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Abstract: We propose a multivariate regression model called Multivariate Zero Inflated Generalized
Poisson Regression (MZIGPR) type II. This model further develops the Bivariate Zero Inflated
Generalized Poisson Regression (BZIGPR) type II. This study aims to develop parameter estimation,
test statistics, and hypothesis testing, both simultaneously and partially, for significant parameters
of the MZIGPR model. The steps of the EM algorithm for obtaining the parameter estimator are
also described in this article. We use Berndt–Hall–Hall–Hausman (BHHH) numerical iteration to
optimize the EM algorithm. Simultaneous testing is carried out using the maximum likelihood ratio
test (MLRT) and the Wald test to partially assess the hypothesis. The proposed MZIGPR model is then
used to model the three response variables: the number of maternal childbirth deaths, the number
of postpartum maternal deaths, and the number of stillbirths with four predictors. The units of
observation are the sub-districts of the Pekalongan Residency, Indonesia. The indicate overdispersion
in the data on the number of maternal childbirth deaths and stillbirths, and underdispersion in
the data on the number of postpartum maternal deaths. The empirical studies show that the three
response variables are significantly affected by all the predictor variables.

Keywords: MZIGPR type II; EM algorithm; BHHH algorithm; likelihood ratio test

1. Introduction

The Poisson regression model is commonly used to analyze data in which the response
variable follows a Poisson distribution. Even though the Poisson regression model has
been widely applied in various disciplines, it involves an assumption that, in some cases,
is difficult to realize—namely, equidispersion. Equidispersion is the condition wherein
sample variance is equal to the mean. When the sample variance is greater (less) than the
sample mean, it is called overdispersion (underdispersion). The use of Poisson regression
on over- or underdispersed data tends to make the standard error and test statistics derived
from the model inaccurate, resulting in invalid conclusions [1,2].

As alternatives, several distribution models have been developed, such as negative
binomial distribution (NBD) and log-normal Poisson distribution, which can be used to
resolve overdispersion. Alternative models for count data that can overcome both over-
and underdispersion include double Poisson distribution, gamma count distribution, and
generalized Poisson distribution (GPD). The first two distribution models are weak in
their probability function, which is complex, and the variance and mean have no explicit
form [3]. Research on GPD has developed it into generalized Poisson regression (GPR)
known as the GP-1 regression model (or the classic GPR model [4]), GP-2 regression (or the
restricted GPR model [5]), the bivariate GPR (BGPR) model [6], and the multivariate GPR
(MGPR) model [7].

Another problem with Poisson regression is the quantity of response data with a value
of zero (excess zero). Lambert [8] developed zero inflated Poisson distribution (ZIPD) to

Symmetry 2021, 13, 1876. https://doi.org/10.3390/sym13101876 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4068-8308
https://orcid.org/0000-0002-1592-6645
https://doi.org/10.3390/sym13101876
https://doi.org/10.3390/sym13101876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13101876
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13101876?type=check_update&version=2


Symmetry 2021, 13, 1876 2 of 11

resolve this problem. The ZIP model assumes that the population, or observations, consist
of two groups. A single observation is included in a group that is always zero (zero states)
with a probability of p, and is included in a group with a zero value and a positive value in
the count data generated by Poisson distribution (Poisson state) with a probability of 1-p.
The development of the ZIP model has led to the emergence of several studies on bivariate
ZIP (BZIP) and multivariate ZIP (MZIP) models [9–11].

The ZIPR model is the proper way to handle excess zero in the Poisson model, but
is not suitable for controlling overdispersion. A study by Ridout et al. in 1998 showed
that the results of ZIP parameter estimation are biased when there is an overdispersion
of excess zero data. In such cases, the Zero Inflated Negative Binomial (ZINB) model
performs better than the ZIP model with smaller AIC and BIC values [12]. However, the
iteration technique used for parameter estimation in the ZINB model often fails to converge.
Therefore, Famoye and Singh (2006) introduced the Zero Inflated Generalized Poisson
(ZIGP) model as an alternative to the ZINB model [13]. Czado et al. [14] defined ZIGP
distribution as an analog of ZIP distribution with additional zero inflation parameters.

The ZIGP regression model was formed based on ZIGP distribution. Thus, the ZIGP
regression model can model count data with over/underdispersion and excess zero. The
ZIGP model for univariate response has been applied in many aspects, such as domestic
violence, entrepreneurship, biology, health, and zoology [1,13–16].

Zhang and Huang (2015) introduced the bivariate ZIGP (BZIGP), which is an extension
of the univariate ZIGP. Zhang and Huang proposed type I and type II BZIGP distribution
with a flexible correlation structure that can be used both when the correlation is positive
or negative, and when there is over or underdispersion. The difference between the two
marginal distributions of BZIGP gives the zero inflation parameters. BZIGP type I has the
same zero inflation parameter on both marginals, whereas the two marginals of BZIGP
type II have different zero inflation parameters [17].

BZIGP type I distribution was later developed into MZIGP type I distribution by
Huang et al. in 2017. MZIGP type I was applied to data with two responses: the number of
days children were inactive in the previous four weeks due to sickness, and the number
of days children were bedridden in the previous four weeks due to sickness [18]. MZIGP
type I distribution only considers zero and non-zero response pairs. This study proposes a
multivariate regression model that can be used on count data with excess zeros and several
types of dispersion, and allows for several combinations of response pairs. The proposed
model is called a multivariate Zero Inflated Generalized Poisson Regression (MZIGPR)
type II (henceforth MZIGPR(II)).

Based on the previously mentioned background, the aims of this study are: (i) to
construct an MZIGPR(II) model, (ii) to obtain a parameters estimator, (iii) to test the signifi-
cance of the model as well as the significance of the individual parameter, and (iv) to apply
the MZIGPR(II) model to real data. The case study used here includes factors that influence
the number of maternal childbirth deaths (Y1), the number of postpartum maternal deaths
(Y2), and the number of stillbirths (Y3). The units of observation are 91 sub-districts in
Pekalongan Residency, Indonesia. The predictor variables include the percentage of child-
births assisted by health workers, the percentage of TT2+ vaccination in pregnant women,
the percentage of obstetric complications that were handled, and the ratio of midwives in
the population (per 10,000).

The decline in maternal mortality and neonatal mortality has become a global issue
because it arises in all countries worldwide, and not only in developing countries. The
first and second targets of the third goal of the Sustainable Development Goals (SDGs) are
to reduce the maternal mortality ratio to less than 70 deaths per 100,000 live births, and
to reduce neonatal deaths to at least 12 deaths per 1000 live births, by 2030 [19]. Despite
showing a decline, Indonesia’s maternal and neonatal mortality rates are still relatively
high, at 305 maternal deaths per 100,000 live births and 15 neonatal deaths per 1000 live
births [20,21]. Pekalongan Residency has more maternal deaths and stillbirths than other
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residencies in Central Java Province, Indonesia—24.0% and 20.79% [22]. To achieve the
SDGs by 2030, greater efforts are required.

The discussion in this study is divided into several sections. In Section 2, we discuss the
MZIGPR(II) model. Section 3 discusses the estimation of the parameters of the MZIGPR(II)

model using the EM algorithm method, and the testing of the hypothesis of the MZIGPR(II)

model using maximum likelihood ratio test (MLRT). The proposed approach is used to
model data on the numbers of maternal childbirth deaths, postpartum maternal deaths,
and stillbirths. The discussion and conclusions can be found in the last two sections.

2. Multivariate Zero Inflated Generalized Poisson Regression Type II (MZIGPR(II)) Model

A k-dimensional multivariate ZIGP (MZIGP(II)) has been constructed via a mixture
of multivariate GP, univariate GP, and a distribution degenerate at the original point
(0, 0, . . . ,0). Suppose Y1 is a case of maternal childbirth death and Y2 is a case of still-
birth. The sub-districts can then be categorized as follows, based on death cases: (i) sub-
districts that have no cases of childbirth maternal deaths and stillbirths (Y1 = 0, Y2 = 0),
(ii) sub-districts with cases of childbirth maternal deaths, but no cases of stillbirths (Y1 > 0,
Y2 = 0), (iii) sub-districts with no cases of childbirth maternal deaths, but stillbirths
(Y1 = 0, Y2 > 0), and (iv) sub-districts with cases of childbirth maternal deaths and stillbirths
(Y1 > 0, Y2 > 0). To obtain a k-dimensional ZIGP multivariate model, we use a mixture of a
degenerate on the zero points (0, 0, . . . , 0), k distributions with univariate GP for one type
of death and k − 1 zeros (for example, (GP(λ1, ϕ1), 0, . . . , 0), . . . , (0, . . . , 0, GP(λk, ϕk))),(

k(k−1)
2 = Ck

2

)
distributions with bivariate GP for two types of death and k − 2 zeros, . . . ,

k distributions each with (k − 1)-dimensional GP for k − 1 types of death and 1 zero, and
finally, a k-dimensional GP for all k types of death. Since the amount of mixture formed
depends on the number of responses used, the following discussion will focus on a model
with three responses.

This MZIGP(II) distribution is used mainly for situations in which the observed events
are mostly zero. Therefore, if the observed events are mostly non-zero, then the k-dimensional
Y > 0 will represent all mixtures of l-dimensional Y > 0 and (k− l) dimensional Y = 0, where
k ≥ l ≥ 2 [10]. Suppose (Y1, Y2, Y3) ∼ MZIGP(I I)(p1, p2, p3; λ1, λ2, λ3, ϕ1, ϕ2, ϕ3). Thus,
the pmf of MZIGPR(II) can be written as follows:

P(Y1i = y1i, Y2i = y2i, Y3i = y3i) =



Ai, if y1i = 0, y2i = 0, y3i = 0

Bi, if y1i > 0, y2i = 0, y3i = 0

Ci, if y1i = 0, y2i > 0, y3i = 0

Di, if y1i = 0, y2i = 0, y3i > 0

Ei, if y1i > 0, y2i > 0, y3i > 0

(1)

The joint pmf P(Y1i = y1i, Y2i = y2i, Y3i = y3i) in Equation (1) (which can be seen in
detail in Appendix A), with functions µki and pki, satisfies

µki = exp
(
xT

i βk
)

pki =
exp(xT

i γk)
1+exp(xT

i γk)
and (1− pki) =

1
1+exp(xT

i γk)
, k = 1, 2, 3; i = 1, 2, . . . , n

(2)

where ϕ is the dispersion parameter, γ is the zero inflation parameter, xi is the i-th row of
the covariate matrix X, βk is the q-dimensional regression parameter column vector, and γk
is the q-dimensional zero inflation parameter column vector.

The MZIGPR(II) model reduces to the MGPR model when the zero inflation parameter
γ = 0, and it reduces to the MZIPR model when the dispersion parameter ϕ = 0.
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3. Inference

3.1. Parameter Estimation of MZIGPR(II) Model

Let the random variable (Y1i, Y2i, Y3i)
T iid∼ ZIGP(γ1,γ2,γ3,β1,β2,β3, ϕ1, ϕ2, ϕ3) for

i = 1, 2, 3, . . . , n. Define

I0 = {i : y1i = 0, y2i = 0, y3i = 0; i = 1, 2, 3, . . . , n}
I1 = {i : y1i > 0, y2i = 0, y3i = 0; i = 1, 2, 3, . . . , n}
I2 = {i : y1i = 0, y2i > 0, y3i = 0; i = 1, 2, 3, . . . , n}
I3 = {i : y1i = 0, y2i = 0, y3i > 0; i = 1, 2, 3, . . . , n}
I4 = {i : y1i > 0, y2i > 0, y3i > 0; i = 1, 2, 3, . . . , n}

The number of elements of I0, I1, I2, I3, I4 is n0, n1, n2, n3 and n4, where n4 = n− n0 − n1 −
n2 − n3. There is no limit to the sample size used, regardless of whether the sample sizes
are the same or different. In this study, we used different sample sizes of n0, n1, n2, n3
and n4.

Suppose θ = β1,β2,β3,γ1,γ2,γ3, ϕ1, ϕ2, ϕ3, η12, η13, η23; then, the likelihood function
of the observation data can be written as follows:

L(θ|Yobs ) =
n

∏
i=1

f (y1i,y2i, y3i) = ∏
i∈I0

Ai ∏
i∈I1

Bi ∏
i∈I2

Ci ∏
i∈I3

Di ∏
i∈I4

Ei (3)

Parameter estimation is carried out using the EM algorithm. We employ a, b, c, and d as
unobserved variables or latent variables.

The latent variable a divides n0 into A0 + A1 + A2 + A3 + A4 + A5 + A6 + A7, where
A7 = n0 − A0 − A1 − A2 − A3 − A4 − A5 − A6; the latent variable b divides n1 into
B0 + B1 + B2 + B3 where B3 = n1 − B0 − B1 − B2; the latent variable c divides n2 into
C0 + C1 + C2 + C3 where C3 = n2 − C0 − C1 − C2, and the latent variable d divides n3 into
D0 + D1 + D2 + D3, where D3 = n3 − D0 − D1 − D2. Thus, the distribution of a, b, c and
d is

a|(Yobs,θ) ∼ Multinomial
(

n0; f0
f , f1

f , f2
f , f3

f , f4
f , f5

f , f6
f , f7

f

)
b|(Yobs,θ) ∼ Multinomial

(
n1; h0

h , h1
h , h2

h , h3
h

)
c|(Yobs,θ) ∼ Multinomial

(
n2; j0

j , j1
j , j2

j , j3
j

)
d|(Yobs,θ) ∼ Multinomial

(
n3; l0

l , l1
l , l2

l , l3
l

)
(4)

where f =
7
∑

s=0
fs, h =

3
∑

s=0
hs, j =

3
∑

s=0
js, l =

3
∑

s=0
ls and fs, hs, js, ls refer to Appendix A

(i)–(iv).
The likelihood function for complete data denoted by Ycom = {Yobs, f0, f1, f2, f3, f4, f5,

f6, f7, h0, h1, h2, h3, j0, j1, j2, j3, l0, l1, l2, l3} is a function that will be maximized using the EM
algorithm. This likelihood function is proportional to

L(θ|Ycom ) ∝ ( f0)
a0( f1)

a1( f2)
a2( f3)

a3( f4)
a4( f5)

a5( f6)
a6( f7)

a7

x ∏
i∈I1

(1− p1)
λ

y1
1 (1+ϕ1y1)

y1−1

y1! exp(−λ1(1 + ϕ1y1)) (h0)
b0(h1)

b1(h2)
b2(h3)

b3

x ∏
i∈I2

(1− p2)
λ

y2
2 (1+ϕ2y2)

y2−1

y2! exp(−λ2(1 + ϕ2y2)) (j0)
c0(j1)

c1(j2)
c2(j3)

c3

x ∏
i∈I3

(1− p3)
λ

y3
3 (1+ϕ3y3)

y3−1

y3! exp(−λ3(1 + ϕ3y3)) (l0)
d0(l1)

d1(l2)
d2(l3)

d3

x ∏
i∈I4

(1− p1)(1− p2)(1− p3)
3

∏
k=1

λ
yk
k (1+ϕkyk)

yk−1

yk! exp(−λk(1 + ϕkyk)) Q
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The ln-likelihood function L(θ|Ycom ) = `(θ|Ycom ) is stated as follows:

`(θ|Ycom ) = a0 ln( f0) + a1 ln( f1) + a2 ln( f2) + a3 ln( f3) + a4 ln( f4) + a5 ln( f5) + a6 ln( f6) + a7 ln( f7)

+ ∑
i∈I1

ln
(
(1− p1)

λ
y1
1 (1+ϕ1y1)

y1−1

y1! exp(−λ1(1 + ϕ1y1))(h0)
b0(h1)

b1(h2)
b2(h3)

b3

)
+ ∑

i∈I2

ln
(
(1− p2)

λ
y2
2 (1+ϕ2y2)

y2−1

y2! exp(−λ2(1 + ϕ2y2))(j0)
c0(j1)

c1(j2)
c2(j3)

c3

)
+ ∑

i∈I3

ln
(
(1− p3)

λ
y3
3 (1+ϕ3y3)

y3−1

y3! exp(−λ3(1 + ϕ3y3))(l0)
d0(l1)

d1(l2)
d2(l3)

d3

)
+ ∑

i∈I4

ln
[
(1− p1)(1− p2)(1− p3)

3
∑

k=1

λ
yk
k (1+ϕkyk)

yk−1

yk! exp(−λk(1 + ϕkyk))Q
]

where λki =
µki

1+ϕkµki
, in which µki and pki refer to Equation (2).

The solution of the first derivative of `(θ|Ycom ) concerning the parameters γ and
θ does not have an explicit form. Therefore, the maximum likelihood estimator for the
MZIGPR(II) model’s parameters is obtained through the EM algorithm with the Berndt–
Hall–Hall–Hausman (BHHH) iteration. The E-step in the EM algorithm involves replacing
as, bs, cs and ds with a(c)s , b(c)s , c(c)s and d(c)s , where

a(c)s = E
(

as

∣∣∣yi,θ(c)
)
= n0 fs

f , s = 0, 1, 2, 3, 4, 5, 6, 7

b(c)s = E
(

bs

∣∣∣yi,θ(c)
)
= n1hs

h , s = 0, 1, 2, 3

c(c)s = E
(

cs

∣∣∣yi,θ(c)
)
= n2 js

j , s = 0, 1, 2, 3

d(c)s = E
(

ds

∣∣∣yi,θ(c)
)
= n3ks

k , s = 0, 1, 2, 3

The M-step in the EM algorithm is the step to update θ̂(c+1)
= θ̂

(c)−H−1
(
θ̂
(c)
)

g
(
θ̂
(c)
)

,

where θ̂
(c) is the vector estimator at the c-th iteration and g

(
θ̂
)

is the gradient vector.

H(θ) is defined as H(θ) = −
n
∑

i=1
gi(θ) gT

i (θ), where gi(θ) is the gradient vector at the i-th

observation. The iteration will stop when θ̂
(c) converges or

∣∣∣θ̂(c+1) − θ̂
(c)
∣∣∣ < ε, where ε is

a very small positive real number.

3.2. Hypothesis Testing of the MZIGPR(II) Model

Hypothesis testing of the MZIGPR(II) model was conducted via both simultaneous
and partial parameter testing. Simultaneous parameter testing is used to determine the sig-
nificance of parameters simultaneously in the model. The hypothesis for the simultaneous
testing of β and γ is as follows:

H0 : βk1 = . . . = βkq = γk1 = . . . = γkq = 0

H1 : at least one βkr 6= 0 and γkr 6= 0; k = 1, 2, . . . , m; r = 1, 2, . . . , q
(5)

The statistic test is G2 = −2 ln
(

L(ω̂)

L(Ω̂)

)
= 2

[
ln
(

L
(
Ω̂
))
− ln(L(ω̂))

]
. Reject the null hypoth-

esis if G2 > χ2
α,v with significance level α, and v is the difference n(Ω)− n(ω).

A partial test is carried out to determine which parameters have a significant effect on
the model. The hypothesis for the partial testing of β and γ is

a. Partial testing of β

H0 : βkr = 0

H1 : βkr 6= 0; k = 1, 2, . . . , m; r = 1, 2, . . . , q
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The statistic test is Zb = β̂kr
se(β̂kr)

. Reject the null hypothesis if |Zb| > Zα/2.

b. Partial testing of γ

H0 : γkr = 0

H1 : γkr 6= 0; k = 1, 2, . . . , m; r = 1, 2, . . . , q

The statistic test is Zg = γ̂kr
se(γ̂kr)

. Reject the null hypothesis if
∣∣Zg
∣∣ > Zα/2.

4. Application of Data

The proposed MZIGPR(II) model is applied to model the numbers of maternal child-
birth deaths, postpartum maternal deaths, and stillbirths. The data used in this study are
secondary data collected by the Central Java Provincial Health Office in 2017. There are
seven regencies and municipalities with 91 sub-districts in the Karesidenan Pekalongan,
Central Java.

This study employs three response variables (Y) and four predictor variables (X). The
three response variables are the number of maternal childbirth deaths, represented as Y1,
the number of postpartum maternal deaths, Y2, and the number of stillbirths, Y3. The
four predictor variables are the percentage of childbirths assisted by medical personnel
in a sub-district (X1), the percentage of TT2 + immunization in pregnant women in a
sub-district (X2), the percentage of obstetric complications handled in a sub-district (X3),
and the ratio of midwives in the population (per 10,000) in a sub-district (X4).

Table 1 shows that the mean values of the response variables Y1, Y2, and Y3 are 0.18,
0.67, and 2.76, respectively. As regards the data spread, measured by the coefficient of
variation (CoV), the number of maternal childbirth deaths (Y1) showed the largest CoV,
300.88. This indicates that the variable Y1 is more heterogeneous than Y2 and Y3. The
heterogeneity of Y1 is shown in Figure 1. Even though the histograms of Y1, Y2, and Y3
show asymmetrical curves, Y1′s curve looks more skewed to the right compared to the
other two response variables.

In the assumed MZIGP(II) distribution, the response data with a value of zero consist of
two states, namely, the zero state and the generalized Poisson (GP) state. Thus, the response
data Y1, Y2, and Y3, which are zero (Yki = 0; k = 1, 2, 3; i = 1, . . . , n), also consist of two
states. The first Yki = 0 (zero states) means no maternal childbirth or postpartum deaths
and no stillbirths in a sub-district. The second Yki = 0 (GP state) means that there are
maternal childbirth and postpartum deaths, and stillbirths, in a sub-district. However,
during the last year when the data were collected, there were no maternal childbirth or
postpartum deaths, or stillbirths. The zero value in the GP state is assumed to derive from
a certain distribution; in this case, the MGP distribution.

Table 1. Variable description.

Variables (n = 91) Mean Standard
Deviation

Coefficient of
Variation Min. Max.

The number of maternal childbirth
deaths (Y1) 0.18 0.53 300.88 0 4

The number of postpartum maternal
deaths (Y2) 0.67 0.96 142.49 0 3

The number of stillbirths (Y3) 2.76 2.60 94.13 0 10
The percentage of medically assisted
births (X1) 97.75 4.01 4.11 79.59 100

The percentage of TT2+ vaccination
in pregnant women (X2) 78.22 22.51 28.78 0.64 100

The percentage of obstetric
complications handling (X3) 30.17 9.6 31.82 10.57 61.61

The ratio of midwives per 10,000
population (X4) 4.87 1.79 36.68 1.81 13.32
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Figure 1. Histogram of Y1, Y2, and Y3.

MZIGPR(II) modeling including all predictor variables yields parameter estimates,
as shown in Table 2. Hypothesis testing simultaneously on these parameters determines
whether each predictor affects the response variable differently. Simultaneous testing gives
the result that the statistic G2 = 89092.513 is greater than χ2

0.05,24 = 36.415, so H0 is rejected.
The decision to reject H0 indicates that at least one predictor variable affects the number of
maternal deaths during childbirth and postpartum, as well as stillbirths.

Table 2. The results of the estimation of the MZIGPR(II) model’s parameters.

Parameter Estimate Standard
Error Z p-Value

The number of maternal childbirth deaths (Y1)
β01 −4.496 8.04 × 10−8 −5.59 × 107 p < 0.001
β11 0.062 8.05 × 10−6 7.73 × 103 p < 0.001
β21 −0.020 3.97 × 10−6 −5.07 × 103 p < 0.001
β31 −0.029 1.80 × 10−6 −1.63 × 104 p < 0.001
β41 −0.908 2.35 × 10−7 −3.87 × 106 p < 0.001
γ01 2.091 2.13 × 10−7 9.84 × 106 p < 0.001
γ11 −0.012 2.08 × 10−5 −5.64 × 102 p < 0.001
γ21 0.010 1.63 × 10−5 6.06 × 102 p < 0.001
γ31 0.008 7.94 × 10−6 1.01 × 103 p < 0.001
γ41 0.362 1.10 × 10−6 3.30 × 105 p < 0.001

The number of postpartum deaths (Y2)
β02 −5.448 8.36 × 10−8 −6.51 × 107 p < 0.001
β12 −0.020 5.61 × 10−7 −3.57 × 104 p < 0.001
β22 −0.026 1.36 × 10−6 −1.94 × 104 p < 0.001
β32 0.062 9.51 × 10−6 6.53 × 103 p < 0.001
β42 −1.424 4.87 × 10−13 −2.93 × 1012 p < 0.001
γ02 −1.424 4.87 × 10−13 −2.93 × 1012 p < 0.001
γ12 −0.124 4.58 × 10−11 −2.71 × 109 p < 0.001
γ22 −0.051 2.10 × 10−11 −2.41 × 109 p < 0.001
γ32 0.011 1.89 × 10−11 5.81 × 108 p < 0.001
γ42 0.197 2.35 × 10−12 8.37 × 1010 p < 0.001

The number of stillbirths (Y3)
β03 −0.880 2.71 × 10−6 −3.25 × 105 p < 0.001
β13 0.029 2.64 × 10−4 1.10 × 102 p < 0.001
β23 0.014 1.91 × 10−4 7.24 × 101 p < 0.001
β33 0.013 8.70 × 10−5 1.44 × 102 p < 0.001
β43 −0.723 1.38 × 10−5 −5.24 × 104 p < 0.001
γ03 1.207 5.33 × 10−11 2.27 × 1010 p < 0.001
γ13 −0.087 5.17 × 10−9 −1.68 × 107 p < 0.001
γ23 −0.058 2.44 × 10−9 −2.37 × 107 p < 0.001
γ33 −0.016 1.75 × 10−9 −8.96 × 106 p < 0.001
γ43 −0.064 2.67 × 10−10 −2.38 × 108 p < 0.001

Partial tests were performed to determine which variables had a significant influence
on the model. Table 2 shows that all predictors significantly affect the three responses at a
significance level of 0.05.
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5. Discussion

There are two types of MZIGPR(II) models—the log model and the logit model. The
log model states that the probability Yi of the GP state is affected by significant variables.
In contrast, the logit model states that the probability Yi of the zero states is affected by
significant variables. The GP state yields zero observations and positive integers generated
by the GP distribution, whereas the zero states produce zero observations only.

The MZIGPR(II) model for the number of maternal deaths during childbirth or postpar-
tum, and the number of stillbirths, based on the data of Table 2, is constructed as follows:

a. Regression model of maternal childbirth deaths:

log(µ̂1i) = −4.496 + 0.062X1i − 0.020X2i − 0.029X3i − 0.908X4i

logit( p̂1i) = 2.091− 0.012X1i + 0.010X2i + 0.008X3i + 0.362X4i
(6)

b. Regression model for postpartum maternal deaths:

log(µ̂2i) = −5.448− 0.020X1i − 0.026X2i + 0.062X3i + 0.819X4i

logit( p̂2i) = −1.424− 0.124X1i − 0.051X2i + 0.011X3i + 0.197X4i
(7)

c. Regression model for stillbirths:

log(µ̂3i) = −0.880 + 0.029X1i + 0.014X2i + 0.013X3i − 0.723X4i

logit( p̂3i) = 1.207− 0.087X1i − 0.058X2i − 0.016X3i − 0.064X4i
(8)

The estimated dispersion parameters for ϕ1, ϕ2, and ϕ3 are 1.091, −0.148 and 0.516,
respectively, which means that the dispersion is not zero. The values of ϕ1 and ϕ3 indicate
the existence of overdispersion in the data on the number of maternal childbirth deaths
and stillbirths. In contrast, the values of ϕ2 indicate underdispersion in the data on the
number of postpartum maternal deaths.

The log and logit models in Equations (6)–(8) show that the variables that significantly
affect the GP state also affect the zero state. Based on the regression coefficient of the
MZIGPR model, there is a pattern of relationships between several predictor variables
and responses that contradict the existing theory. For example, the log model shows that
the variable coefficient X1 (the percentage of childbirths assisted by medical personnel)
is positive. This means that every 1% increase in the number of childbirths assisted by
medical personnel will increase the average number of maternal childbirth deaths (Y1)
by 1.06 people and the average number of stillbirths (Y3) by 1.03 people, but decrease
the average number of postpartum maternal deaths (Y2) by 0.98 people when the other
predictor variables were held constant. Thus, X1 shows an inappropriate relationship
pattern with Y1 and Y3.

The coefficient of variable X2 (the percentage of TT2+ vaccination in pregnant women)
is negative. If all other variables are constant, then every 1% increase in pregnant women
vaccinated with TT2+ will reduce the average number of maternal childbirth deaths (Y1)
by 0.98 people and the average number of postpartum maternal deaths (Y2) by 0.97 people.
Still, the number of stillbirths (Y3) increased by 1.01 people. In this case, X2 has an
inappropriate relationship with Y3. The remaining predictor variables are interpreted in
the same way as in the logit model for X1 and X2.

In the logit model, the X1 variable has a negative value. This means that every
one percent increase in the number of childbirths assisted by medical personnel will
reduce the average number of maternal survives during childbirth (Y1) by 0.99 people,
the average number of maternal survives during postpartum (Y2) by 0.88 people, and the
average number of live births (Y3) by 0.92 people, when the other predictor variables are
held constant.
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In the logit model, the variable X1 has a negative value. This means that for every one
percent increase in medically assisted births, the average number of mothers who survive
childbirth (Y1) decreases by 0.99 people. A one percent increase in X1 will also reduce the
mean number of mothers who survive after birth (Y2) and the number of live births (Y3) by
0.88 and 0.92 people, respectively, if the other predictor variables are constant.

The relationship pattern between X1 and the three responses is inappropriate. The
remaining variables in the logit model are interpreted in the same way as the X1 variable in
the logit model.

6. Conclusions

In this study, we developed an MZIGPR(II) model, along with its parameter estimation
and hypothesis testing. The parameter estimation is performed using the EM algorithm,
followed by the BHHH iteration. The maximum likelihood ration test (MLRT) and Wald
tests have been used to tests the significance of the model and the individual parameters,
respectively. The proposed MZIGPR(II) model is applied to model the number of maternal
childbirth deaths, the number of postpartum maternal deaths, and the number of stillbirths.

MZIGPR(II) can be used in cases of both overdispersion and underdispersion. We
found underdispersion in the data on the number of postpartum maternal deaths and
overdispersion in the data on the number of maternal childbirth deaths and stillbirths. The
empirical results show that all four predictors affect the three response variables.

The main limitation of this study is that the data used are under-representational,
because they were only collected at public health centers (puskesmas). Several variables
thought to affect the numbers of maternal deaths during childbirth and postpartum, as
well as stillbirths, were not used due to limited data availability at the sub-district level.
In further research, the predictor variables used in this study can be replaced or added to
other more relevant variables, according to the existing theory.

The MZIGPR(II) model’s global parameters can be used in all observation locations.
Differences in regional characteristics and geographical conditions pertaining in each
observation location make this global model less accurate. MZIGPR (II) modeling with
spatial aspects can be undertaken in further research.
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Appendix A

Let Z ∼ Bernoulli (1− p), and (U1, U2, U3)
T ∼ MGP(λ1, λ2, λ3, ϕ1, ϕ2, ϕ3). The joint

pmf of (Y1, Y2, Y3)
T is given by P(Y1 = y1, Y2 = y2, Y3 = y3) = P(Z1U1 = y1, Z2U2 = y2,

Z3U3 = y3), so that,

i. If Y1 = 0, Y2 = 0, and Y3 = 0, we have
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P(Y1 = 0, Y2 = 0, Y3 = 0) = P(Z1 = 0, Z2 = 0, Z3 = 0) + P(Z1 = 0, Z2 = 0, Z3 = 1, U3 = 0) + P(Z1 = 0, Z2 = 1, U2 = 0, Z3 = 0)

+P(Z1 = 1, U1 = 0, Z2 = 0, Z3 = 0) + P(Z1 = 0, Z2 = 1, U2 = 0, Z3 = 1, U3 = 0)

+P(Z1 = 1, U1 = 0, Z2 = 0, Z3 = 1, U3 = 0) + P(Z1 = 1, U1 = 0, Z2 = 1, U2 = 0, Z3 = 0)

+P(Z1 = 1, U1 = 0, Z2 = 1, U2 = 0, Z3 = 1, U3 = 0)
= f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7

where f0 = (p1 p2 p3) f1 =
(

p1 p2(1− p3)e−λ3
)

f2 =
(

p1 p3(1− p2)e−λ2
)

f3 =
(

p2 p3(1− p1)e−λ1
)

f4 =
(

p1(1− p2)(1− p3)e−λ2−λ3 Q
)

f5 =
(

p2(1− p1)(1− p3)e−λ1−λ3 Q
)

f6 =
(

p3(1− p1)(1− p2)e−λ1−λ2 Q
)

f7 =
(
(1− p1)(1− p2)(1− p3)e−λ1−λ2−λ3 Q

)
ii. If Y1 > 0, Y2 = 0, and Y3 = 0, we have

P(Y1 = y1, Y2 = 0, Y3 = 0) = P(Z1 = 1, U1 = y1, Z2 = 0, Z3 = 0) + P(Z1 = 1, U1 = y1, Z2 = 1, U2 = 0, Z3 = 0)

+P(Z1 = 0, U1 = y1, Z2 = 1, Z3 = 0, U3 = 0) + P(Z1 = 0, U1 = y1, Z2 = 0, U2 = 0, Z3 = 0, U3 = 0)

=

[
(1− p1)

λ
y1
1 (1+ϕ1y1)

y1−1

y1! exp(−λ1(1 + ϕ1y1))

]
(h0 + h1 + h2 + h3)

where h0 = p2 p3 h1 = p3(1− p2) exp(−λ2)Q h2 = p2(1− p3) exp(−λ3)Q h3 = (1− p2)(1− p3)

exp(−λ2 − λ3)Q

iii. If Y1 = 0, Y2 > 0, and Y3 = 0, we have

P(Y1 = 0, Y2 = y2, Y3 = 0) = P(Z1 = 0, Z2 = 1, U2 = y2, Z3 = 0) + P(Z1 = 1, U1 = 0, Z2 = 1, U2 = y2, Z3 = 0)

+P(Z1 = 0, Z2 = 1, U2 = y2, Z3 = 1, U3 = 0) + P(Z1 = 1, U1 = 0, Z2 = 1, U2 = y2, Z3 = 1, U3 = 0)

=

[
(1− p2)

λ
y2
2 (1+ϕ2y2)

y2−1

y2! exp(−λ2(1 + ϕ2y2))

]
(j0 + j1 + j2 + j3)

where j0 = p1 p3 j1 = p3(1− p1) exp(−λ1)Q j2 = p1(1− p3) exp(−λ3)Q j3 = (1− p1)(1− p3)

exp(−λ1 − λ3)Q

iv. If Y1 = 0, Y2 = 0, and Y3 > 0, we have

P(Y1 = 0, Y2 = 0, Y3 = y3) = P(Z1 = 0, Z2 = 0, Z3 = 1, U3 = y3) + P(Z1 = 1, U1 = 0, Z2 = 0, Z3 = 1, U3 = y3)

+P(Z1 = 0, Z2 = 1, U2 = 0, Z3 = 1, U3 = y3) + P(Z1 = 1, U1 = 0, Z2 = 1, U2 = 0, Z3 = 1, U3 = y3)

=

[
(1− p3)

λ
y3
3 (1+ϕ3y3)

y3−1

y3! exp(−λ3(1 + ϕ3y3))

]
(l0 + l1 + l2 + l3)

where l0 = p1 p2 l1 = p2(1− p1) exp(−λ1)Q l2 = p1(1− p2) exp(−λ2)Q l3 = (1− p1)

(1− p2) exp(−λ1 − λ2)Q

v. If Y1 > 0, Y2 > 0, and Y3 > 0, we have

P(Y1 = y1, Y2 = y2, Y3 = y3) = P(Z1 = 1, U1 = y1, Z2 = 1, U2 = y2, Z3 = 1, U3 = y3)

= (1− p1)(1− p2)(1− p3)
3

∏
k=1

λ
yk
k (1+ϕkyk)

yk−1

yk! exp(−λk(1 + ϕkyk)) Q

for the case in which at least two of the yk’s are greater than zero.
where Q = 1+ η12(exp−y1 −g1)(exp−y2 −g2)+ η13(exp−y1 −g1)(exp−y3 −g3)+ η23(exp−y2

−g2)(exp−y3 −g3), gk = E(exp(−Yk)) = exp(λk(tk − 1)) with ln tk − ϕkλk(tk − 1) + 1 =

0; k = 1, 2, 3, µki =
λki

1−ϕkλki
or λki =

µki
1+ϕkµki

.
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