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Abstract: A generalized strain energy-based homogenization method for 2-D and 3-D cellular materi-
als with and without periodicity constraints is proposed using Hill’s Lemma and the matrix method
for spatial frames. In this new approach, the equilibrium equations are enforced at all boundary
and interior nodes and each interior node is allowed to translate and rotate freely, which differ from
existing methods where the equilibrium conditions are imposed only at the boundary nodes. The
newly formulated homogenization method can be applied to cellular materials with or without
symmetry. To illustrate the new method, four examples are studied: two for a 2-D cellular material
and two for a 3-D pentamode metamaterial, with and without periodic constraints in each group.
For the 2-D cellular material, an asymmetric microstructure with or without periodicity constraints
is analyzed, and closed-form expressions of the effective stiffness components are obtained in both
cases. For the 3-D pentamode metamaterial, a primitive diamond-shaped unit cell with or without
periodicity constraints is considered. In each of these 3-D cases, two different representative cells in
two orientations are examined. The homogenization analysis reveals that the pentamode metamate-
rial exhibits the cubic symmetry based on one representative cell, with the effective Poisson’s ratio v
being nearly 0.5. Moreover, it is revealed that the pentamode metamaterial with the cubic symmetry
can be tailored to be a rubber-like material (with 7 22 0.5) or an auxetic material (with 7 < 0).

Keywords: cellular material; strain energy-based homogenization; Hill’s lemma; pentamode meta-
material; matrix method for spatial frames; effective elastic properties; stiffness matrix; periodic
boundary conditions; auxetic material

1. Introduction

Homogenization of materials with discrete microstructures is becoming increasingly
important due to widespread applications of cellular structures and lattice-based metama-
terials (e.g., [1-11]).

Various homogenization methods have been developed using classical elasticity. For
example, Warren and Kraynik [12] proposed an analytical method to homogenize low-
density open-cell foams based on solving force and moment equilibrium equations at joints.
Tollenaere and Caillerie [13] used an asymptotic expansion method in homogenizing 2-D
lattice truss structures. Li et al. [14] developed a micromechanics model and obtained
closed-form formulas for predicting effective elastic properties of 3-D open-cell foams based
on Castigliano’s second theorem. Demiray et al. [15] homogenized 2-D and 3-D hyperelastic
foams undergoing large deformations by employing a strain energy-based scheme and
periodic conditions. Martinsson and Babuska [16] provided a homogenization method for
materials with periodic truss and frame microstructures utilizing an asymptotic analysis
built upon Fourier transforms. Freund et al. [17] presented a two-scale computational
homogenization technique for 2-D cellular structures based on the virtual work principle.
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Norris [18] proposed a homogenization method for periodic lattice structures and derived
analytical formulas for effective properties of elastic networks, including pentamode
metamaterials. Ongaro et al. [19] employed a strain energy-based approach to homogenize
2-D cellular structures of honeycomb cells filled with an elastic material. Ai and Gao [20]
provided an analytical model for predicting effective elastic properties of 2-D periodic star-
shaped re-entrant lattice structures with the orthotropic symmetry and negative Poisson’s
ratios by using Castigliano’s second theorem and the Timoshenko beam theory. Materials
with negative Poisson ratios are also known as auxetic materials, which have emerged as
a class of metamaterials that can find important engineering applications (e.g., [6,20-26]).
Recently, Czarnecki and Lukasiak [27] applied the asymptotic homogenization method for
periodic media to estimate effective moduli of 2-D auxetic cellular materials, which were
also compared with those obtained through optimization.

Higher-order elasticity theories have also been applied to develop models for homog-
enizing 2-D and 3-D cellular materials (e.g., [11,28-34]).

In the current study, a generalized strain energy-based homogenization method for
2-D and 3-D cellular materials with and without periodicity constraints is developed,
which is built on classical elasticity and has no restriction on shape, symmetry or number
of struts in a unit cell. In this new approach, the nodal equilibrium equations are enforced
at all boundary and interior nodes, unlike in existing classical elasticity-based methods
where the nodal equilibrium is imposed only at the boundary nodes and, as a result, the
equilibrium equations are often not satisfied at the interior nodes by the approximate
solutions obtained (e.g., [35]).

The rest of the paper is organized as follows. In Section 2, the generalized strain
energy-based homogenization method is formulated for cellular materials with and without
periodicity constraints. In Section 3, the newly proposed method is applied to homogenize
2-D and 3-D cellular materials in four example problems, which leads to closed-form
formulas for effective elastic stiffness and compliance components. In Section 4, the paper
concludes with a summary.

2. Generalized Strain Energy-Based Homogenization Method
2.1. Matrix Method for Spatial Frames

According to the matrix method for spatial frames (e.g., [36,37]), each frame member
is regarded as weightless and loaded only at its two end points (nodes). It is rigidly
connected to other members at the two end nodes, each having six degrees of freedom—
three translational and three rotational displacements—if unconstrained.

For a 3-D frame member with two end nodes I and |, denoted as “I, ] and shown in
Figure 1, which is made from an isotropic linear elastic material and has a uniform circular
cross-section, the stiffness matrix is given by

ki kyy }
k= ) 1
[ ki kyy M

where the 6 x 6 sub-stiffness matrix kj; represents the force at node I due to a unit
displacement at node J.
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Figure 1. 3-D frame member.

In the local coordinate system {x, y, z} with the base vectors {e1, €, €3}, as shown in
Figure 1, the sub-stiffness matrices can be written as (e.g., [37])

ko O 0 0 0 0 ke 0 0 0 0 0
0 ks 0 0 Lk 0 k 0 0 0 -5k
0 0 ks 0 —5ks 0 0 0 ks 0 ks 0
ki = 27s ki = s 2 Ks
1 o 0o o0 k o0 o [ o 0 0 k 0 0 |
0 0 -5k 0 k O 0 0 5k 0 k 0
L 0 Lk 0 0 0 Kk | |0 %k 0 0 0 Kk |
[ —k, O 0 0 0 0
0 —k& 0 0 0 Lk
0 0 -k O —Lk 0
1T _ s 7 Ks
ky=kp=1 9 o 0o Kk 0 o | @)
0 0 Lk, 0 Lki—k 0
L0 Lk 0 0 0 Lk —ky |

where the superscript “T” denotes the transpose of the matrix, L is the length of the frame
member, and k,, ks, k, and k; are, respectively, the axial stiffness along the x-axis, transverse
shear stiffness about the y- or z-axis, bending stiffness about the y- or z-axis, and torsional
stiffness about the x-axis. When the Timoshenko beam theory is used [37],

EA 12nEGAI

4ET(3EL + nGAL?) GJ
L T 12EIL + yAGL3 P T

ko = ky = ==
‘ 12EIL + yAGL® ™ ®)

L 4
which can be reduced to those based on the Bernoulli-Euler beam theory given by

EA 12EI 4ET GJ
ko=T k=T b= k=T

4)
where E and G are, respectively, Young’s modulus and the shear modulus of the member
material, # is the shear correction factor, and A, I and J are, respectively, the area, second
moment of area and polar second moment of area of the circular cross-section member
with the diameter 4 known as
rd? rd* rd
A= =T T 5)
4 64 32
Based on the arrangement of the sub-stiffness matrices in Equation (1), the nodal
displacement vector of the member “I, J” in the local coordinate system can be written as

A:{ul 91 uy 9] }T, (6)
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where u; and u; represent, respectively, the displacement vectors at nodes I and |, and 6
and 0; denote, respectively, the rotation vectors at nodes I and .

In the global coordinate system {X, Y, Z} with the unit vectors {E;, E;, E3} shown in
Figure 1, which is independent of the frame (strut) orientation, the nodal displacement
vector of the member “I, ]” becomes

T
D={ ux; wuyr uz; Oxi Oyr 0z1 ux; uy; uzy Ox; Oy; 6z5 }, (7

which is related to A (see Equation (6)) through
D =Q'A, ®)

where

Q= , Q=cos(e; E)E; ®FE, )

oo o)
co )0 o
ol oo

o oo

Q

in which Q is the orthogonal coordinate transformation matrix from the local coordinate
system {x, y, z} to the global coordinate system {X, Y, Z} (i.e., E; = Qe;), and the summation
oniand j (with i, j € {1, 2, 3}) is implied. Note that Q is also proper orthogonal with
Q! = QT and detQ = 1, where the superscript “—" denotes the inverse of the matrix.
The nodal force vector of the member “I, J” that satisfies the equilibrium is given by

(e.g., [37])
r=kA={F M, F M}, (10)

or in terms of the components in the local coordinate system,
T
Ir={F; Fi FEr My M, M; Fy Fj; Ej My My My}, (@11

where F; = Fe;, M| = M;je; and F; = Fje;, Mj = M;je; are, respectively, the force and
moment vectors at nodes I and J. Note that the summation on i € {1, 2, 3} is implied here.

In the global coordinate system, the nodal force vector for the member “I, ] can be
obtained from Equations (8) and (10) as

S =Q'r = Q'kA = QTkQD = KD, (12)

where
K =Q'kQ (13)

is the stiffness matrix of the member “I, J” in the global coordinate system {X, Y, Z}.
For a cellular material containing W frame members, the total strain energy is given by

1 W
U=7) DiK.Dy, (14)
=1

n

where n (€{1, 2, ... , W}) represents the nth frame member, and

Kn - Qz;kn(@n' (15)

2.2. Hill’s Lemma

Hill’s lemma [38] enables the prediction of effective properties of a heterogeneous
material through constructing a homogeneous comparison solid based on the strain energy
equivalence (e.g., [39-41]).

For the Cauchy continuum, Hill’s lemma reads (e.g., [38,39,42,43])

1

o:¢)— X E=—
(o:¢) V ha

(u—Ex) - [(o0 — Z)n]dS, (16)
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where () is the region occupied by a heterogeneous material, o2 is the closed surface of (2,
V is the volume of (), dS is an area element on d(), o and ¢ are, respectively, the Cauchy
stress and infinitesimal strain tensors, ( - ) denotes the volume-averaged quantity, u is the
displacement vector, E and X are, respectively, the volume-averaged (effective) stress and
strain tensors, x is the position vector, and n is the unit outward normal to 9Q). Note that
(o : ) is twice of the volume-averaged strain energy density of the heterogeneous material,
and X : E is twice of the volume-averaged strain energy density of the homogeneous
comparison solid.

The Hill-Mandel condition requires that (o : ¢) — X : E = 0 for the strain energy
equivalence, which leads to the following allowable boundary conditions:

u=Ex or t=on=ZXn onodQ, (17)

where tis the Cauchy traction vector, and E and X are, respectively, the prescribed (constant)
strain and stress tensors given by

Exx E&xy &xz Oxx 0Oxy 0xz
E=| ey &y &z |, IZ=| 0Oxy 0Oyy 0Oyz |, (18)
Exz &z €zz Oxz 0Oyz 0zz

in which the overhead bar represents the prescribed quantity.

From Equations (17) and (18), the displacement u at each boundary node can be
obtained. However, the rotation 6 can vary independently at the boundary nodes while
satisfying the moment equilibrium equations there (e.g., [44]). Accordingly, the displace-
ment vector for the nth frame member “I, J” (withn € {1, 2, ... , W}) with the end nodes I
and | both lying on the boundary of the cellular material can be rewritten as

T
D,={ EX; 6; EX; 0] } . (19)

If node I lies on the boundary and node ] is located in the interior, then the displace-
ment vector for the nth frame member “I, | has the form:

T
Dn:{ EX] 91 uy 9] }n‘ (20)
Finally, if both the end nodes I and ] lie in the interior of the cellular material, then
T
Dn:{ uj 9[ uy 9] }n' (21)

2.3. Generalized Homogenization Method

Consider a general (asymmetric) 3-D cellular material with no periodicity, as shown
in Figure 2. The cellular material is composed of P boundary frame members (struts), each
of which has at least one node on the boundary, and Q interior struts, each of which has its
two end nodes located inside the boundary. The cellular material also features N nodes
that lie on the boundary and M nodes that are located inside the boundary. The cellular
material can be completely characterized by N, M, P, Q and the coordinates of each node.
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Figure 2. General 3-D cellular material.

To homogenize this cellular material with the equilibrium satisfied at all nodes (on
the boundary and in the interior), the displacement boundary conditions in Equation (17)
are prescribed for the boundary nodes. The remaining nodes inside the boundary are
allowed to translate and rotate without any constraint. Thus, for the N boundary nodes,
the following holds:

N
u, =EX, and M, =) Mz=0 ondQ, (22)

n=1

where n1 (€{1,2, ..., N}) denotes the nth boundary node, and N is the total number of struts
emanating from the nth boundary node. This leaves the rotation vector at each boundary
node, 8, (n € {1, 2, ..., N}), unspecified, while satisfying the nodal moment equilibrium.
Then, the displacement vector for the pth boundary strut “I, |, with node I lying on the
boundary and node | located in the interior, can be obtained from Equations (20) and (22) as

D,={EX, 0 w © }, (23)

where p (€{1, 2, ..., P}) denotes the pth boundary strut.
From Equations (12) and (23), the force vector for the pth boundary strut “I, J” is given

by
F; EX;
M _ 0
S =90 F ( T8 w (- 24)
M ), o J,

and from Equations (14) and (23), the total strain energy stored in the P boundary struts
can be obtained as

EX;
1 & T 0
Up=35 Y {EX; 0, u 0 } K¢ (25)
2]9:1 p u]
9y
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On the other hand, the displacement vector for the gth interior strut “I, J”, with both
nodes I and ] located inside the boundary, can be obtained from Equation (21) as

DqI{HI 61 uy e] }:, (26)

where g (€{(1, 2, ..., Q}) denotes the gth interior strut.
From Equations (12) and (26), the force vector for the gth interior strut is given by

F[ uj
_ ) M _ 01
Si=VF ( TRy [ 27)
M; g 0 g

and from Equations (14) and (26), the total strain energy stored in the Q interior struts has
the form:

uy
18 T 0
UQ = E Z{ us 9[ u] 9] }qKq uI . (28)
g=1 J
9

q

Then, the volume-averaged strain energy, called the strain energy density function, in
the cellular material with P boundary struts and Q interior struts can be obtained as

_Q_Up-i-UQ

"=y v

(29)
where V is the volume of the region enclosed by the bounding surface of the cellular material.

The strain energy density function u in Equation (29) contains a number of unknown
displacement and rotation components. For a general 3-D case, these unknowns include
3N rotation components at the N boundary nodes (6,,; n € {1,2, ..., N}), 3M displacement
components at the M interior nodes (u,,; m € {1, 2, ... , M}), and 3M rotation components at
the M interior nodes (8,,; m € {1,2, ... , M}). As a result, there are totally 6M + 3N unknown
displacement and rotation components in . Hence, an equal number of equations are
required to solve for these unknowns so that the strain energy density function will not
contain any undetermined displacement or rotation component.

Since each boundary node is allowed to rotate freely, enforcing the moment equilib-
rium at all the N boundary nodes provides 3N equations. These moment balance equations
at the boundary nodes read

N
M,=) Mz=0, ne{l,2 ..., N} (30)

Furthermore, since each interior node is allowed to translate and rotate without
constraints, enforcing the force and moment equilibrium at all the M interior nodes gives
6M equations, which are

M=

M M
Su=) Si=0%Fy=) Fz=0 My=) Myp=0 mec{l,2, ..., M}, (31)

1 m=1 =1

3
I

where M is the total number of struts emanating from the mth interior node.

Solving Equation (30) will yield 6,(n € {1, 2, ..., N}) at the N boundary nodes, and
solving Equation (31) will lead to u,, and 6,,(m € {1, 2, ... , M}) at the M interior nodes.
Substituting these determined kinematic variables into Equation (29) will give the strain
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energy density function u in its final form without containing any unknown. The effective
stiffness tensor can then be obtained from u as
ou — o
r=—, C=—, 32
OE OE2 (2
where E and I are the constant strain and stress tensors defined in Equation (18), and C is
the effective stiffness (elasticity) tensor.

2.4. Extension to Periodic Materials

For periodic cellular materials, the homogenization can be performed using an ex-
tended version of the approach based on Hill’s lemma discussed in Section 2.3.

For a periodic material, Hill’s lemma given in Equation (16) can be extended to
(e.g., [40])

<O':£>—Z:E:% aQ(u—Ex—u*)-[((r—Z)n]dS, (33)

where u* is the periodic part of the displacement field, which is the same for each periodic
pair of nodes on the unit cell boundary. Note that for each periodic pair of two bound-
ary nodes the traction vector t = on is anti-periodic with t© +t~ = 0 (e.g., [40,45,46]).
Accordingly, the surface integral of the product u* - (o — Z)n vanishes (e.g., [40,43]), and
hence Equation (33) is equivalent to Equation (16). Applying the Hill-Mandel condition to
Equation (33) then gives

u=Ex+u" or on=2Xn ondQ) (34)

as the periodic BCs.

Consider a general 3-D periodic cellular material, with a unit cell shown in Figure 3a
or Figure 3b. Each unit cell contains P boundary struts, each of which has one node on
the boundary, and Q interior struts, each of which has its two nodes located inside the
boundary. Each unit cell also includes B periodic pairs of nodes that lie on the boundary
and M nodes that are located inside the boundary.

n=1,h=6
G
2=(6)
n=2
h=2 i
Z
n=1,h=1 PYrry —
(a) (b)

Figure 3. Periodic 3-D cellular material: (a) unit cell with three periodic pairs; (b) unit cell with one periodic pair.

A periodic pair can contain two or more boundary nodes, which depends on the
unit cell structure. For example, the unit cell shown in Figure 3a possesses three periodic
pairs (B = 3), each having two distinct nodes, while the unit cell in Figure 3b contains one
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periodic pair (B = 1), with all the boundary nodes included in this pair. In general, for a
periodic cellular material, a periodic pair can be defined as a collection of boundary nodes
that satisfy the following conditions (e.g., [40,45]):

uj=uf=--=uy 6j=0j=- =0 (35)
H H
Y. F,=0, ) M;,=0, (36)
h=1 h=1

where H represents the total number of nodes contained in the periodic pair.
The kinematic boundary conditions shown in Equation (34) can be extended to repre-
sent the periodic boundary conditions for a cellular material in the following form:

u! =EX! + uj(X) and 0"=05(X) onoQ, (37)

wheren (€ {1, 2, ..., B}) denotes the nth periodic pair of boundary nodes, 1 (€ {1, 2,...,H})
stands for the hth node in the nth periodic pair, and uj, and 6;, (n € {1, 2, ..., B}) are,
respectively, the periodic parts of the displacement and rotation, which are yet unknown.
Using Equation (37) in Equation (20) gives the displacement vector for the pth boundary
strut “I, J” (with p € {1, 2, ..., P}), withnode I lying on the boundary and node ] located
inside, as

D,={ EX;+uj 0 w 0} (38)

Then, it follows from Equations (12) and (38) that the force vector for the pth strut “I,
J” has the form:

F; EX] + uj
_ ) ML 07
Sp = F, =K, w , (39)

and from Equations (14) and (38) that the total strain energy stored in the P boundary struts
can be obtained as

EX; + u}‘
Upzli{ EX; +ul 0 uw 0 }'K o7 (40)
2p:1 I I ] J p P u;
0;

P

The displacement vector and force vector for the gth interior strut can be computed
from Equations (26) and (27), respectively, and the total strain energy stored in the Q
interior struts can be determined using Equation (28).

Then, the strain energy density function u in the unit cell with P boundary struts and
Q interior struts can be obtained from Equations (28), (29) and (40). There are 6(M + B)
unknowns contained in u, which include the 6M displacement and rotation components
at the M interior nodes (w;, 0,; m € {1, 2, ..., M}) and the 6B periodic parts of the
displacement and rotation components at the boundary nodes belonging to the B periodic
pairs (u;;, 0;; 1 €{1,2,...,B}). Accordingly, an equal number of equations are required to
determine the unknown kinematic variables involved in the strain energy density function
u. The 6B unknown periodic parts of the displacement and rotation components at the
boundary nodes can be obtained by enforcing the anti-periodicity conditions of forces and
moments for each periodic pair given in Equation (36). In addition, the 6M displacement
and rotation components at the M interior nodes can be identified by imposing the force and
moment equilibrium at those nodes according to Equation (31). Using these determined
displacement and rotation components in Equation (29) will give the final expression of u,
which can be used in Equation (32) to find the effective stiffness tensor C.
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3. Case Studies

In this section, 2-D and 3-D cellular materials with and without periodicity constraints
are homogenized by applying the generalized strain energy-based method proposed in
Section 2. The mathematical formulation here is facilitated by using symbolic operations
in MATLAB. For simplicity, in all cases considered here, struts are taken to be Bernoulli-
Euler beams with uniform circular cross sections whose stiffness constants are given in
Equation (4).

3.1. 2-D Cases
3.1.1. 2-D Homogenization without Periodicity Constraints

Consider a 2-D cellular material shown in Figure 4, which is asymmetric. The unit cell
is composed of three struts with equal length L (i.e., L(!) = L(?) = L) = L). The stiffness
constants of each strut are given by

MY =k =k = ko, KV =k =k =k, KV =P =) =k, @)
where k;, ks and ky, are listed in Equation (4). The area of the unit cell is

Aye = 212, (42)

T.____________

(b)

Figure 4. 2-D asymmetric cellular material: (a) microstructure; (b) unit cell.

The coordinate transformation tensor for each of the three struts with respect to the
global coordinate system {X, Y, Z} is given by

=L =1 1 =1 9 1 1
(1) _ ‘{i @ 2 _ ‘{i ‘? @) = L/% \? 4
0 0 1 0 0 1 0 0 1

In addition, the position vector of each boundary node with respect to the origin o (the
center of the unit cell; an interior node) reads

Xlz;g{l 1 o}T, X -1 o}T, x3=\;§{1 1 O}T. (44)

L
:\ﬁ{l
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{ uxq
Uyq

}_

Substituting Equations (18) and (44) into Equation (22) gives the boundary conditions
at the three boundary nodes as

_\ﬁL{ exx +exy } { uxo }_ \/EL{ ExX — EXY } { ux3 }_ \ﬁL{ exx +exy } (45)
2 | &xy+tey [ un 2 | &xy—&y J | uys 2 | exy+tay J
Mz =0, Mgz =0, Mz =0. (46)

Using Equations (1), (2), (7), (9), (13) and (43) in Equation (12) yields the force vector
for each strut as

) kobzo — (ko — 552 )01 + 155 (excx — Brv) + 225 (1xo — o) W
Kotz — (ko — 55 )0z0 + 55 (exx — 8v) + 125 (uxo — 1030)

) kibzo — (ko = 55 ) 022 — 2 (Bxcx — vy + Z5 (10 +1030) o
kybz2 — (ko — 55 ) 020 — B (Exx — Bry) + H5 (uxo + 10)
kobzo — (ko — 55 )02z + 155 (exx — Brv) — 225 (1xo — wvo) »

2 2 _ —
kpfz3 — (kb - szs)QZO + Bl (exx —Byy) — %(ux() — Uy,)

- uYo) + %(920 +023)

- MxO) - 2%%(920 +623)

Substituting Equations (47)—(49) into Equation (46) or (30), which gives the moment
equilibrium equations at the three boundary nodes in Figure 4b, leads to the rotation
components at the three boundary nodes as

Lks (Lexx —Leyy+2L0z0+V 2uxo— 21y, )

071 = 0z — % ,
Lk ( L&yy—Lexx +2L070+v/ 21 x,+V/ 211y,

072 = 07, — ( i : o) , (50)
Lks (Lexx—Leyy+2L07,— v 2uxo+V 21y, )

073 =070 — ax, .
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Using Equation (47)-(49) and (50) in Equation (31), the force and moment equilibrium
equations at the interior node o, results in

& + % — 3L2k52 ka ks _'_ L2k52 \/ELks _ \/§L3k52
2 2

8k 2 2 1T 8k, 2 8k,
k k L2k2 3k, 3k 3 L%k2 2Lk V213ks? X0 5
T2t 8 2 T2 TR 2 T8k LQ‘YO = gz , (51)
V2Lks  V/2L3%ks? V2Lks  V/2L3ks? 312k — 3142 20 3
2 8k 2 8k, s T ik,
where
B, — V2L(kaexx —2kaExy + kafyy+ kstxx—ksEyy)  V2L3ks*(Exx—Fyy)
1= 4 16k, ’
_ V2L(keExx—2kaExy+ kafyy— kefxx+ksfyy)  V2L3ks?(Exx—Fyy) 52
By = 7 6k, ’ ( )

Ba —  L?ks(exx —evy) (4kp—L%ks)
3= 8k, :

Upon solving the system of three equations in Equation (51), the displacement and
rotation components at the interior node can be obtained as

V2Lks (4ky—L2%ks) _ V2Lkak = - =
_ _ b _
UXo = 3okl + TRk I27) (EXX — BYY) T 3k by T282) (EXX — 2Exy + Eyy),

V/2Lks (4kb*L2ks) _ _ V2Lkgky _ _ — 53
Wo = 3(T2k,ky +4kyks—L2k:2) (exx —&vy) — 2(2kqky+4kyks—L2ks2) (exx — 2exy +&yy), (53)

_ Akaky+akpks—L%k2 o o
UZ0 = = 3(Takyy T dkpks —12k7) (EXX — EYY)-

Substituting Equations (1), (2), (9), (15), (25), (41), (43), (45), (50) and (53) into Equation
(29) gives the stain energy density function as
11k, /_ _ 3k, koo _ S5ko_  _
u= T; (?«%(X + 5%/3() + Ta*?%(y + fﬁxy(ﬁxx +eyy) — ?afxxﬁw
- 6ka2k;, (Exx — Eve)? ka*ky,
12kaky + 4kyky — L2k;2 XX )7 8(2k,ky + 4kpks — L2k,2)

(54)
(Exx — 2Exy +Eyy)>.

Clearly, Equation (54) does not contain any unknown kinematic variable.

It then follows from Equations (32) and (54) that the effective stiffness matrix C for
the 2-D cellular material can be obtained from the coefficient matrix of the following
constitutive equations:

TXX X2 X3 X1 [50'¢ [ exx
Oyy ¢=| X3 X2 X1 gyy ¢ =Cq &y o, (55)
oxy X1 X1 X4 Xy Xy
where .
— kl ka kb
X1 =7+ 3Rk 252
_ ik, _ ka*kp _ 12k, 2k;,
X2 = 3 A(2kaky+akpko—L2k.2)  12kgkp+akyks—L2ks2” (56)
T - R k2K,
X3 = 778 T DRk, tdkpks L%k2 | &(2koky+dkpks —L2ks2)”
3kq ka’ky

X4 =72 7 Doyt dkpks L2R2

Note that only one specific configuration shown in Figure 4 is considered in the 2-D
case studies here. However, the inclination angle of struts in the 2-D asymmetric cellular
material displayed in Figure 4a could be set as an adjustable variable, which would lead
to the orientation dependence of the effective elastic properties upon using the current
homogenization method. Such orientation dependence exhibited by 2-D cellular materials
has been extensively studied (e.g., [20,25,47]).
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3.1.1.1. 2-D Homogenization with Periodicity Constraints

In this sub-section, periodicity constraints are imposed on the unit cell shown in
Figure 4b, which is further illustrated in Figure 5. It can be seen from Figure 5 that the three
nodes on the boundary of the unit cell form one periodic pair (with B =1 and H = 3).

Figure 5. 2-D asymmetric unit cell with periodicity constraints.

Based on the conditions listed in Equations (35) and (36), the periodicity constraints
for the unit cell shown in Figure 5 take the following form:

Uyq Uy, U3 uy Fx1+ Fx2 + Fx3 0
M;l = ui“/z = 1/[?3 = Ll; , Fy1 —+ Fyz =+ Fy3 = 0 . (57)
071 07> 073 07 Mz1 + Mzy + Mz3 0

Substituting Equations (45) and (57) (the first set) into Equation (37) yields the periodic
boundary conditions at the three boundary nodes as

ux1 €xx +exy uy uxo Exx — Exy uy
uyp o = —@ Exy tevy p+4q uy o, Uy, = @ Exy —&y pt+ 4 Uy o,
01 0 05 02 0 05
uxs exx +Exy uy

Uy 2@ Exy + €yy + ui‘( .

023 0 05

Using Equations (1), (2), (7), (9), (13), (43) and (58) in Equation (12) gives the nodal
force vector for each of the three struts as

*

(58)

W
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F Yo
MZo
Fx3
Fys
Mgzs

(B4 B =15 0 (5 B o 5) + B0

Nj—

Flka +ks) (22 + 15t uyo — ) + (ko — o) (1285 + L8+ iy — u}}) - %(920 +05)

2 2 _ _
ky0zo — (kb - LTkS>9§ + BE (exx — &y

’

)
%) = Blka—ks) (12 + L0 4y -

bk ) (4 + 05 o

_%(ka +ks)<L\E/X§Y + L\%{ +uy, — u;) - %(ka _ks)(Lf/XEX + L\E/XEY tUxo — u?{) + WSE(QZO +9§)
2 2 _ —
Ky — ( L2k5>920 + LK (axx — Eyy) + %(um — W — uyy + 13)
B(ka + o) (=55 10 g — k) — Bk — ko) (— 250 + B uyy — w) ) + B (60 + 63)
3 (ka +ks)<*L\E/X§Y + L\%Y + Uy *”?) +3(ka *ks)(% - L\E/XEY *MXO+M§(> + \[(920 +63)

+

Lk, * *
N (uxo — u + iy, — u3)

7

1) + 4 ( 5+ )~ 043

)
(

) = (5= 5) (8~ o) — 35 0 02)
)

+

~ b (ko + ko) (— 55 + By, —
ky07 — ( ZL\% (uxo — wy + iy, — u3)

(ka +ks)(—L% — B g - u%) + 1 (k, —kQ(—LL\/)g S u’{,) & (6020 +63)

(ko + ko) (=55 = B o uyy — u ) + 3 (ka — ko) (— 2085 — L2 ey — ) + E5 (620 + 63)

Kefzo — (ky — 5 )5 + &

txo +u ) + & ka — ko) (B + g —

L o + ) + (ko —ks) (L2 + g -

kot — (ko = 55)0z0 +

Substituting Equations (59)—(61) into Equation (57) (the second set) results in

2k L2k, = _
25>920 — = (exx — Eyy

NI—=

NI—=

2 — _
£ (xx — Byy) — % (uxo — uy — Uy, +uy)

7

%(ka+ks)(L%X+L%f uYo+u§)+%(GZO+9§)

UXo +u§() z\f (620 +6%)

NI—

(ko + ) (B + Lo —

2k, (= _ Lk,
(Exx — &yy) — Ve (uxo — ul — iy, +uy)

V2Lks

C R A uy By
g, L) s
where
By = _\TT(k +k)(€XX—€XY)+\[L(k —ks)(Exy —&yy)

+% ko 4 ks)uxo + %(ku —ks)uy, + @kSQZO/

By = YZL(k, —ks)(exx — Exv) — Y2 (ko + ks) (Exy — Evy)
3 (ko — ks )ttxo + 3 (ko + ks Juyo + Y26,
2 _ _
By = —LF(exx —8yy) - %MXO - ﬁszs Uyp + 3(k L2k5>920-

(59)

(60)

(61)

(62)

(63)
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Upon solving Equation (62), the periodic parts of the displacement and rotation
components at the three boundary nodes are obtained as

* _ kil (5. _ 9% s
Uy UXo = 3 /a(kn 2] (exx — 2&xy + Eyy)
Lks [(12kb+L2k5) (Exxfgyy)76(4]{;,7[,2]{5)920]
2v/2(24kgky,+12kyks — L2Kk2 ) ’
* _ kil e 9% s
Uy uyo + 5 NCICRETS (exx — 28xy + &yy) (64)
o Lks [(12kb+L2k5) (Exxfgyy)76(4]{;,7[,2]{5)920]
2/2(24kgky,+12kyks — L2Kk2 ) ’
0 — 9, — 2L2ks [(katks) (Exx—Eyy)+2(3ka+ks)020]
z Zo 24k ky+12kyks — L2K2 :

Substituting Equations (59)-(61) and (64) into Equation (31) gives, from the equilibrium
of the interior (central) node o,

. kg + ks — —
070 = —m (€XX - 8Y\() (65)

after setting ux, = uy, = 0 (i.e., no rigid-body displacement enforced at the central node o).
Using Equations (1), (2), (9), (15), (25), (41), (43), (58), (64) and (65) in Equation (29)
yields the stain energy density function as

= f& (118 + dexxexy — 108xxEyy + 126y + 4exyEyy + 118y )
66)
3k (= 32 k2 = _ _ (

— 30k, Ty (XX — Evy)” — 1g0r,amy (Exx — 2Exy +Evy)",

which does not involve any unknown kinematic variable.

Then, it follows from Equations (32) and (66) that the effective stiffness matrix Cp for
the 2-D cellular material with the periodicity constraints can be obtained as the coefficient
matrix of the following constitutive equations:

= P P P
UxXx X% X% X}) XX B XX
oyy ¢ =| X3 X2 X1 &y ¢ =Cp{ &y o, (67)
= P P P - -
Oxy X1 X1 Xa Xy Xy
where , , ,
P_ky | kP2 P_ 1lks _ 3k® _ _ ka
=%ty X2 T 78 T kiR SRR (68)
P_ Sk 3k’ ke P_ 3k _ _ k?
X3 = 778 T Btk B(ket2k)’ X4 T 2 T 2(ket2k)°

A comparison of Equations (67) and (68) with Equations (55) and (56) shows that the
effective stiffness components obtained from the unit cell with the periodicity constraints
(see Equation (68)) do not depend on the strut bending stiffness k;, while those determined
from the same unit cell without the periodicity constraints (see Equation (56)) are dependent
on k; as well as k; and k;.

3.2. 3-D Cases
3.2.1. Pentamode Metamaterial

Pentamode metamaterials were first proposed by Milton and Cherkaev [48] using a
diamond-shaped primitive unit cell shown in Figure 6b. This unit cell can be characterized
by three independent primitive lattice vectors (red arrows in Figure 6b). Struts extending
from each of the four vertices meet at the center of the cube C, which is located inside the
primitive cell. This basic structure is repeated periodically in the primitive lattice vector
directions to generate the periodic lattice material shown in Figure 6a.
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i unit-cell -/
) Diamon /

(@) (b)

Figure 6. Pentamode metamaterial: (a) microstructure; (b) primitive diamond-shaped unit cell.

The unit cell shown in Figure 6b represents the ideal (perfect) pentamode metamate-
rial having a zero-shear resistance, where each strut (composed of two truncated cones)
overlaps with the other struts at a single point. In the current study, each strut is taken
to be a circular cylinder with a uniform cross-section. This allows for a simplified model,
while retaining the essential features of the pentamode metamaterial.

The volume and volume fraction of the primitive diamond-shaped unit cell shown in
Figure 6b are given by, for struts with a uniform circular cross-section,

6413 3B (d\?
- 3\/51 fd_ 16 L ’

where V; and f; are, respectively, the volume and volume fraction of the diamond unit cell,
and L and d are, respectively, the length and diameter of each strut. Note that f; = V;/V
here is the same as the relative density (i.e., o, = p/ps = Vs/V) (e.g., [20]).

Pentamode metamaterials have been shown to display the isotropic, transversely
isotropic or orthotropic symmetry, depending on whether the eigenvalues are distinct or
repeated [18]. In addition, pentamode metamaterials can be characterized by three different
unit cells: primitive diamond, cubic, and parallelepiped [11]. The parallelepiped unit cell
can be obtained from the cubic unit cell through a simple rotation of the coordinate system.

Homogenization in two different coordinate systems shown in Figure 7 is considered
in this subsection to understand how the effective engineering constants transform under
the coordinate system change.

4V, (69)

Figure 7. Diamond-shaped unit cell for the pentamode metamaterial in two orientations.
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3.2.2. Homogenization without Periodicity Constraints

The generalized strain energy-based homogenization method proposed in Section 2
is applied here to predict the effective elastic properties of the pentamode metamaterial
using the diamond-shaped unit cell viewed in two different orientations (coordinate
systems) shown in Figure 8a,b. Each of the two representative cells associated with the
two orientations in Figure 7 contains four struts of equal lengths L and identical stiffness
constants k;, ks and kj, which are the same as those included in the diamond-shaped
unit cell shown in Figure 7. In each case, the volume fraction is that of the pentamode
metamaterial represented by the primitive diamond-shaped unit cell.

oS R .

(a)

Figure 8. Representative cells for the pentamode metamaterial in two orientations: (a) boundary nodes at four vertices;

(b) boundary nodes at mid-points of four edges.

The difference between the two representative cells is that they are 45° apart on the
X-Y plane, while the Z-axis is in the same vertical direction in both cases (see Figure 7). That
is, the base vectors of the two coordinate systems shown in Figure 8a,b are related through

cosf sinf 0

E? =QE"Y, Q= | —sinf cosf 0 , 0=-45° ije{1,2 3} (70)
0 0 1 {Ef”@E](.l)}
To construct the pentamode metamaterial from the representative cell in orientation
#1 (the blue cube) in Figures 7 and 8a or Figure 9a, the 4-strut structure in the blue cube is
first repeated once along each of the three primitive lattice vector directions (the red arrows
in Figure 9a), which results in a new unit cell containing 16 struts enclosed in the pink cube,
as displayed in Figure 9b. Then, repeating the 16-strut unit cell in the pink cube along
the X1, Y1 and Z; directions will generate the 3-D periodic pentamode lattice structure, as

shown in Figure 9c.
By following a similar procedure, the periodic pentamode lattice metamaterial can be
readily constructed from the representative cell in orientation # 2 shown in Figures 7 and 8b.
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(@) (b) (©)

Figure 9. Construction of the pentamode metamaterial from the representative cell in orientation # 1: (a) the representative
cell; (b) the new unit cell; (c) the periodic pentamode material.

Homogenization Based on the First Representative Cell

For the representative cell shown in Figure 8a, which will be referred to as orientation
# 1, the coordinate transformation matrices for the four struts with respect to the global
coordinate system {X1, Y1, Z1} can be obtained as

r 1 1 1 1 1 1
V3 V3B V3 V3 B
1) 1 1 1 2) 2 2 2
Q( )= le) ng) an) ’ Q( )= le) ng) Qéa) ’
1 1 1 2 2 2
L0y 0y o Qo @ o o
roo1 1 1 1 1 1
V3 V3 V3 V3 V3 V3
3) 3 3 3 4) 4 4 4
QV=1ay @ @ | QY= Q) @) @ |
3 3 1 4 4 4
L Q) o of oy Qf Q¥

where the unspecified components of each Q¥) matrix can be arbitrarily chosen as along
as the matrix is proper orthogonal with

[@®] " = [@®]', det(@¥) =1. (72)

This is due to the fact that the cross-section of each strut is circular, so that the local
coordinate axes y and z can be arbitrarily oriented on a cross-section. Based on these
constraints, the following transformation matrices with respect to the coordinate system
{X1, Y1, Z1} have been chosen:

r_1» _ 1 _ 1 1 1 _ 1
VGV IRV E,
QW =| L _ /2 1 Q= | L 1 /2
ve ol G
-z Y 5 i w0
_ (73)
1 1 1 11 1
i BV A Vv
Q¥ | L 2 1| ow_| J2 1 L
Ve VIS e Sove e
L~ 0 % S Y.
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ux,1
Uyl
Uz

Uux,3
Uy;3
Uz,3

0x,1
Oy,1
07,1

0x,2
Oy,2
07,2

0x,3
Oy,3
07,3

Ox,4
Oy,4
07,4

S
——

In addition, the position vector for each of the five nodes in the unit cell shown in
Figure 8a can be written in terms of the global coordinates {X1, Y1, Z1} as

_ _ L T _ L T
Xi=-k{1 11}, x=L{11 1} o
-1 1 1Y, xs={0 0 0}"

Xz = -1 1}, X4=

L L
sl vt
According to the generalized strain energy-based homogenization method formulated
in Section 2.3, this representative cell can be characterized by P =4, Q=0,M=1and N = 4.
Substituting Equations (18) and (74) into Equation (22) gives the boundary conditions at

the four boundary nodes as

. &, x, T ey, T Ex 74 ux,2 . £, x, T ey, — €74
) & ‘I'leYl + &z, (s vz ¢ = 5 & ‘I'leYl —&z (s
€x,7, T €&v,z, T €2,7, Uz,2 €x,7, T &z, —€2,74 75)
qux1 - §X1Y1 -i-fxlz1 Ux4 . —Eixlx1 + ?xly1 -i-éxlz1
Xy ~Eny + &z, (s Una 0= 5y TEm + &ny, + &z, (s
€x,z, —€&vyz; t€2,74 Uz,4 —&x,7, T &y,z, +€2,74
Mx 1 Mx,» My, 3 Mx 4 0
My1 p=9q Myp p=49 Myz =4 Myy ;=4 0 5. (76)
Mz, Mz,» Mz,3 Mz,4 0

Using Equations (1), (2), (7), (9), (12), (13), (73) and (75) in Equation (30) or Equation (76)
leads to the rotation components at the four boundary nodes as

Lks (7LEX1 Y +L§X1 7 7L§y1 Y, +L§lel 72L9x10+L9y10+L9210 7\/§uy10+\/§uzlo)

9X10 + 6kb
Lks (Lex, x, +Lex, v, —Ley, 7, —Lez, 7, +LOx 0 —2L0y, o+ L0z o+V3uux o —V3Uz,0) (77)
Gylo + 6kb !
Lks (—Lex, x, —Lex, z, +Ley, v, +Ley, 7, +LOx o +LOy o —2L07 o= v/3uux 0 +V3y;0)
Gzlo + Gkb
0 Lks(—Lex, v, —Lex, z, —Ley v, +Lez, 2, +2L0x,0—LOy, o+ L0z o+V3uty o +V37,0)
X10 ™ 6k,
Lks (LEXI Xq JrLEXl Y1 +L§y] Z1 7L§lel 7L9X10+2L9y10+L9210 7\/51{)(10 7\/514210) (78)
GYIU - 6kb !
9 . Lks (LEXl X, —LEXl 7 —Lgyl Y +L§ylzl +L9X10+L9Y10+2L9210 — \ﬁuxln-‘r\/guylﬂ)
Zlo 6kb
6 _ Lks (LEXl Y; +LEX1Z1 7LEY1Y1 +LEZ121 +2L9X10+L9y107L92107 \/§qu0 7\/51(210)
X10 6kb
Lks (—LEXl X +L§X1Y1 —Lgylzl +LEZ] 7 +L9X]u+2L9Y10+L9Z]U+ﬁuX]u_\@”Z]U) (79)
Gylo - 6kb !
9 Lks (71‘5)(1 Xq 7LEX1 74 +LEY1 Y 7L€y1 7 7LeXlUJrLele+2L9210+\/§MX10+\/§MYIO)
Zi0 6kb
9 Lks (—LEXI Y +L§X1 7 +L§y1y1 _nglzl +2L9X10+L9Y10+L9210 —\/gllylg+\/§uzlo)
X10 ™ 6k,
Lks (Lgxlxl 7LEX1 Yq 7L§y1 71 7LEZ] 71 +L9X10+2L9y107L9210+\/§MX10+\/§L£210) (80)
9Y10 - 6k;, ’
0 Lks(—Lex, x; +Lex, z, +Ley, v +Ley, 7, +L0x;0—LOy 0 +2L07 o —V/3ux;0—V3uiy;0)
Zio — 6kb



Symmetry 2021, 13, 1870 20 of 33

Substituting Equations (1), (2), (7), (9), (12), (13), (73) and (77)—(80) into the equilib-
rium equations at the interior node in Equation (31) yields the displacement and rotation
components at the central node o0 as

\/§L _ 2\/§Lkukb €
3 2kokp+akyks—L2k2 ) 121
UXy0 VAL 2\3Lkk, .
Uy,o 3 2koky+4k ks —L2k2 ) SX1Z1
Uzio \ _ V3L 2/3Lk.ky : (81)
Ox,0 3 2kakp+akpks—L2k2 ) X1V
GY]O 0
6210 0
0

It follows from Equations (1), (2), (7), (9), (15), (25), (29), (73), (75), (77)—(80) and (81)
that the strain energy density function in this case has the form:

— VB (ka2 Lk2) (22 =2 =2
u= o\~ =~ ZkSp, X1 X +€Y1Y1 +82121
3V3kaks (2 Lkaks =2 =2 =2
+8(ka+2k5) (L 2kgky,+4kyks — L2ks2 &y, T8z T8z (82)

3 ( ka—k Lk (= = = = = =
+93 (B + 5 (exx B + B +EnnEng),

which does not involve any unknown kinematic variable.

Finally, from Equations (32) and (82) the effective stiffness matrix E(l) for the penta-
mode metamaterial based on the representative cell in orientation # 1 shown in Figure 8a
can be obtained as the coefficient matrix of the following constitutive equations:

ro.(1) (1) (1) ]
= xim Xom Xom O 0 0 s s
7X1X1 1) 1) 1) 0 0 0 7X1X1 7X1X1
oy\Y, Xom Xam  Xom &Y, &y
§21Z1 _ XS\ZI XS\Z{ XS\Z{ 0 0 0 §2121 :E(l) %ZIZI , (83)
;lel 0 0 0 XS\;I 0 0 zylzl zylzl
X171 0 0 0 0 (1) 0 X174 X171
Txy A3m 1) &1y B &7
L O 0 0 0 0 Xam
where
(1) _ V3(kat2ks) 3Lk (1) _ VB(ka—ks) 4 V3LkZ
XiM~ — 12 24k, + Xom = T 120 18k,

(84)

(1) 3v/3keks(4k,—L%k;)
X3M = IL(2kyky +4kpks —L2ks2) "

It is clear that the stiffness matrix C/ depends on only three constants XS\Z{/ XS\;I and

(1)

X3p» Wwhich indicates that the pentamode metamaterial possesses the cubic symmetry in
the current case with the representative cell in orientation # 1. These stiffness constants
are the same as those obtained in [18] for the pentamode material with the diamond unit
cell using an equilibrium equation-based approach, thereby providing a validation of the
current model.
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_ 1.1
The effective compliance matrix st = [C(l)} based on the representative cell in
orientation # 1 can be readily obtained from Equations (83) and (84) as

(G Gm Gw 0 0 0]
G G G 0 00
s _ G Gow Ty 000 ) (85)
o o o g% o o0
o 0o o0 o gV o
o o o o o gV

where
g(l) _ 4/3L 32v/3Lk, C(l) _ 4/3L _ _ 16V3Lk,
M 9k, 9k (4ky—L2ks)” 2M 9k, 9k (4ky—L2ks)”

§(1) _ 4/3L 8+/3Lk,
3M — 9%, ks (4ky,—L%ks) "

(86)

For a cubic material, the directional dependence of the engineering constants can be
described by (e.g., [49,50])

G(n,m) = 1 = {i —i—2(L - l)D(n,m)} , (87)

7(n,m) = 5w = E(n) [—% + - %(i - %)D(n,m)},

where E, G and 7 are, respectively, the effective Young’s modulus, shear modulus and
Poisson’s ratio, x, p; and yy are the three principal elastic constants given by

‘— Ci1+2Cpp _ Ces _Cun-Cp

3 ;M 4 ;M2 2 s (88)
{n, m, t} is an orthonormal set of unit vectors, and F(n) and D(n, m) are defined as
F(n) = nin3 +n3ni +n3ni, D(n,m) = nimi+ ngm; + n3ms, (89)

with n = (11, np, n3) and m = (mq, mp, ms).
Consider the triad {n°, m°, t°} aligned with the base vectors {E(l) Eél), Eél)} of

1 7
the coordinate system in Figure 8a with n° = Egl), m’ = Egl), t° = Eél), and the triad

{nf ,m/, tf } aligned with the base vectors {Egz), Egz), Eéz)} of the coordinate system
in Figure 8b with nf = Egz), m/ = Eéz), tf = Egz). Since Eél) remains unchanged (with
Eél) = Eéz)), n and m, which are two orthonormal vectors rotated from Egl) and Egl) by an
angle of 6, can be obtained as

n= Egl) cosf + Eél) sinf, m = —Egl) sin 6 + Eél) cos 6. (90)
Using Equations (83), (84) and (88)—(90) in Equation (87) leads to

E o) — 3v/3kgks (4ky—L%ks )
nom (9) = 2L[3(4kaky+4kyks — L2k2 )+ (4kak, — 4k ks +L2k2 ) cos(46)] 7

G () = 3v/3kqks (4k,— L%k
hom (0) = 16L[6kaky+( —4kaky+akpks —L2K2) cos?(26)]

1)

v (9) — (4kukb—4kbks+L2k§)[1+cos(4€)]
hom ) = 3 (akaky +Akyks —L2K2) + (4kaky —4kyks + L2k2) cos(46)”
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which establish the functional relations between the effective engineering constants and
the angle 6 for the pentamode metamaterial using the stiffness matrix based on the repre-
sentative cell in orientation # 1 shown in Figure 8a.

Homogenization Based on the Second Representative Cell

For the representative cell in orientation # 2 shown in Figure 8b, the coordinate
transformation matrix with respect to the coordinate system {X5, Y5, Z,} for each strut
satisfying Equation (72) is selected to be

Q(l) —

Q® =

1
°-Te £ ° °

0

0
1

O§‘H WIN
S S

(92)

S
|
|
-
w‘%yﬂ_\oo

|
QIN
N
L)
-
=
|

0
0
1

o

In addition, the position vector for each of the five nodes in the representative cell in
Figure 8b with respect to the coordinate system {X», Y7, Z,} can be written as

XlzL{O _

A Rt OV S

M:q_¢§o;%f,&:{ooo}f

Substituting Equations (18) and (93) into Equation (22) gives the boundary conditions
at the four boundary nodes as

Ux,1 V2x,y, +Ex,7, Ux,2 V2ex,y, — €x,7
Uy,1 = *% V2%y,y, + 8,2, ¢ Uy, = % V2%y,y, —v,z, ¢
Uz, \ﬁﬁyzz2 +€z7,7, Uz, \@Eyzz2 —€2,7, (04)
Ux,3 \ﬁéxzxz +€x,7, UX,4 - \/EEXZXZ +€x,2,
Uy, = % V2%x,v, T Ev,7, ¢/ Uy, = % —V2%x,y, + ez, |
Uz,3 V2x,7, +€2,7, Uz,4 —V2Ex,7, + €2,2,
Mx,1 Mx,2 Mx,3 Mx,4 0
My,1 ;= Myp p =9 Mys p =9 Mys ;=4 0 ». (95)
Mz, Mz,» Mz,3 Mz,4 0

Using Equations (1), (2), (7), (9), (12), (13), (92) and (94) in Equation (30) or Equation
(95) yields the rotation components at the four boundary nodes as

Lks (—V2Ley,y, +Ley, 7, +V2Lez, 7, =V Bity,o+V/61iz)0—3LOx,, )

9 GXZO + 6kb
X1
Lks(v2Le Le —L 2L
R I s e
02,1
2 _ _
0 Lks (2Lex, v, +V2LEX, 7, + V61 x,0—V2L0y,0+2L07,,)
Zy0 6kb
0 Lks (—V/2Ley,y, —Ley, 7, +V2Lez, 7, +V3ity,o+V/617)0+3L0x,, )
X20 - 6kb
ZXZZ _ Lks(\/ELEXZYZ*Lgxzzz*\/guxqurL@YzoJr\/EL@zzo) (97)
Y22 - 9Y20 - 6kb 7
07,2
2 _ _
0 Lks (2Lex, v, —V2Lex, 7, —V6ix,0+V2L0y,0+2L07,,)
ZZO - 6kb
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Lks (\/ELEXZYZ +L§y222 — ﬁuy20+L9X20 — \/ELQZZU )

0 9X20 - 6kb
X,3 _ _
9Y23 _ 0y, - Lks(—\/ELSXZXZ+L€XZZZ+\/§L;?ZZ+\/§uxza—\/6u220+3L6y20) , (98)
2 b
02,3
2 _ _
0.+ Lks (2Lex, v, +V2Ley, 7, fé\k/éuyzﬁ\/iwxza —2167,,)
2 b
B0 — Lks(— \/ELEXZYZ +Léy,z, gk\/guyzo +L9x20+\/§L9zzu )
2 b
0,4
2 _ _ _
9 _ 0y _ Lks (V2Lex, x, +Lex, 7, —V2Lez, 7, +V3uux,0+ V61 7,0+3L0y,, ) ) (99)
Y4 Y0 6kp
02,4
2

6,0 Lks(—2Lex,y, +V2Ley,7, ;k\@uy20+\/§Lex2u+2Lezzo)
b
Substituting Equations (1), (2), (7), (9), (12), (13), (92), (94) and (96)—(99) into the
equilibrium equations at the interior nodes listed in Equation (31) gives the displacement
and rotation components at the central node as

_1 %)f
ﬁ( 3T 2koky,+4kyks — L2KZ €x,2, L
quO
1 2kky g
Uy,o \@(3 2k ok, +4kp ks —L2k2 €y,2,L
UZpo 1 kak
= —2 4 — "% ) (g _z . 100
x50 \@( 6+2kakb+4kbks—L2k§)(£X2X2 fry,) L (100)
9Y2U 0
9220 0
0

It follows from Equations (1), (2), (7), (9), (15), (25), (29), (92), (94), (96)—(99) and (100)
that the strain energy density function in this case is given by

B | K24Tkeks k2 Lkg? 3Lk2k2 ) )
U =% | BLktok) — 24k -y &% T8y,

3L(kat+2ks) 24k, 4(ky+2ks) (2kaky+4kpks—L2K3)
Ko+ 2k — DRV, 4 2Bk (2 Lk (@2 g
ZZ " 8(ka+2ks) \ L 2kok,+4kyks—L2k2 X2Zy T 27
V3 RN (g4 +.F FvvE
L (2k ) xv + 1z (ko — ks + 7 ) (Bxax,82,2, + Ennt22,)

V3| 2(ka—ks)* LK 3LK2K2 _
+ 3L(ka+2ks) 12k, Z(ka+2ks)(Zkakh+4kbk5—L2k§) EXH X80 Y,

(101)

o, “\%

|

8

Clearly, there is no unknown kinematic variable in Equation (101).

Finally, from Equations (32) and (101) the effective stiffness matrix 6(2) for the penta-
mode metamaterial based on the representative cell in orientation # 2 shown in Figure 8b
can be obtained as the coefficient matrix of the following constitutive equations:

r .2 (2) (2) 7
FXZXZ Xim Xom  Asm 0 0 0 EXZXZ EXZXZ
_ @ 0 0 4 4 o , ,
o ||
02,7, _ Xam  Xam Xam 0 0 0 €2, _ 6(2) €2,7 (102)
— - 2 -_— - -_— 7
Tnz, o 0 0o X3 o o .z, .z,
UXy7, 0 X 831 0 €X,7, €X,7,
EXZ Yz L 0 0 0 0 0 Xé?\a[ ] EXZ Yz EXZ Yz
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where
(2) _ V3(26kaky+dkpks—L%ks*) 3v/3k2k,
1M = 96Lk, 8L (2kqky+4kyks—L2ks2)
2

e V/3(4kaky, —4kyks +L2k) 1@ = VB(ka=ks) | V3LK
2M " 96Lky (2kgky+4kyks—L2k2) 3M 12L 48k, 7 (103)
(2) _ VB(ka+2ks) _ V3LK? (2) _ V/3ks _ VBLE

Xam 2L 2k, © Xs5M 2L 8k,

(2) _ 3V3keks(4ky—L2k)
Xem = 4L (2kaky+4kyks—L2K2 ) ©

Clearly, Equations (102) and (103) show that the stiffness matrix 6(2) of the pentamode

metamaterial obtained using the representative cell in orientation # 2 does not exhibit the
cubic symmetry. This differs from the stiffness matrix c¥
(84) based on the representative cell in orientation # 1.

derived in Equations (83) and

_ —).—1
The effective compliance matrix s = [C(z)} based on the representative cell in
orientation # 2 can then be readily obtained from Equations (102) and (103) as

[ G 0 Gw O '
0 Zw Gu 0
SO _ | G i o
o o o &
o o o0 o 2
o 0o o o o &

NoOo o o O

0
0
01, (104)
0
0
(2)

N

where

g(Z) _ 8V3L 16v/3Lk;, §(2) _ 4/3L _ _ 16V3Lk,
M 9ka 9k (4ky—L2ks)” 2M 9k, 9k (4ky—L2ks)”

(2) _ 4/3L 32v/3Lk (2) _ 43L 8v/3Lk
Cam = ok, T 9ks(4kb7Lgks)’ Cam = 9%, 9ks(4erb2kS)' (105)
(2) _  8V3Lk,

5M T 3k (dk,—L7ks) "

It can be readily verified that the effective stiffness and compliance matrices obtained
in Equations (102) and (103) and Equations (104) and (105) from the representative cell
in orientation # 2 shown in Figure 8b can be reproduced from the effective stiffness and
compliance matrices derived in Equations (83) and (84) and Equations (85) and (86) based
on the representative cell in orientation # 1 displayed in Figure 8a by using a coordinate
transformation, as shown next.

When the coordinate system # 1 is rotated by an angle of 8 about the common Z-axis
to the coordinate system # 2, the effective stiffness and compliance matrices satisfy the
following transformation relations [51]

c? —rcl’r?, s =Rr- TSR, (106)
cos? 6 sin? 6 0 0 0 2cosfsinf
sin 0 cos? 6 0 0 0 —2cosfsinf
0 0 1 0 0 0
R= 0 0 0 cosf® —sinf 0 ¢ (107)
0 0 0 sinf cos6 0
—cosfsinf cosfsinf 0 0 0 cos2 6 — sin? 6

where the subscript “V” denotes the matrix based on ¢ = [ €11 €» €33 263 2631 261 ]T
(the Voigt notation), and the superscripts “(1)” and “(2)” refer to the effective stiffness or
compliance matrix obtained using the coordinate systems adopted in the representative



Symmetry 2021, 13, 1870 25 of 33
cells in orientations # 1 and # 2, respectively. By setting 6 = —45°(i.e., clockwise rotation
from the orientation # 1 to the orientation # 2) and noting the difference between the C and

S matrices obtained earlier in this section based on ¢ = [ €17 € €33 €3 €3 €12 ]T
and the Cy and Sy matrices, Equations (106) and (107) will lead to the matrices ¢ and
5% in Equations (102) and (104) for orientation # 2 from ¢ and s in Equations (83)
and (85) for orientation # 1.

Similarly, it can be readily shown that the engineering constants determined by
substituting gﬁ), §§§) and ?éé) obtained from Equations (106) and (107) into Equation (87)
are the same as those given by Equation (91).

These verify and support the newly proposed homogenization approach.

3.2.3. Homogenization with Periodicity Constraints

Periodicity constraints are considered in homogenizing the pentamode metamaterial
shown in Figure 10 using the method proposed in Section 2.4. As discussed earlier, the unit
cell is repetitive along three directions which are not mutually perpendicular to each other.

(b)
Figure 10. Periodic pentamode metamaterial: (a) microstructure; (b) diamond-shaped unit cell.

From Figure 10, it is seen that the pentamode material can be generated by repeating

the diamond-shaped unit cell along the directions B?l, BHD and BHE This indicates that
nodes A, D and E on the cell boundary can each form a periodic pair with node B. That
is, the four boundary nodes belong to one periodic pair. From Equations (35) and (36), it
follows that for the periodic pair of the four boundary nodes A, B, D and E based on the
representative cell in orientation # 1,

Ux,3 U4 uy, Fx;1+ Fxp2 + Fx3 + Fxpa 0

Uy,3 Uy,4 uy, Fy1+ Fyo+ Fys + Frg 0

uzs \_ ) vza L _ ) uz, Fz1 + Fzo+ Fz3 + Fza _Jo (108)
%3 %4 0%, [ Myx,1 + Mx,» + Mx,3 + Mx,4 o[’

0y,3 0y,4 6y, My,1 + My,2 + My,;3 + My,4 0

07,3 07,4 07, Mz + Mz +Mzz+ Mz,a 0

and for the periodic pair of the four boundary nodes based on the representative cell in
orientation # 2,

Ux,3 Ux,4 uy, Fx,1 + Fxy2 + Fx,3 + Fxy4 0
Uy,3 Uy, uy, Fy,1 + Fro + Fr,3 + Fya 0
uEz’a‘ _ 1’%24 — MEZ FZzl + FZ22 + FZz3 + FZ24 _ 0 (109)
%3 0%,4 0%, [ Mx,1 + Mx,» + Mx,3 + Mx,4 0
0y,3 03,4 0y, My,1 + My,2 + My,3 + My,4 0
9}23 9}24 9}2 Mz,1 + Mz, + Mz,3+ Mgz, 0
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Homogenization Based on the First Representative Cell with Periodicity Constraints

For the representative cell shown in Figure 8a, the displacement and rotation com-
ponents at the four boundary nodes can be obtained from Equations (18), (37), (74) and

(108) as
— — — * - - - *
”Xll L eX1X1 + 8X1 Y; + SXlzl uxl uX12 L £X1X1 + €X1 Y1 — gX1Z1 uxl
Uyl (= U5  Exin TEny ténzy oty Wy Uvia 0= 5 By tEny —Enz o b qouy o
Uzl €x,7, T &z, T €2,7, ”}1 Uz2 €x,7, T &z, — €77, uZ (110)
ux,3 . £x,X, — &1y T E€X, 2 uy, Ux,4 . —&x,x; T €x,v, +€x,24 uy,
uyiz 0= 5 & v tEnz o H Uy 00 Bna = 50 En tEnw TEnz o Hquy,
u213 sXl 71 — €Y1 71 + 82121 uEI le4 7€X1 7 + €Y1 Z1 + 82121 uEl
*

0x,1 Ox,2 0x,3 0x,4 9>*<1

Ovii ¢=19 Ov2 =9 Ovz ¢ =9 s =9 %, ¢ (111)

07,1 07,2 07,3 07,4 07,

Using Equations (1), (2), (7), (9), (12), (13), (73), (110) and (111) in the anti-periodicity
conditions listed in Equation (108) yields the periodic parts of the displacement and rotation
at the four boundary nodes as

(V3L _ 3Lk, \= L%k
o UX1o ( 3 T Rk, )Nz ot 1= 263% ) Ox0
X] Xl
¥ _ V3L _ \BLk \5 * _ L%k
Uy, (=93 "o~ ( 3 k,;+2k1>£xlzl ’ Oy, (= (1 - 2k,,+k,>9Ylo - (112)
ub 0%
Z V3L _ \BLk \5 Z L%
UZi0 — ( 3 kn+2ki)5X1Y1 (1 - 2k;,+5]q>9210

Next, applying the equilibrium conditions at the central node o (an interior node)
listed in Equation (31) leads to, after using Equations (1), (2), (7), (9), (12), (13), (73) and
(110)-(112) and setting ux, = uy, = uz, = 0 (i.e., no rigid-body displacement enforced at
the central node o),

0x10 = Ov,0 = 07,0 = 0. (113)

From Equations (1), (2), (9), (15), (25), (29), (73) and (110)—(113), it follows that the

strain energy density function in this case is given by

— VBkat2ks) (2 ) ) 33ksks =2 ) )
u= “or \&x; Ty €2 ) a2k (B T8z, T8z

V3(ka—ks) (= _ _ _ _
+ (15L J (8X1X1 &y, TE4x,€2,2, T eny 82121)'

(114)

which no longer depends on the strut bending stiffness k;, unlike that obtained in Equation
(82) without the periodicity constraints. This is consistent with what is observed from
comparing the 2-D cases with and without the periodic constraints in Section 3.1.

Then, the effective stiffness matrix E%l) for the pentamode metamaterial based on
the representative cell in orientation # 1 shown in Figure 8a with the periodic boundary

conditions listed in Equations (110)—(112) can be obtained from Equations (32) and (114) as

r.(1) (1) (1) .
Tx.x Xip Xap  Xop 0 0 0 - .
o (OO B¢ 1% X
vy, Xop  Xip Xop 0 0 0 vy, frr,
ozz \_ | a0 00 Ema Logml @a L gy
;Yl Z1 0 0 0 X:(;}J) 0 0 EYl Z1 f,yl 7
X1Zy (1) €X,74 X, 7,
o 0 0 0 0 xp O _ -
(%'eN7] (1) £X,Y, Ex,y,
0 0 0 0 0 X3p |
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Ux,1
Uy,1
Uz,

Ux,3
uY23
Uz,3

}:

}_

L

7

(e8]

L

3

where
U = VB(ka+2ks) 1) _ VB(ka—ks) (1) _  3VBkaks
1P - 121 ’ XZP - 12L ’ X3P - 2L(k,1—|—2ks)

Clearly, Equations (115) and (116) show that the pentamode metamaterial with the peri-
odicity constraints based on the representative cell in orientation # 1 exhibits the cubic
symmetry, which is the same as what is observed from Equations (83) and (84) for the same
representative cell and orientation but without the periodicity constraints. In addition, it is
seen from Equations (115) and (116) that the effective stiffness components do not depend
on the strut bending stiffness k;, which differs from those given in Equations (83) and (84)
for the pentamode metamaterial without imposing the periodicity constraints.

(116)

_ —(1).—1
The compliance matrix Sg) = [Cl(;l)] based on the representative cell in orientation
# 1 with the periodicity constraints can then be readily determined as

o o o g
o o o o ¥ o
Lo o o o o ¥

[ oF oy @y 0 0 0
1 1 1
G CF 4y 0 00
1 1 1
s = WOy ooy o0 o , (117)
W00
1

where
1 4V/3L n_4/BL1 1 1) 4V3L 1
bir = g (kﬂ ) o == k) %P T o ka+2ks - (18)

Homogenization Based on the Second Representative Cell with Periodicity Constraints

For the representative cell in orientation # 2 shown in Figure 8b, the displacement and
rotation vectors at the four boundary nodes can be obtained from Equations (18), (37), (93)
and (109) as

ﬁ?xzyz +€x,2, ”3‘(2 ux,» . \@EXZ Y, — €X,2, ”?{Z
ﬁfyzyz tonz, Uy, ¢, Uy, 0= \/Efyzyz 8z, uy, ¢,
V28,7, + €2,7, uy, Uz, V2,7, — €2,7, uy,
(119)
\/EEXZXZ + EXzZZ u;(z MX24 _\/EEXZXZ + EXzZz u*Xz
\/EEXZYZ tév,7, + u?@ ’ Uyy4 = % 7\/§EX2Y2 te&y,z, + u% ’
V28x,7, +€2,7, uy, Uz,4 —V2ex,7, + €2,7, uy,
0x,1 0x,2 0x,3 0x,4 0%,
Ovi ¢ =94 Ov2 =4 Onz =4 Opa p =1 0 ». (120)
9Z21 9222 9223 9224 9}2
Using Equations (1), (2), (7), (9), (12), (13), (92), (119) and (120) in Equation (109) gives
the periodic parts of the displacement and rotation components at the four boundary
nodes as
L%ks
Uxyo + \3fkks+2kl? €x,2,L 9 (1 B 2kb+kf)9X20
X2
2v3 ks—kg * _
Uyyo — \?afk +2ks Ey,z,L ’ 9Y2 - (1 2kb+kt>9Y20 : (121)
9*
f ks—ka_ = 22 L2k
UZyo ¥ 73 Fa72ks (szxz SYzYz) L (1 - 2kh+skt ) 07,0
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Next, applying the equilibrium conditions at the central node o (an interior node)
listed in Equation (31) results in, after using Equations (1), (2), (7), (9), (12), (13), (92) and
(119)-(121) and setting ux, = uy, = uz, = 0 (i.e., no rigid-body displacement enforced at
the central node o),

9X20 = 9Y20 = 9Z20 =0. (122)

From Equations (1), (2), (9), (15), (25), (29), (92) and (119)—-(122), the strain energy

density function in this case can be obtained as

B R4Tkakstks? (22 V3(ka+2ks) 22 3 (ka—ks)?
U= Y (Bx, T8y, ) T 7, T 10 R XX EnY,

V3(ka—ks) (= % 2 F 33 _kik, (22 2 V3k
B (B0%27, T 8,%82,2,) + 0T ok (a2, T €02, ) T 4L5€X2Y2

(123)

+

Clearly, this strain energy density function does not depend on the strut bending stiffness
ky, which is different from that obtained in Equation (101) based on the representative cell
shown in Figure 8b without using the periodicity constraints. This is similar to what is
observed from comparing Equations (114) and (82), which are based on the representative

cell shown in Figure 8a with and without the periodicity constraints.

Then, it follows from Equations (32) and (123) that the effective stiffness matrix E}z)

for the pentamode metamaterial based on the representative cell in orientation # 2 shown in
Figure 8b with the periodic boundary conditions listed in Equations (119)-(121) is given by

-2 2 2 .
5 Ao Ay 0 0o z s
e @ 2 2 o o
Y,Y, Xop  Xip  Asp 0 0 0 £,Y, ,Y,
e 2 2 2 € = £
Sz | _ Xép) X_’(;p) XL)) 0 0 0 €nz, \ _ C;z) ‘0z, \ (124)
0’YzZz 0 0 0 Xé%j) 0 O szZz szZz
EXzzz 0 0 0 0 Xg)) 0 €X,7> €X,7,
T € €
X2 Y, 0 0 0 0 0 Xé?)) | X2 Y2 X2Ys
where
2) _ V3(ka*+7ksks+ks?) 2) _ V3(ka—ks)? (2) _ V3(ke—ks)
XP = T 12L(ky+2ks) 7 X2P T~ T2L(k,+2k)’ X3P = — 120 (125)
(2) _ VBkat2ks) (2 _ Bk (2) _ _3vBkeks
Xap = 12 - Xsp = "2L » XeP = 2L(k,+2ks)"
. . =2 =(@),7] . L. .
The compliance matrix S’ = [C based on the representative cell in orientation
p P P P

# 2 with the periodicity constraints can then be readily obtained as

2 2 ]

@0 0 0o o

0 & Lp 0 0 0

2 2 2

s@_ | & G Uy 0 0 0 | 126)

o 0o 0o ¥ o o

o 0o 0o 0 & o

o o o o o 3]

where

o = oG (2 ), 53—@(;—;)), W=t (ard)

. M( _;’_L), g(sz :2\/§L_

é4P -

It can be readily shown that the effective stiffness and compliance matrices obtained
in Equations (124) and (126) based on the representative cell in orientation # 2 can be



Symmetry 2021, 13, 1870

29 of 33

reproduced from those in Equations (115) and (117) based on the representative cell in
orientation # 1 through a coordinate transformation given in Equations (106) and (107) with
6 = —45°.

The engineering constants in this case with the periodicity constraints can be obtained
from Equations (87)—(90), (115) and (116) as

= o 33k, ks
Eper(0) = 2L[3(ky ks )+ (ko —Ks ) cos(40)] 7
= _ 3v/3kyks
Gper(0) = §iBR 2k k) o2 30)]” (128)
_ ka—ks)[1+cos(46
Vper(6) = 3(ka(+ks)+)([ka fcl(c)ss)(coi}(‘w)'

From Equation (128), it is seen that the effective engineering constants fpe,, Epgr and Vper do
not show any dependency on the strut bending stiffness kj, unlike the effective engineering
constants Ejop, Grom and Vp,,, given in Equation (91).

Note that Equations (91) and (128) can be further simplified to, with the help of
Equations (4) and (5),

9v/3mEd*

Enom (0) = 8L2[3(1612+3d2)+(16L2—3d2) cos(40)]
= _ 9v3mEd*
Ghom (60) = 64L2[24L2—(16L72T—3d2) cos2(26)]” (129)

_ _ (1612 —-342) [1+cos(46)]
1Vhom(g)  3(16L2+342)+ (1612 —342) cos(46)

T _ 9v/3nEd
Eper(6) = 8L2[3(4L2+3d2)+glL273d2) cos(40)]”
C _ 9v/3nEd*
Gper(0) = GpE= A3 o2 30)] (130)

_ B (4L2—342) (cos(40)+1)
Vper (0) = 3(4021347%) 1 (AL2—3d2) cos(40)

where d, L and E are the diameter, length and Young’s modulus of the struts in the
pentamode metamaterial.
By setting r = d/L, Equations (129) and (130) can be rewritten as

Ehom(e) _ 97T\/§1’4 Eper(e) _ 971’\/51’4
E 7 8[3(16+3r2)+(16—3r2) cos(46)]’ E 7 8[3(4+3r2)+(4—3r%) cos(40)]”

Ghom(9) _ 97r/3r* Gper(6) 977+/314 (131)
E 7 64[24+(3r2—16) cos?(26)]’ E 7 64[6+(3r2—4) cos?(26)]’

_ _ (16-3r2)[1+cos(49)] _ _ (4-3r%)[1+cos(46)]
Vhom () = 3(16+37%) + (16—312) cos(40)’ Vper (0) = 3(4+3r2)1 (4—317) cos(40) "

From Equation (131), it follows that

Eper(e) 12[3+COS(49)] Cper(e) 18—12 cos? (29)

Ehum(e) - 1 * 3(4+372)+(4*372)C05(49), éhom(e) - 1 T m, (132)
Tpr(0) g 21612
Vhom (0) (—16-+3r2)[3(4+3r2) + (4—312) cos(49)]*

For r < 1, which is typical for most cellular structures, it can be readily verified that the
first two ratios defined in Equation (132) are always greater than 1. This means that the
homogenization with the periodicity constraints results in larger effective Young’s and
shear moduli than those without them. If » << 1, which is the case for Euler—Bernoulli
beams, Equation (132) can be simplified to

. . Uper(e)
lim= = lim— =4, m—
r—>0Ehom(6> r—0 Ghom (9) r—)OI/hom(G)

=1 (133)
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Figure 11 shows the normalized effective engineering constants varying with 6 €
[—90°, 0]. The numerical values are obtained from Equation (131) with r = 1/ (15V/3).
It is seen that at 6 = 0° or —90° (i.e., the representative cell in orientation # 1 shown in
Figure 8a), the effective Young’s modulus is the smallest, the effective shear modulus is
the largest, and the effective Poisson’s ratio is nearly 0.5. However, at 8 = —45° (i.e., the
representative cell in orientation # 2 shown in Figure 8b), the effective Young’s modulus
is the largest, the effective shear modulus is the smallest, and the effective Poisson’s ratio
reaches zero.

x1076

1.8 0.5¢ , , ; 3
1.6+
1al 0.4+ -
al 0.3

1l — B/ '

-4 'qllnrrz/E
0.8%=< —Eper/E =t 0.2}
0 6 \‘\ "'Gpm'/E ,"
04l AN I | 0.1} o
~~_.‘-_-+__‘ _nm
024 <o~ ey ’ O 'Q'Vper
~_.‘__- . Loacon ___._—‘ L 1 L L
ol l B Slntaln, alelului dutelnh , 90 75 60 45 30 -15 0
-90 -75 -60 gzélzg) -30 -15 0 0 (deg)
(a) (b)

Figure 11. Variations of the effective engineering constants with 8: (a) Young’s and shear moduli; (b) Poisson’s ratio.

Figure 11 also reveals that both the effective Young’s modulus and shear modulus
of the pentamode metamaterial with the periodicity constraints are higher than those
without the constraints for any orientation 6 € [-90°, 0], while the effective Poisson’s ratio
is almost the same in the two cases for all orientations. The former reaffirms what has been
qualitatively observed earlier from analyzing Equation (132).

In addition, the ratios given in Equation (132) are plotted in Figure 12. It is seen from
Figure 12 that the smaller r (= d/L) is, the closer the results are to the limiting values listed
in Equation (133), as expected. Moreover, it is observed from Figure 12 that the ratio of
the effective shear moduli épgr / Gpom does not depend on r at @ = —45°. This can also be
directly seen from Equation (132), which analytically predicts éper /Ghom =4 at @ = —45°.
for any value of r.

Furthermore, by setting 6§ = 0° in Equation (128), the effective Poisson’s ratio in the
periodic case is obtained as

Ty = ka — ks
=07 2k, + ks’

which clearly shows that the effective Poisson’s ratio of the pentamode metamaterial based
on the unit cell in orientation # 1 displayed in Figure 8a is controlled by the numerical
values of the axial and shear stiffness constants of the strut. This indicates that auxetic
pentamode metamaterials with v < 0 can be obtained if struts with ks > k;, (i.e., the strut’s
shear stiffness being larger than its axial stiffness) are used. On the other hand, the same
geometrical configuration of the struts can lead to a rubber-like material with v = 0.5 if
ks >> ks(i.e., the strut’s axial stiffness being much larger than its shear stiffness—stretching
dominated). These findings reveal that a full spectrum of Poisson’s ratio can be attained by
the pentamode metamaterial if struts are designed to have a tailorable ratio of k, /ks.

(134)
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Figure 12. Variations of the engineering constant ratios with 6 for various values of .

4. Conclusions

A generalized strain energy-based homogenization method is provided for 2-D and
3-D cellular materials with and without periodicity constraints by using Hill’s lemma and
the matrix method for spatial frames. In the newly proposed homogenization method, the
equilibrium equations are imposed at all boundary and interior nodes, and the interior
nodes are allowed to translate and rotate without constraints, unlike in the existing strain
energy-based methods that do not enforce the equilibrium conditions at the interior nodes.
The new method can be applied to all types of 2-D and 3-D cellular structures with no
geometrical constraints, which differs from the existing methods that can only be used
to accurately predict effective elastic properties of cellular materials with symmetric or
simple microstructures.

An asymmetric 2-D cellular material and a 3-D pentamode metamaterial, with and
without periodicity constraints in each group, are homogenized by directly using the new
method. In all four cases, closed-form expressions are obtained for the components of
the effective stiffness matrix. For the 3-D pentamode metamaterial, the effective stiffness
and compliance components are derived using two representative cells in two different
orientations for both cases with and without periodicity constraints. The results based on
the representative cell in one orientation show that the pentamode metamaterial displays
the cubic symmetry and can be tailor-designed to be a rubber-like incompressible material
or an auxetic material with a negative Poisson’s ratio.

Finally, it should be mentioned that the effective stiffness matrix obtained without the
periodic constraints has been found to be different from that acquired with the periodic
constraints in each of the 2-D and 3-D homogenization examples considered. These
analytical results attained using the newly proposed homogenization method need to
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be compared with experimental data, when they become available, to further verify the
new method and to determine which one, with or without the periodic constraints, is
more accurate.
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