

OA(%)
AA(%)

K × 100
time(s)

45.18
48.08
37.42
70.12

53.55
55.64
44.73

215.37

57.67
58.68
47.92

149.36

58.39
61.27
49.76
86.34

62.45
64.27
54.17
84.57

64.35
66.01
56.64
84.95

65.01
66.45
57.38
84.65
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It can be seen from Table 4 that in the Indiana dataset, the OA obtained by the
classification model in this paper reaches 65.01%, which is increased by 19.83%, 11.46%,
7.34%, 6.62%, 2.56% and 0.66% respectively compared with SVM, EMP-SVM, DCNN, ED-
DMM-UDA, MDDUK and MDUWK. It can be seen from Table 5 that in Pavia data set, OA
reached 90.90% at the highest, and increased by 10.08%, 9.59%, 5.92%, 2.14%, 1.55% and
0.89% respectively compared with SVM, EMP-SVM, DCNN, ED-DMM-UDA, MDDUK
and MDUWK, which fully confirmed the effectiveness of MDDUWK model in HSI data
classification task.

Table 5. Classification results of Pavia dataset.

Class RBF-SVM EMP-SVM DCNN ED-DMM-UDA MDDUK MDUWK MDDUWK

C1 80.24 81.06 87.13 89.86 90.30 90.95 90.02
C2 81.78 82.34 85.99 88.14 88.82 87.62 92.99
C3 81.32 83.94 86.43 94.57 94.76 96.78 97.00
C4 78.31 80.51 82.84 84.59 85.85 88.63 89.62
C5 84.24 83.41 83.16 96.21 96.65 97.29 96.26
C6 75.06 78.65 82.65 82.21 82.85 84.45 84.88

OA(%) 80.10 81.31 84.98 88.76 89.35 90.01 90.90
AA(%) 80.16 81.65 84.70 89.26 89.87 90.97 91.79
K × 100 78.32 79.13 82.15 85.83 86.58 87.41 88.52
time(s) 36.42 180.32 151.36 21.42 20.36 20.89 20.62

It can be seen from Figure 9 that in the Indiana dataset, the categories of concrete/alpha,
orchard and soybeans cleanTill EW of small samples are weighted separately. By compar-
ing MDUWK and ED-DMM-UDA, the accuracy of concrete/alpha and soybeans cleanTill
EW is improved by 0.18% and 2.3%. Compared with the improvement of the two types,
the reduction by 0.54% in Orchard is acceptable. It can be found from Figure 10 that in
the Pavia dataset, the categories of small samples, Parking lot and Bitumen, after using
weighting alone, increased by 2.21% and 4.04%, respectively, by comparing MDUWK and
ED-DMM-UDA. Therefore, it can be explained that the adaptive weighting method in
this paper can effectively handle category unbalanced data. At the same time, MDDUWK
obtained 4 best classification accuracy of seven terrain categories of interest in the Indiana
dataset and MDDUWK obtains four best classification accuracy of six terrain categories
of interest in the Pavia dataset; thus, it can be explained that the proposed algorithm also
achieves the best classification effect in each category accuracy.

Figure 9. Different methods’ classification results for each class on Indiana dataset.
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Figure 10. Different methods’ classification results for each class on Pavia dataset.

The running time (training time + test time) of the model is an important evaluation
index of the deep learning classification model. Table 6 shows the calculation time con-
sumption of the seven network models. It can be found that when MDDUWK classifies
hyperspectral data, the time consumption in Indiana data set is the third and that in Pavia
data set is the second, which saves many computing resources. Although MDDUWK
spent more time than MDDUK, a slight reduction in time is acceptable compared with the
increase of accuracy.

Table 6. Computation time comparison when training samples are 180.

Time(s) RBF
SVM

EMP-
SVM DCNN ED-DMM-

UDA MDDUK MDUWK MDDUWK

Indiana 70.12 215.37 149.36 86.34 84.57 84.95 84.65

Pavia 36.42 180.32 151.36 21.42 20.36 20.89 20.62

In order to subjectively evaluate the classification effect, Figures 11 and 12 respectively
show the truth maps of two HSI data and the pseudo color maps of the classification results
of each method. In Figure 11, Asphalt and bitumen both refer to the same black, sticky semi
solid or a liquid substance derived from crude oil. However, in regular use, asphalt can also
be used as a shortened term for asphalt concrete which is a popular construction composite
made up of bitumen and mineral aggregates. Asphalt is called asphaltene. In Figure 12,
CleanTill definition is to cultivate by stripping the soil clean of weeds and other harmful
growth. EW stands for different longitudes, which are mainly used to distinguish features
at different longitudes. Features with different longitudes will have some differences in
characteristics. All researchers add EW to identify features more accurately. It can be seen
that the method in this paper is closer to the real ground object distribution, and the area
of false classification is greatly reduced. Compared with RBF-SVM, EMP-SVM, DCNN,
MDDUK and MDUWK, the classification effect is greatly improved.
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Figure 11. Classification results of Pavia dataset. (a) Ground truth; (b) RBF-SVM; (c) EMP-SVM; (d) DCNN; (e) ED-DMM-
UDA; (f) MDDUK; (g) MDUWK; (h) MDDUWK.
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Figure 12. Classification results of Indiana dataset. (a) Ground truth; (b) RBF-SVM; (c) EMP-SVM; (d) DCNN; (e) ED-DMM-
UDA; (f) MDDUK; (g) MDUWK; (h) MDDUWK.

4. Conclusions

In this paper, a new cross-scene adaptive learning terrain classification model for
hyperspectral images is proposed. Based on unsupervised domain adaptive technology,
the model introduces depthwise over-parameterized convolution into the embedding
model to accelerate the convergence speed of depth convolution neural network. At the
same time, learning Manhattan metric distance saves the computational cost of cross-scene
model. Finally, a weighted KNN classifier is introduced to enhance the ability of the model
to handle data category imbalance problem. In this paper, experiments are carried out
on Pavia and Indiana data sets. Compared with other six classification algorithms, this
paper has higher classification accuracy and fast model running time. When the number of
training samples is 180, overall accuracy on Pavia data set and Indiana data set reaches
90.9% and 65.0%, respectively. The proposed cross-scene classification model in this paper
has a better classification effect on hyperspectral images without training samples, and the
accuracy has been improved, which can be applied to crop yield estimation, pest detection,
atmospheric environment monitoring and other fields. However, the computational cost
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of the model is still relatively large. Later, the network model will be further lightened to
reduce the number of model parameters and improve the training efficiency of the model.
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