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Abstract: A generalized strain energy-based homogenization method for 2-D and 3-D cellular materi-
als with and without periodicity constraints is proposed using Hill’s Lemma and the matrix method
for spatial frames. In this new approach, the equilibrium equations are enforced at all boundary
and interior nodes and each interior node is allowed to translate and rotate freely, which differ from
existing methods where the equilibrium conditions are imposed only at the boundary nodes. The
newly formulated homogenization method can be applied to cellular materials with or without
symmetry. To illustrate the new method, four examples are studied: two for a 2-D cellular material
and two for a 3-D pentamode metamaterial, with and without periodic constraints in each group.
For the 2-D cellular material, an asymmetric microstructure with or without periodicity constraints
is analyzed, and closed-form expressions of the effective stiffness components are obtained in both
cases. For the 3-D pentamode metamaterial, a primitive diamond-shaped unit cell with or without
periodicity constraints is considered. In each of these 3-D cases, two different representative cells in
two orientations are examined. The homogenization analysis reveals that the pentamode metamate-
rial exhibits the cubic symmetry based on one representative cell, with the effective Poisson’s ratio v
being nearly 0.5. Moreover, it is revealed that the pentamode metamaterial with the cubic symmetry
can be tailored to be a rubber-like material (with v ∼= 0.5) or an auxetic material (with v < 0).

Keywords: cellular material; strain energy-based homogenization; Hill’s lemma; pentamode meta-
material; matrix method for spatial frames; effective elastic properties; stiffness matrix; periodic
boundary conditions; auxetic material

1. Introduction

Homogenization of materials with discrete microstructures is becoming increasingly
important due to widespread applications of cellular structures and lattice-based metama-
terials (e.g., [1–11]).

Various homogenization methods have been developed using classical elasticity. For
example, Warren and Kraynik [12] proposed an analytical method to homogenize low-
density open-cell foams based on solving force and moment equilibrium equations at joints.
Tollenaere and Caillerie [13] used an asymptotic expansion method in homogenizing 2-D
lattice truss structures. Li et al. [14] developed a micromechanics model and obtained
closed-form formulas for predicting effective elastic properties of 3-D open-cell foams based
on Castigliano’s second theorem. Demiray et al. [15] homogenized 2-D and 3-D hyperelastic
foams undergoing large deformations by employing a strain energy-based scheme and
periodic conditions. Martinsson and Babuška [16] provided a homogenization method for
materials with periodic truss and frame microstructures utilizing an asymptotic analysis
built upon Fourier transforms. Freund et al. [17] presented a two-scale computational
homogenization technique for 2-D cellular structures based on the virtual work principle.
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Norris [18] proposed a homogenization method for periodic lattice structures and derived
analytical formulas for effective properties of elastic networks, including pentamode
metamaterials. Ongaro et al. [19] employed a strain energy-based approach to homogenize
2-D cellular structures of honeycomb cells filled with an elastic material. Ai and Gao [20]
provided an analytical model for predicting effective elastic properties of 2-D periodic star-
shaped re-entrant lattice structures with the orthotropic symmetry and negative Poisson’s
ratios by using Castigliano’s second theorem and the Timoshenko beam theory. Materials
with negative Poisson ratios are also known as auxetic materials, which have emerged as
a class of metamaterials that can find important engineering applications (e.g., [6,20–26]).
Recently, Czarnecki and Łukasiak [27] applied the asymptotic homogenization method for
periodic media to estimate effective moduli of 2-D auxetic cellular materials, which were
also compared with those obtained through optimization.

Higher-order elasticity theories have also been applied to develop models for homog-
enizing 2-D and 3-D cellular materials (e.g., [11,28–34]).

In the current study, a generalized strain energy-based homogenization method for
2-D and 3-D cellular materials with and without periodicity constraints is developed,
which is built on classical elasticity and has no restriction on shape, symmetry or number
of struts in a unit cell. In this new approach, the nodal equilibrium equations are enforced
at all boundary and interior nodes, unlike in existing classical elasticity-based methods
where the nodal equilibrium is imposed only at the boundary nodes and, as a result, the
equilibrium equations are often not satisfied at the interior nodes by the approximate
solutions obtained (e.g., [35]).

The rest of the paper is organized as follows. In Section 2, the generalized strain
energy-based homogenization method is formulated for cellular materials with and without
periodicity constraints. In Section 3, the newly proposed method is applied to homogenize
2-D and 3-D cellular materials in four example problems, which leads to closed-form
formulas for effective elastic stiffness and compliance components. In Section 4, the paper
concludes with a summary.

2. Generalized Strain Energy-Based Homogenization Method
2.1. Matrix Method for Spatial Frames

According to the matrix method for spatial frames (e.g., [36,37]), each frame member
is regarded as weightless and loaded only at its two end points (nodes). It is rigidly
connected to other members at the two end nodes, each having six degrees of freedom—
three translational and three rotational displacements—if unconstrained.

For a 3-D frame member with two end nodes I and J, denoted as “I, J” and shown in
Figure 1, which is made from an isotropic linear elastic material and has a uniform circular
cross-section, the stiffness matrix is given by

k =

[
kI I kI J
kJ I kJ J

]
, (1)

where the 6 × 6 sub-stiffness matrix kI J represents the force at node I due to a unit
displacement at node J.
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Figure 1. 3-D frame member.

In the local coordinate system {x, y, z} with the base vectors {e1, e2, e3}, as shown in
Figure 1, the sub-stiffness matrices can be written as (e.g., [37])

kI I =



ka 0 0 0 0 0
0 ks 0 0 0 L

2 ks
0 0 ks 0 − L

2 ks 0
0 0 0 kt 0 0
0 0 − L

2 ks 0 kb 0
0 L

2 ks 0 0 0 kb


, kJ J =



ka 0 0 0 0 0
0 ks 0 0 0 − L

2 ks
0 0 ks 0 L

2 ks 0
0 0 0 kt 0 0
0 0 L

2 ks 0 kb 0
0 − L

2 ks 0 0 0 kb


,

kI J = kT
JI =



−ka 0 0 0 0 0
0 −ks 0 0 0 L

2 ks
0 0 −ks 0 − L

2 ks 0
0 0 0 −kt 0 0
0 0 L

2 ks 0 L2

2 ks − kb 0
0 − L

2 ks 0 0 0 L2

2 ks − kb


, (2)

where the superscript “T” denotes the transpose of the matrix, L is the length of the frame
member, and ka, ks, kb and kt are, respectively, the axial stiffness along the x-axis, transverse
shear stiffness about the y- or z-axis, bending stiffness about the y- or z-axis, and torsional
stiffness about the x-axis. When the Timoshenko beam theory is used [37],

ka =
EA
L

, ks =
12ηEGAI

12EIL + ηAGL3 , kb =
4EI
(
3EI+ ηGAL2)

12EIL + ηAGL3 , kt =
GJ
L

, (3)

which can be reduced to those based on the Bernoulli-Euler beam theory given by

ka =
EA
L

, ks =
12EI

L3 , kb =
4EI

L
, kt =

GJ
L

, (4)

where E and G are, respectively, Young’s modulus and the shear modulus of the member
material, η is the shear correction factor, and A, I and J are, respectively, the area, second
moment of area and polar second moment of area of the circular cross-section member
with the diameter d known as

A =
πd2

4
, I = πd4

64
, J =

πd4

32
. (5)

Based on the arrangement of the sub-stiffness matrices in Equation (1), the nodal
displacement vector of the member “I, J” in the local coordinate system can be written as

∆ =
{

uI θI uJ θJ
}T , (6)
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where uI and uJ represent, respectively, the displacement vectors at nodes I and J, and θI
and θJ denote, respectively, the rotation vectors at nodes I and J.

In the global coordinate system {X, Y, Z} with the unit vectors {E1, E2, E3} shown in
Figure 1, which is independent of the frame (strut) orientation, the nodal displacement
vector of the member “I, J” becomes

D =
{

uXI uYI uZI θXI θYI θZI uXJ uYJ uZJ θXJ θYJ θZJ
}T , (7)

which is related to ∆ (see Equation (6)) through

D = QT∆, (8)

where

Q =


Q 0 0 0
0 Q 0 0
0 0 Q 0
0 0 0 Q

, Q = cos
(
ei, Ej

)
Ei ⊗Ej, (9)

in which Q is the orthogonal coordinate transformation matrix from the local coordinate
system {x, y, z} to the global coordinate system {X, Y, Z} (i.e., Ei = Qei), and the summation
on i and j (with i, j ∈ {1, 2, 3}) is implied. Note that Q is also proper orthogonal with
Q−1 = QT and detQ = 1, where the superscript “−” denotes the inverse of the matrix.

The nodal force vector of the member “I, J” that satisfies the equilibrium is given by
(e.g., [37])

Γ = k∆ =
{

FI MI FJ MJ
}T , (10)

or in terms of the components in the local coordinate system,

Γ =
{

FxI FyI FzI MxI MyI MzI FxJ FyJ FzJ MxJ MyJ MzJ
}T , (11)

where FI = FiIei, MI = MiIei and FJ = Fi Jei, MJ = Mi Jei are, respectively, the force and
moment vectors at nodes I and J. Note that the summation on i ∈ {1, 2, 3} is implied here.

In the global coordinate system, the nodal force vector for the member “I, J” can be
obtained from Equations (8) and (10) as

S = QTΓ = QTk∆ = QTkQD = KD, (12)

where
K = QTkQ (13)

is the stiffness matrix of the member “I, J” in the global coordinate system {X, Y, Z}.
For a cellular material containing W frame members, the total strain energy is given by

U =
1
2

W

∑
n=1

DT
n KnDn, (14)

where n (∈{1, 2, . . . , W}) represents the nth frame member, and

Kn = QT
n knQn. (15)

2.2. Hill’s Lemma

Hill’s lemma [38] enables the prediction of effective properties of a heterogeneous
material through constructing a homogeneous comparison solid based on the strain energy
equivalence (e.g., [39–41]).

For the Cauchy continuum, Hill’s lemma reads (e.g., [38,39,42,43])

〈σ : ε〉 − Σ : E =
1
V

∫
∂Ω

(u− Ex) · [(σ− Σ)n]dS, (16)
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where Ω is the region occupied by a heterogeneous material, ∂Ω is the closed surface of Ω,
V is the volume of Ω, dS is an area element on ∂Ω, σ and ε are, respectively, the Cauchy
stress and infinitesimal strain tensors, 〈 · 〉 denotes the volume-averaged quantity, u is the
displacement vector, E and Σ are, respectively, the volume-averaged (effective) stress and
strain tensors, x is the position vector, and n is the unit outward normal to ∂Ω. Note that
〈σ : ε〉 is twice of the volume-averaged strain energy density of the heterogeneous material,
and Σ : E is twice of the volume-averaged strain energy density of the homogeneous
comparison solid.

The Hill-Mandel condition requires that 〈σ : ε〉 − Σ : E = 0 for the strain energy
equivalence, which leads to the following allowable boundary conditions:

u = Ex or t = σn = Σn on ∂Ω, (17)

where t is the Cauchy traction vector, and E and Σ are, respectively, the prescribed (constant)
strain and stress tensors given by

E =

 εXX εXY εXZ
εXY εYY εYZ
εXZ εYZ εZZ

, Σ =

 σXX σXY σXZ
σXY σYY σYZ
σXZ σYZ σZZ

, (18)

in which the overhead bar represents the prescribed quantity.
From Equations (17) and (18), the displacement u at each boundary node can be

obtained. However, the rotation θ can vary independently at the boundary nodes while
satisfying the moment equilibrium equations there (e.g., [44]). Accordingly, the displace-
ment vector for the nth frame member “I, J” (with n ∈ {1, 2, . . . , W}) with the end nodes I
and J both lying on the boundary of the cellular material can be rewritten as

Dn =
{

EXI θI EXJ θJ
}T

n . (19)

If node I lies on the boundary and node J is located in the interior, then the displace-
ment vector for the nth frame member “I, J” has the form:

Dn =
{

EXI θI uJ θJ
}T

n . (20)

Finally, if both the end nodes I and J lie in the interior of the cellular material, then

Dn =
{

uI θI uJ θJ
}T

n . (21)

2.3. Generalized Homogenization Method

Consider a general (asymmetric) 3-D cellular material with no periodicity, as shown
in Figure 2. The cellular material is composed of P boundary frame members (struts), each
of which has at least one node on the boundary, and Q interior struts, each of which has its
two end nodes located inside the boundary. The cellular material also features N nodes
that lie on the boundary and M nodes that are located inside the boundary. The cellular
material can be completely characterized by N, M, P, Q and the coordinates of each node.
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Figure 2. General 3-D cellular material.

To homogenize this cellular material with the equilibrium satisfied at all nodes (on
the boundary and in the interior), the displacement boundary conditions in Equation (17)
are prescribed for the boundary nodes. The remaining nodes inside the boundary are
allowed to translate and rotate without any constraint. Thus, for the N boundary nodes,
the following holds:

un = EXn and Mn =
N

∑
n=1

Mn = 0 on ∂Ω, (22)

where n (∈{1, 2, . . . , N}) denotes the nth boundary node, and N is the total number of struts
emanating from the nth boundary node. This leaves the rotation vector at each boundary
node, θn (n ∈ {1, 2, . . . , N}), unspecified, while satisfying the nodal moment equilibrium.
Then, the displacement vector for the pth boundary strut “I, J”, with node I lying on the
boundary and node J located in the interior, can be obtained from Equations (20) and (22) as

Dp =
{

EXI θI uJ θJ
}T

p , (23)

where p (∈{1, 2, . . . , P}) denotes the pth boundary strut.
From Equations (12) and (23), the force vector for the pth boundary strut “I, J” is given

by

Sp =


FI
MI
FJ
MJ


p

= Kp


EXI
θI
uJ
θJ


p

, (24)

and from Equations (14) and (23), the total strain energy stored in the P boundary struts
can be obtained as

UP =
1
2

P

∑
p=1

{
EXI θI uJ θJ

}T
p Kp


EXI
θI
uJ
θJ


p

. (25)
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On the other hand, the displacement vector for the qth interior strut “I, J”, with both
nodes I and J located inside the boundary, can be obtained from Equation (21) as

Dq =
{

uI θI uJ θJ
}T

q , (26)

where q (∈{1, 2, . . . , Q}) denotes the qth interior strut.
From Equations (12) and (26), the force vector for the qth interior strut is given by

Sq =


FI
MI
FJ
MJ


q

= Kq


uI
θI
uJ
θJ


q

, (27)

and from Equations (14) and (26), the total strain energy stored in the Q interior struts has
the form:

UQ =
1
2

Q

∑
q=1

{
uI θI uJ θJ

}T
q Kq


uI
θI
uJ
θJ


q

. (28)

Then, the volume-averaged strain energy, called the strain energy density function, in
the cellular material with P boundary struts and Q interior struts can be obtained as

u =
U
V

=
UP +UQ

V
, (29)

where V is the volume of the region enclosed by the bounding surface of the cellular material.
The strain energy density function u in Equation (29) contains a number of unknown

displacement and rotation components. For a general 3-D case, these unknowns include
3N rotation components at the N boundary nodes (θn; n ∈ {1, 2, . . . , N}), 3M displacement
components at the M interior nodes (um; m ∈ {1, 2, . . . , M}), and 3M rotation components at
the M interior nodes (θm; m ∈ {1, 2, . . . , M}). As a result, there are totally 6M + 3N unknown
displacement and rotation components in u. Hence, an equal number of equations are
required to solve for these unknowns so that the strain energy density function will not
contain any undetermined displacement or rotation component.

Since each boundary node is allowed to rotate freely, enforcing the moment equilib-
rium at all the N boundary nodes provides 3N equations. These moment balance equations
at the boundary nodes read

Mn =
N

∑
n=1

Mn = 0, n ∈ {1, 2, . . . , N}. (30)

Furthermore, since each interior node is allowed to translate and rotate without
constraints, enforcing the force and moment equilibrium at all the M interior nodes gives
6M equations, which are

Sm =
M

∑
m=1

Sm = 0 ⇔ Fm =
M

∑
m=1

Fm = 0, Mm =
M

∑
m=1

Mm = 0, m ∈ {1, 2, . . . , M}, (31)

where M is the total number of struts emanating from the mth interior node.
Solving Equation (30) will yield θn(n ∈ {1, 2, . . . , N}) at the N boundary nodes, and

solving Equation (31) will lead to um and θm(m ∈ {1, 2, . . . , M}) at the M interior nodes.
Substituting these determined kinematic variables into Equation (29) will give the strain
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energy density function u in its final form without containing any unknown. The effective
stiffness tensor can then be obtained from u as

Σ =
∂u
∂E

, C =
∂2u
∂E2 , (32)

where E and Σ are the constant strain and stress tensors defined in Equation (18), and C is
the effective stiffness (elasticity) tensor.

2.4. Extension to Periodic Materials

For periodic cellular materials, the homogenization can be performed using an ex-
tended version of the approach based on Hill’s lemma discussed in Section 2.3.

For a periodic material, Hill’s lemma given in Equation (16) can be extended to
(e.g., [40])

〈σ : ε〉 − Σ : E =
1
V

∫
∂Ω

(u− Ex− u∗) · [(σ− Σ)n]dS, (33)

where u∗ is the periodic part of the displacement field, which is the same for each periodic
pair of nodes on the unit cell boundary. Note that for each periodic pair of two bound-
ary nodes the traction vector t = σn is anti-periodic with t+ + t− = 0 (e.g., [40,45,46]).
Accordingly, the surface integral of the product u∗ · (σ− Σ)n vanishes (e.g., [40,43]), and
hence Equation (33) is equivalent to Equation (16). Applying the Hill-Mandel condition to
Equation (33) then gives

u = Ex + u∗ or σn = Σn on ∂Ω (34)

as the periodic BCs.
Consider a general 3-D periodic cellular material, with a unit cell shown in Figure 3a

or Figure 3b. Each unit cell contains P boundary struts, each of which has one node on
the boundary, and Q interior struts, each of which has its two nodes located inside the
boundary. Each unit cell also includes B periodic pairs of nodes that lie on the boundary
and M nodes that are located inside the boundary.

Figure 3. Periodic 3-D cellular material: (a) unit cell with three periodic pairs; (b) unit cell with one periodic pair.

A periodic pair can contain two or more boundary nodes, which depends on the
unit cell structure. For example, the unit cell shown in Figure 3a possesses three periodic
pairs (B = 3), each having two distinct nodes, while the unit cell in Figure 3b contains one
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periodic pair (B = 1), with all the boundary nodes included in this pair. In general, for a
periodic cellular material, a periodic pair can be defined as a collection of boundary nodes
that satisfy the following conditions (e.g., [40,45]):

u∗1 = u∗2 = · · · = u∗H , θ∗1 = θ∗2 = · · · = θ∗H , (35)

H

∑
h=1

Fh = 0,
H

∑
h=1

Mh = 0, (36)

where H represents the total number of nodes contained in the periodic pair.
The kinematic boundary conditions shown in Equation (34) can be extended to repre-

sent the periodic boundary conditions for a cellular material in the following form:

uh
n = EXh

n + u∗n(X) and θh
n = θ∗n(X) on ∂Ω, (37)

where n (∈ {1, 2, . . . , B}) denotes the nth periodic pair of boundary nodes, h (∈ {1, 2, . . . , H})
stands for the hth node in the nth periodic pair, and u∗n and θ∗n (n ∈ {1, 2, . . . , B}) are,
respectively, the periodic parts of the displacement and rotation, which are yet unknown.
Using Equation (37) in Equation (20) gives the displacement vector for the pth boundary
strut “I, J” (with p ∈ {1, 2, . . . , P}), with node I lying on the boundary and node J located
inside, as

Dp =
{

EXI + u∗I θ∗I uJ θJ
}T

p . (38)

Then, it follows from Equations (12) and (38) that the force vector for the pth strut “I,
J” has the form:

Sp =


FI
MI
FJ
MJ


p

= Kp


EXI + u∗I
θ∗I
uJ
θJ


p

, (39)

and from Equations (14) and (38) that the total strain energy stored in the P boundary struts
can be obtained as

UP =
1
2

P

∑
p=1

{
EXI + u∗I θ∗I uJ θJ

}T
p Kp


EXI + u∗I
θ∗I
uJ
θJ


p

. (40)

The displacement vector and force vector for the qth interior strut can be computed
from Equations (26) and (27), respectively, and the total strain energy stored in the Q
interior struts can be determined using Equation (28).

Then, the strain energy density function u in the unit cell with P boundary struts and
Q interior struts can be obtained from Equations (28), (29) and (40). There are 6(M + B)
unknowns contained in u, which include the 6M displacement and rotation components
at the M interior nodes (um, θm; m ∈ {1, 2, . . . , M}) and the 6B periodic parts of the
displacement and rotation components at the boundary nodes belonging to the B periodic
pairs (u∗n, θ∗n; n ∈ {1, 2, . . . , B}). Accordingly, an equal number of equations are required to
determine the unknown kinematic variables involved in the strain energy density function
u. The 6B unknown periodic parts of the displacement and rotation components at the
boundary nodes can be obtained by enforcing the anti-periodicity conditions of forces and
moments for each periodic pair given in Equation (36). In addition, the 6M displacement
and rotation components at the M interior nodes can be identified by imposing the force and
moment equilibrium at those nodes according to Equation (31). Using these determined
displacement and rotation components in Equation (29) will give the final expression of u,
which can be used in Equation (32) to find the effective stiffness tensor C.
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3. Case Studies

In this section, 2-D and 3-D cellular materials with and without periodicity constraints
are homogenized by applying the generalized strain energy-based method proposed in
Section 2. The mathematical formulation here is facilitated by using symbolic operations
in MATLAB. For simplicity, in all cases considered here, struts are taken to be Bernoulli-
Euler beams with uniform circular cross sections whose stiffness constants are given in
Equation (4).

3.1. 2-D Cases
3.1.1. 2-D Homogenization without Periodicity Constraints

Consider a 2-D cellular material shown in Figure 4, which is asymmetric. The unit cell
is composed of three struts with equal length L (i.e., L(1) = L(2) = L(3) = L). The stiffness
constants of each strut are given by

k(1)a = k(2)a = k(3)a = ka, k(1)s = k(2)s = k(3)s = ks, k(1)b = k(2)b = k(3)b = kb, (41)

where ka, ks and kb are listed in Equation (4). The area of the unit cell is

Auc = 2L2. (42)

Figure 4. 2-D asymmetric cellular material: (a) microstructure; (b) unit cell.

The coordinate transformation tensor for each of the three struts with respect to the
global coordinate system {X, Y, Z} is given by

Q(1) =


−1√

2
−1√

2
0

1√
2

−1√
2

0
0 0 1

, Q(2) =


1√
2

−1√
2

0
1√
2

1√
2

0
0 0 1

, Q(3) =


1√
2

1√
2

0
−1√

2
1√
2

0
0 0 1

. (43)

In addition, the position vector of each boundary node with respect to the origin o (the
center of the unit cell; an interior node) reads

X1 =
−L√

2

{
1 1 0

}T , X2 =
L√
2

{
1 −1 0

}T , X3 =
L√
2

{
1 1 0

}T . (44)
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Substituting Equations (18) and (44) into Equation (22) gives the boundary conditions
at the three boundary nodes as{

uX1
uY1

}
= −
√

2L
2

{
εXX + εXY
εXY + εYY

}
,
{

uX2
uY2

}
=

√
2L
2

{
εXX − εXY
εXY − εYY

}
,
{

uX3
uY3

}
=

√
2L
2

{
εXX + εXY
εXY + εYY

}
, (45)

MZ1 = 0, MZ2 = 0, MZ3 = 0. (46)

Using Equations (1), (2), (7), (9), (13) and (43) in Equation (12) yields the force vector
for each strut as



FX0
FY0
MZ0
FX1
FY1
MZ1


=



(
ka
2 + ks

2

)(
LεXX√

2
+ LεXY√

2
+ uXo

)
+
(

ka
2 −

ks
2

)(
LεXY√

2
+ LεYY√

2
+ uYo

)
+ Lks

2
√

2
(θZo + θZ1)(

ka
2 + ks

2

)(
LεXY√

2
+ LεYY√

2
+ uYo

)
+
(

ka
2 −

ks
2

)(
LεXX√

2
+ LεXY√

2
+ uXo

)
− Lks

2
√

2
(θZo + θZ1)

kbθZo −
(

kb − L2ks
2

)
θZ1 +

L2ks
4 (εXX − εYY) +

Lks
2
√

2
(uXo − uYo)

−
(

ka
2 + ks

2

)(
LεXX√

2
+ LεXY√

2
+ uXo

)
−
(

ka
2 −

ks
2

)(
LεXY√

2
+ LεYY√

2
+ uYo

)
− Lks

2
√

2
(θZo + θZ1)

−
(

ka
2 + ks

2

)(
LεXY√

2
+ LεYY√

2
+ uYo

)
−
(

ka
2 −

ks
2

)(
LεXX√

2
+ LεXY√

2
+ uXo

)
+ Lks

2
√

2
(θZo + θZ1)

kbθZ1 −
(

kb − L2ks
2

)
θZo +

L2ks
4 (εXX − εYY) +

Lks
2
√

2
(uXo − uYo)



, (47)



FX0
FY0
MZ0
FX2
FY2
MZ2


=



(
ka
2 + ks

2

)(
LεXY√

2
− LεXX√

2
+ uXo

)
−
(

ka
2 −

ks
2

)(
LεYY√

2
− LεXY√

2
+ uYo

)
+ Lks

2
√

2
(θZo + θZ2)(

ka
2 + ks

2

)(
LεYY√

2
− LεXY√

2
+ uYo

)
+
(

ka
2 −

ks
2

)(
LεXX√

2
− LεXY√

2
− uXo

)
+ Lks

2
√

2
(θZo + θZ2)

kbθZo −
(

kb − L2ks
2

)
θZ2 − L2ks

4 (εXX − εYY) +
Lks
2
√

2
(uXo + uYo)

−
(

ka
2 + ks

2

)(
LεXY√

2
− LεXX√

2
+ uXo

)
+
(

ka
2 −

ks
2

)(
LεYY√

2
− LεXY√

2
+ uYo

)
− Lks

2
√

2
(θZo + θZ2)

−
(

ka
2 + ks

2

)(
LεYY√

2
− LεXY√

2
+ uYo

)
−
(

ka
2 −

ks
2

)(
LεXX√

2
− LεXY√

2
− uXo

)
− Lks

2
√

2
(θZo + θZ2)

kbθZ2 −
(

kb − L2ks
2

)
θZo − L2ks

4 (εXX − εYY) +
Lks
2
√

2
(uXo + uYo)



, (48)



FX0
FY0
MZ0
FX3
FY3
MZ3


=



(
ka
2 + ks

2

)(
− LεXY√

2
− LεXX√

2
+ uXo

)
+
(

ka
2 −

ks
2

)(
− LεYY√

2
− LεXY√

2
+ uYo

)
− Lks

2
√

2
(θZo + θZ3)(

ka
2 + ks

2

)(
− LεYY√

2
− LεXY√

2
+ uYo

)
+
(

ka
2 −

ks
2

)(
− LεXX√

2
− LεXY√

2
+ uXo

)
+ Lks

2
√

2
(θZo + θZ3)

kbθZo −
(

kb − L2ks
2

)
θZ3 +

L2ks
4 (εXX − εYY)− Lks

2
√

2
(uXo − uYo)(

ka
2 + ks

2

)(
LεXY√

2
+ LεXX√

2
− uXo

)
+
(

ka
2 −

ks
2

)(
LεYY√

2
+ LεXY√

2
− uYo

)
+ Lks

2
√

2
(θZo + θZ3)(

ka
2 + ks

2

)(
LεYY√

2
+ LεXY√

2
− uYo

)
+
(

ka
2 −

ks
2

)(
LεXX√

2
+ LεXY√

2
− uXo

)
− Lks

2
√

2
(θZo + θZ3)

kbθZ3 −
(

kb − L2ks
2

)
θZo +

L2ks
4 (εXX − εYY)− Lks

2
√

2
(uXo − uYo)



. (49)

Substituting Equations (47)–(49) into Equation (46) or (30), which gives the moment
equilibrium equations at the three boundary nodes in Figure 4b, leads to the rotation
components at the three boundary nodes as

θZ1 = θZo −
Lks(LεXX−LεYY+2LθZo+

√
2uXo−

√
2uYo)

4kb
,

θZ2 = θZo −
Lks(LεYY−LεXX+2LθZo+

√
2uXo+

√
2uYo)

4kb
,

θZ3 = θZo −
Lks(LεXX−LεYY+2LθZo−

√
2uXo+

√
2uYo)

4kb
.

(50)
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Using Equation (47)–(49) and (50) in Equation (31), the force and moment equilibrium
equations at the interior node o, results in

3ka
2 + 3ks

2 −
3L2ks

2

8 kb

ka
2 −

ks
2 + L2ks

2

8 kb

√
2Lks
2 −

√
2L3ks

2

8 kb

ka
2 −

ks
2 + L2ks

2

8 kb

3ka
2 + 3ks

2 −
3 L2ks

2

8 kb

√
2Lks
2 −

√
2L3ks

2

8 kb
√

2Lks
2 −

√
2L3ks

2

8 kb

√
2Lks
2 −

√
2L3ks

2

8 kb
3L2ks − 3L4ks

2

4kb




uX0
uY0
θZ0

 =


B1
B2
B3

, (51)

where
B1 =

√
2L(kaεXX−2kaεXY+ kaεYY+ ksεXX−ksεYY)

4 −
√

2L3ks
2(εXX−εYY)
16kb

,

B2 = −
√

2L(kaεXX−2kaεXY+ kaεYY− ksεXX+ksεYY)
4 −

√
2L3ks

2(εXX−εYY)
16kb

,

B3 = − L2ks(εXX−εYY)(4kb−L2ks)
8kb

.

(52)

Upon solving the system of three equations in Equation (51), the displacement and
rotation components at the interior node can be obtained as

uXo =
√

2Lks(4kb−L2ks)
2(12kakb+4kbks−L2ks2)

(εXX − εYY) +
√

2Lkakb
2(2kakb+4kbks−L2ks2)

(εXX − 2εXY + εYY),

uYo =
√

2Lks(4kb−L2ks)
2(12kakb+4kbks−L2ks2)

(εXX − εYY)−
√

2Lkakb
2(2kakb+4kbks−L2ks2)

(εXX − 2εXY + εYY),

uZo = − 4kakb+4kbks−L2ks
2

2(12kakb+4kbks−L2ks2)
(εXX − εYY).

(53)

Substituting Equations (1), (2), (9), (15), (25), (41), (43), (45), (50) and (53) into Equation
(29) gives the stain energy density function as

u=
11ka

16

(
ε2

XX + ε2
YY

)
+

3ka

4
ε2

XY +
ka

4
εXY(εXX + εYY)−

5ka

8
εXXεYY

− 6ka
2kb

12kakb + 4kbks − L2ks2 (εXX − εYY)
2 − ka

2kb
8(2kakb + 4kbks − L2ks2)

(εXX − 2εXY + εYY)
2.

(54)

Clearly, Equation (54) does not contain any unknown kinematic variable.
It then follows from Equations (32) and (54) that the effective stiffness matrix C for

the 2-D cellular material can be obtained from the coefficient matrix of the following
constitutive equations:

σXX
σYY
σXY

 =

 χ2 χ3 χ1
χ3 χ2 χ1
χ1 χ1 χ4


εXX
εYY
εXY

 = C


εXX
εYY
εXY

, (55)

where
χ1 = ka

4 + ka
2kb

2(2kakb+4kbks−L2ks2)
,

χ2 = 11ka
8 −

ka
2kb

4(2kakb+4kbks−L2ks2)
− 12ka

2kb
12kakb+4kbks−L2ks2 ,

χ3 = − 5ka
8 + 12ka

2kb
12kakb+4kbks−L2ks2 − ka

2kb
4(2kakb+4kbks−L2ks2)

,

χ4 = 3ka
2 −

ka
2kb

2kakb+4kbks−L2ks2 .

(56)

Note that only one specific configuration shown in Figure 4 is considered in the 2-D
case studies here. However, the inclination angle of struts in the 2-D asymmetric cellular
material displayed in Figure 4a could be set as an adjustable variable, which would lead
to the orientation dependence of the effective elastic properties upon using the current
homogenization method. Such orientation dependence exhibited by 2-D cellular materials
has been extensively studied (e.g., [20,25,47]).
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3.1.1.1. 2-D Homogenization with Periodicity Constraints

In this sub-section, periodicity constraints are imposed on the unit cell shown in
Figure 4b, which is further illustrated in Figure 5. It can be seen from Figure 5 that the three
nodes on the boundary of the unit cell form one periodic pair (with B = 1 and H = 3).

Figure 5. 2-D asymmetric unit cell with periodicity constraints.

Based on the conditions listed in Equations (35) and (36), the periodicity constraints
for the unit cell shown in Figure 5 take the following form:

u∗X1
u∗Y1
θ∗Z1

 =


u∗X2
u∗Y2
θ∗Z2

 =


u∗X3
u∗Y3
θ∗Z3

 =


u∗X
u∗Y
θ∗Z

,


FX1 + FX2 + FX3
FY1 + FY2 + FY3

MZ1 + MZ2 + MZ3

 =


0
0
0

. (57)

Substituting Equations (45) and (57) (the first set) into Equation (37) yields the periodic
boundary conditions at the three boundary nodes as

uX1
uY1
θZ1

 = −
√

2L
2


εXX + εXY
εXY + εYY

0

+


u∗X
u∗Y
θ∗Z

,


uX2
uY2
θZ2

 =
√

2L
2


εXX − εXY
εXY − εYY

0

+


u∗X
u∗Y
θ∗Z

,


uX3
uY3
θZ3

 =
√

2L
2


εXX + εXY
εXY + εYY

0

+


u∗X
u∗Y
θ∗Z

.

(58)

Using Equations (1), (2), (7), (9), (13), (43) and (58) in Equation (12) gives the nodal
force vector for each of the three struts as
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

FXo
FYo

MZo
FX1

FY1

MZ1


=



1
2 (ka + ks)

(
LεXX√

2
+ LεXY√

2
+ uXo − u∗X

)
+ 1

2 (ka − ks)
(

LεXY√
2
+ LεYY√

2
+ uYo − u∗Y

)
+ Lks

2
√

2

(
θZo + θ∗Z

)
1
2 (ka + ks)

(
LεXY√

2
+ LεYY√

2
+ uYo − u∗Y

)
+ 1

2 (ka − ks)
(

LεXX√
2

+ LεXY√
2
+ uXo − u∗X

)
− Lks

2
√

2

(
θZo + θ∗Z

)
kbθZo −

(
kb − L2ks

2

)
θ∗Z + L2ks

4 (εXX − εYY) +
Lks

2
√

2

(
uXo − u∗X − uYo + u∗Y

)
− 1

2 (ka + ks)
(

LεXX√
2

+ LεXY√
2
+ uXo − u∗X

)
− 1

2 (ka − ks)
(

LεXY√
2
+ LεYY√

2
+ uYo − u∗Y

)
− Lks

2
√

2

(
θZo + θ∗Z

)
− 1

2 (ka + ks)
(

LεXY√
2
+ LεYY√

2
+ uYo − u∗Y

)
− 1

2 (ka − ks)
(

LεXX√
2

+ LεXY√
2
+ uXo − u∗X

)
+ Lks

2
√

2

(
θZo + θ∗Z

)
kbθ∗Z −

(
kb − L2ks

2

)
θZo +

L2ks
4 (εXX − εYY) +

Lks
2
√

2

(
uXo − u∗X − uYo + u∗Y

)



, (59)



FXo
FYo

MZo
FX2

FY2

MZ2


=



1
2 (ka + ks)

(
− LεXX√

2
+ LεXY√

2
+ uXo − u∗X

)
− 1

2 (ka − ks)
(
− LεXY√

2
+ LεYY√

2
+ uYo − u∗Y

)
+ Lks

2
√

2

(
θZo + θ∗Z

)
1
2 (ka + ks)

(
− LεXY√

2
+ LεYY√

2
+ uYo − u∗Y

)
+ 1

2 (ka − ks)
(

LεXX√
2
− LεXY√

2
− uXo + u∗X

)
+ Lks

2
√

2

(
θZo + θ∗Z

)
kbθZo −

(
kb − L2ks

2

)
θ∗Z −

L2ks
4 (εXX − εYY) +

Lks
2
√

2

(
uXo − u∗X + uYo − u∗Y

)
− 1

2 (ka + ks)
(
− LεXX√

2
+ LεXY√

2
+ uXo − u∗X

)
+ 1

2 (ka − ks)
(
− LεXY√

2
+ LεYY√

2
+ uYo − u∗Y

)
− Lks

2
√

2

(
θZo + θ∗Z

)
− 1

2 (ka + ks)
(
− LεXY√

2
+ LεYY√

2
+ uYo − u∗Y

)
−
(

ka
2 −

ks
2

)(
LεXX√

2
− LεXY√

2
− uXo + u∗X

)
− Lks

2
√

2

(
θZo + θ∗Z

)
kbθ∗Z −

(
kb − L2ks

2

)
θZo − L2ks

4 (εXX − εYY) +
Lks

2
√

2

(
uXo − u∗X + uYo − u∗Y

)



, (60)



FXo
FYo

MZo
FX3

FY3

MZ3


=



1
2 (ka + ks)

(
− LεXX√

2
− LεXY√

2
+ uXo − u∗X

)
+ 1

2 (ka − ks)
(
− LεXY√

2
− LεYY√

2
+ uYo − u∗Y

)
− Lks

2
√

2

(
θZo + θ∗Z

)
1
2 (ka + ks)

(
− LεXY√

2
− LεYY√

2
+ uYo − u∗Y

)
+ 1

2 (ka − ks)
(
− LεXX√

2
− LεXY√

2
+ uXo − u∗X

)
+ Lks

2
√

2

(
θZo + θ∗Z

)
kbθZo −

(
kb − L2ks

2

)
θ∗Z + L2ks

4 (εXX − εYY)− Lks
2
√

2

(
uXo − u∗X − uYo + u∗Y

)
1
2 (ka + ks)

(
LεXX√

2
+ LεXY√

2
− uXo + u∗X

)
+ 1

2 (ka − ks)
(

LεXY√
2
+ LεYY√

2
− uYo + u∗Y

)
+ Lks

2
√

2

(
θZo + θ∗Z

)
1
2 (ka + ks)

(
LεXY√

2
+ LεYY√

2
− uYo + u∗Y

)
+ 1

2 (ka − ks)
(

LεXX√
2

+ LεXY√
2
− uXo + u∗X

)
− Lks

2
√

2

(
θZo + θ∗Z

)
kbθ∗Z −

(
kb − L2ks

2

)
θZo +

L2ks
4 (εXX − εYY)− Lks

2
√

2

(
uXo − u∗X − uYo + u∗Y

)



, (61)

Substituting Equations (59)–(61) into Equation (57) (the second set) results in
3ka
2 + 3ks

2
ka
2 −

ks
2 −

√
2Lks
4

ka
2 −

ks
2

3ka
2 + 3ks

2 −
√

2Lks
4

−
√

2Lks
4 −

√
2Lks
4 3kb




u∗X
u∗Y
θ∗Z

 =


B1

B2

B3

, (62)

where

B1 = −
√

2L
4 (ka + ks)(εXX − εXY) +

√
2L
4 (ka − ks)(εXY − εYY)

+ 3
2 (ka + ks)uXo +

1
2 (ka − ks)uYo +

√
2L
4 ksθZo,

B2 =
√

2L
4 (ka − ks)(εXX − εXY)−

√
2L
4 (ka + ks)(εXY − εYY)

+ 1
2 (ka − ks)uXo +

3
2 (ka + ks)uYo +

√
2Lks
4 θZo,

B3 = − L2ks
4 (εXX − εYY)−

√
2Lks
4 uXo −

√
2Lks
4 uYo + 3

(
kb − L2ks

2

)
θZo.

(63)
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Upon solving Equation (62), the periodic parts of the displacement and rotation
components at the three boundary nodes are obtained as

u∗X = uXo − ka L
2
√

2(ka+2ks)
(εXX − 2εXY + εYY)

− Lks [(12kb+L2ks)(εXX−εYY)−6(4kb−L2ks)θZo]
2
√

2(24kakb+12kbks−L2k2
s)

,

u∗Y = uYo +
ka L

2
√

2(ka+2ks)
(εXX − 2εXY + εYY)

− Lks [(12kb+L2ks)(εXX−εYY)−6(4kb−L2ks)θZo]
2
√

2(24kakb+12kbks−L2k2
s)

,

θ∗Z = θZo − 2L2ks [(ka+ks)(εXX−εYY)+2(3ka+ks)θZo ]

24kakb+12kbks−L2k2
s

.

(64)

Substituting Equations (59)–(61) and (64) into Equation (31) gives, from the equilibrium
of the interior (central) node o,

θZo = −
ka + ks

2 (3ka + ks)
(εXX − εYY) (65)

after setting uXo = uYo = 0 (i.e., no rigid-body displacement enforced at the central node o).
Using Equations (1), (2), (9), (15), (25), (41), (43), (58), (64) and (65) in Equation (29)

yields the stain energy density function as

u = ka
16
(
11ε2

XX + 4εXXεXY − 10εXXεYY + 12ε2
XY + 4εXYεYY + 11ε2

YY
)

− 3ka
2

2(3ka+ks)
(εXX − εYY)

2 − ka
2

16(ka+2ks)
(εXX − 2εXY + εYY)

2,
(66)

which does not involve any unknown kinematic variable.
Then, it follows from Equations (32) and (66) that the effective stiffness matrix CP for

the 2-D cellular material with the periodicity constraints can be obtained as the coefficient
matrix of the following constitutive equations:

σXX
σYY
σXY

 =

 χP
2 χP

3 χP
1

χP
3 χP

2 χP
1

χP
1 χP

1 χP
4


εXX
εYY
εXY

 = CP


εXX
εYY
εXY

, (67)

where
χP

1 = ka
4 + ka

2

4(ka+2ks)
, χP

2 = 11ka
8 −

3ka
2

3ka+ks
− ka

2

8(ka+2ks)
,

χP
3 = − 5ka

8 + 3ka
2

3ka+ks
− ka

2

8(ka+2ks)
, χP

4 = 3ka
2 −

ka
2

2(ka+2ks)
.

(68)

A comparison of Equations (67) and (68) with Equations (55) and (56) shows that the
effective stiffness components obtained from the unit cell with the periodicity constraints
(see Equation (68)) do not depend on the strut bending stiffness kb, while those determined
from the same unit cell without the periodicity constraints (see Equation (56)) are dependent
on kb as well as ka and ks.

3.2. 3-D Cases
3.2.1. Pentamode Metamaterial

Pentamode metamaterials were first proposed by Milton and Cherkaev [48] using a
diamond-shaped primitive unit cell shown in Figure 6b. This unit cell can be characterized
by three independent primitive lattice vectors (red arrows in Figure 6b). Struts extending
from each of the four vertices meet at the center of the cube C, which is located inside the
primitive cell. This basic structure is repeated periodically in the primitive lattice vector
directions to generate the periodic lattice material shown in Figure 6a.
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Figure 6. Pentamode metamaterial: (a) microstructure; (b) primitive diamond-shaped unit cell.

The unit cell shown in Figure 6b represents the ideal (perfect) pentamode metamate-
rial having a zero-shear resistance, where each strut (composed of two truncated cones)
overlaps with the other struts at a single point. In the current study, each strut is taken
to be a circular cylinder with a uniform cross-section. This allows for a simplified model,
while retaining the essential features of the pentamode metamaterial.

The volume and volume fraction of the primitive diamond-shaped unit cell shown in
Figure 6b are given by, for struts with a uniform circular cross-section,

4Vd =
64L3

3
√

3
, fd =

3
√

3π

16

(
d
L

)2
, (69)

where Vd and fd are, respectively, the volume and volume fraction of the diamond unit cell,
and L and d are, respectively, the length and diameter of each strut. Note that fd = Vs/V
here is the same as the relative density (i.e., ρr ≡ ρ/ρs = Vs/V) (e.g., [20]).

Pentamode metamaterials have been shown to display the isotropic, transversely
isotropic or orthotropic symmetry, depending on whether the eigenvalues are distinct or
repeated [18]. In addition, pentamode metamaterials can be characterized by three different
unit cells: primitive diamond, cubic, and parallelepiped [11]. The parallelepiped unit cell
can be obtained from the cubic unit cell through a simple rotation of the coordinate system.

Homogenization in two different coordinate systems shown in Figure 7 is considered
in this subsection to understand how the effective engineering constants transform under
the coordinate system change.

Figure 7. Diamond-shaped unit cell for the pentamode metamaterial in two orientations.
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3.2.2. Homogenization without Periodicity Constraints

The generalized strain energy-based homogenization method proposed in Section 2
is applied here to predict the effective elastic properties of the pentamode metamaterial
using the diamond-shaped unit cell viewed in two different orientations (coordinate
systems) shown in Figure 8a,b. Each of the two representative cells associated with the
two orientations in Figure 7 contains four struts of equal lengths L and identical stiffness
constants ka, ks and kb, which are the same as those included in the diamond-shaped
unit cell shown in Figure 7. In each case, the volume fraction is that of the pentamode
metamaterial represented by the primitive diamond-shaped unit cell.

Figure 8. Representative cells for the pentamode metamaterial in two orientations: (a) boundary nodes at four vertices;
(b) boundary nodes at mid-points of four edges.

The difference between the two representative cells is that they are 45◦ apart on the
X-Y plane, while the Z-axis is in the same vertical direction in both cases (see Figure 7). That
is, the base vectors of the two coordinate systems shown in Figure 8a,b are related through

E(2)
i = QE(1)

i , Q =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


{E(1)

i ⊗E(1)
j }

, θ = −45 ◦, i, j ∈ {1, 2, 3}. (70)

To construct the pentamode metamaterial from the representative cell in orientation
# 1 (the blue cube) in Figures 7 and 8a or Figure 9a, the 4-strut structure in the blue cube is
first repeated once along each of the three primitive lattice vector directions (the red arrows
in Figure 9a), which results in a new unit cell containing 16 struts enclosed in the pink cube,
as displayed in Figure 9b. Then, repeating the 16-strut unit cell in the pink cube along
the X1, Y1 and Z1 directions will generate the 3-D periodic pentamode lattice structure, as
shown in Figure 9c.

By following a similar procedure, the periodic pentamode lattice metamaterial can be
readily constructed from the representative cell in orientation # 2 shown in Figures 7 and 8b.
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Figure 9. Construction of the pentamode metamaterial from the representative cell in orientation # 1: (a) the representative
cell; (b) the new unit cell; (c) the periodic pentamode material.

Homogenization Based on the First Representative Cell

For the representative cell shown in Figure 8a, which will be referred to as orientation
# 1, the coordinate transformation matrices for the four struts with respect to the global
coordinate system {X1, Y1, Z1} can be obtained as

Q(1) =


− 1√

3
− 1√

3
− 1√

3

Q(1)
21 Q(1)

22 Q(1)
23

Q(1)
31 Q(1)

32 Q(1)
33

, Q(2) =


1√
3

1√
3
− 1√

3

Q(2)
21 Q(2)

22 Q(2)
23

Q(2)
31 Q(2)

32 Q(2)
33

,

Q(3) =


1√
3
− 1√

3
1√
3

Q(3)
21 Q(3)

22 Q(3)
23

Q(3)
31 Q(3)

32 Q(1)
33

, Q(4) =


− 1√

3
1√
3

1√
3

Q(4)
21 Q(4)

22 Q(4)
23

Q(4)
31 Q(4)

32 Q(4)
33

,

(71)

where the unspecified components of each Q(k) matrix can be arbitrarily chosen as along
as the matrix is proper orthogonal with[

Q(k)
]−1

=
[
Q(k)

]T
, det

(
Q(k)

)
= 1. (72)

This is due to the fact that the cross-section of each strut is circular, so that the local
coordinate axes y and z can be arbitrarily oriented on a cross-section. Based on these
constraints, the following transformation matrices with respect to the coordinate system
{X1, Y1, Z1} have been chosen:

Q(1) =


− 1√

3
− 1√

3
− 1√

3
1√
6
−
√

2
3

1√
6

− 1√
2

0 1√
2

, Q(2) =


1√
3

1√
3
− 1√

3
1√
6

1√
6

√
2
3

1√
2
− 1√

2
0

,

Q(3) =


1√
3
− 1√

3
1√
3

1√
6

√
2
3

1√
6

− 1√
2

0 1√
2

, Q(4) =


− 1√

3
1√
3

1√
3√

2
3

1√
6

1√
6

0 1√
2
− 1√

2

.

(73)
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In addition, the position vector for each of the five nodes in the unit cell shown in
Figure 8a can be written in terms of the global coordinates {X1, Y1, Z1} as

X1 = − L√
3

{
1 1 1

}T , X2 = L√
3

{
1 1 −1

}T ,

X3 = L√
3

{
1 −1 1

}T , X4 = L√
3

{
−1 1 1

}T , X5 =
{

0 0 0
}T .

(74)

According to the generalized strain energy-based homogenization method formulated
in Section 2.3, this representative cell can be characterized by P = 4, Q = 0, M = 1 and N = 4.
Substituting Equations (18) and (74) into Equation (22) gives the boundary conditions at
the four boundary nodes as

uX11
uY11
uZ11

 = − L√
3


εX1X1 + εX1Y1 + εX1Z1

εX1Y1 + εY1Y1 + εY1Z1
εX1Z1 + εY1Z1 + εZ1Z1

,


uX12
uY12
uZ12

 = L√
3


εX1X1 + εX1Y1 − εX1Z1

εX1Y1 + εY1Y1 − εY1Z1
εX1Z1 + εY1Z1 − εZ1Z1

,


uX13
uY13
uZ13

 = L√
3


εX1X1 − εX1Y1 + εX1Z1

εX1Y1 − εY1Y1 + εY1Z1
εX1Z1 − εY1Z1 + εZ1Z1

,


uX14
uY14
uZ14

 = L√
3


−εX1X1 + εX1Y1 + εX1Z1

−εX1Y1 + εY1Y1 + εY1Z1
−εX1Z1 + εY1Z1 + εZ1Z1

,

(75)


MX11
MY11
MZ11

 =


MX12
MY12
MZ12

 =


MX13
MY13
MZ13

 =


MX14
MY14
MZ14

 =


0
0
0

. (76)

Using Equations (1), (2), (7), (9), (12), (13), (73) and (75) in Equation (30) or Equation (76)
leads to the rotation components at the four boundary nodes as


θX11
θY11
θZ11

=


θX1o +

Lks(−LεX1Y1
+LεX1Z1−LεY1Y1

+LεZ1Z1−2LθX1o+LθY1o+LθZ1o−
√

3uY1o+
√

3uZ1o)
6kb

θY1o +
Lks(LεX1X1+LεX1Y1

−LεY1Z1
−LεZ1Z1+LθX1o−2LθY1o+LθZ1o+

√
3uX1o−

√
3uZ1o)

6kb

θZ1o +
Lks(−LεX1X1−LεX1Z1+LεY1Y1

+LεY1Z1
+LθX1o+LθY1o−2LθZ1o−

√
3uX1o+

√
3uY1o)

6kb


, (77)


θX12
θY12
θZ12

=


θX1o −

Lks(−LεX1Y1
−LεX1Z1−LεY1Y1

+LεZ1Z1+2LθX1o−LθY1o+LθZ1o+
√

3uY1o+
√

3uZ1o)
6kb

θY1o −
Lks(LεX1X1+LεX1Y1

+LεY1Z1
−LεZ1Z1−LθX1o+2LθY1o+LθZ1o−

√
3uX1o−

√
3uZ1o)

6kb

θZ1o −
Lks(LεX1X1−LεX1Z1−LεY1Y1

+LεY1Z1
+LθX1o+LθY1o+2LθZ1o−

√
3uX1o+

√
3uY1o)

6kb


, (78)


θX13
θY13
θZ13

=


θX1o −

Lks(LεX1Y1
+LεX1Z1−LεY1Y1

+LεZ1Z1+2LθX1o+LθY1o−LθZ1o−
√

3uY1o−
√

3uZ1o)
6kb

θY1o −
Lks(−LεX1X1+LεX1Y1

−LεY1Z1
+LεZ1Z1+LθX1o+2LθY1o+LθZ1o+

√
3uX1o−

√
3uZ1o)

6kb

θZ1o −
Lks(−LεX1X1−LεX1Z1+LεY1Y1

−LεY1Z1
−LθX1o+LθY1o+2LθZ1o+

√
3uX1o+

√
3uY1o)

6kb


, (79)


θX14
θY14
θZ14

=


θX1o −

Lks(−LεX1Y1
+LεX1Z1+LεY1Y1

−LεZ1Z1+2LθX1o+LθY1o+LθZ1o−
√

3uY1o+
√

3uZ1o)
6kb

θY1o −
Lks(LεX1X1−LεX1Y1

−LεY1Z1
−LεZ1Z1+LθX1o+2LθY1o−LθZ1o+

√
3uX1o+

√
3uZ1o)

6kb

θZ1o −
Lks(−LεX1X1+LεX1Z1+LεY1Y1

+LεY1Z1
+LθX1o−LθY1o+2LθZ1o−

√
3uX1o−

√
3uY1o)

6kb


. (80)
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Substituting Equations (1), (2), (7), (9), (12), (13), (73) and (77)–(80) into the equilib-
rium equations at the interior node in Equation (31) yields the displacement and rotation
components at the central node o as



uX1o
uY1o
uZ1o
θX1o
θY1o
θZ1o


=



(√
3L
3 −

2
√

3Lkakb
2kakb+4kbks−L2ks2

)
εY1Z1(√

3L
3 −

2
√

3Lkakb
2kakb+4kbks−L2ks2

)
εX1Z1(√

3L
3 −

2
√

3Lkakb
2kakb+4kbks−L2ks2

)
εX1Y1

0
0
0


. (81)

It follows from Equations (1), (2), (7), (9), (15), (25), (29), (73), (75), (77)–(80) and (81)
that the strain energy density function in this case has the form:

u =
√

3
24

(
ka+2ks

L − Lks
2

2kb

)(
ε2

X1X1
+ ε2

Y1Y1
+ ε2

Z1Z1

)
+ 3

√
3kaks

8(ka+2ks)

(
2
L −

Lkaks
2kakb+4kbks−L2ks2

)(
ε2

X1Y1
+ ε2

X1Z1
+ ε2

Y1Z1

)
+
√

3
12

(
ka−ks

L + Lks
2

4kb

)(
εX1X1 εY1Y1 + εX1X1 εZ1Z1 + εY1Y1 εZ1Z1

)
,

(82)

which does not involve any unknown kinematic variable.

Finally, from Equations (32) and (82) the effective stiffness matrix C(1) for the penta-
mode metamaterial based on the representative cell in orientation # 1 shown in Figure 8a
can be obtained as the coefficient matrix of the following constitutive equations:



σX1X1

σY1Y1

σZ1Z1

σY1Z1

σX1Z1

σX1Y1


=



χ
(1)
1M χ

(1)
2M χ

(1)
2M 0 0 0

χ
(1)
2M χ

(1)
1M χ

(1)
2M 0 0 0

χ
(1)
2M χ

(1)
2M χ

(1)
1M 0 0 0

0 0 0 χ
(1)
3M 0 0

0 0 0 0 χ
(1)
3M 0

0 0 0 0 0 χ
(1)
3M





εX1X1

εY1Y1

εZ1Z1

εY1Z1

εX1Z1

εX1Y1


= C(1)



εX1X1

εY1Y1

εZ1Z1

εY1Z1

εX1Z1

εX1Y1


, (83)

where
χ
(1)
1M =

√
3(ka+2ks)

12L −
√

3Lks
2

24kb
, χ

(1)
2M =

√
3(ka−ks)

12L +
√

3Lks
2

48kb
,

χ
(1)
3M =

3
√

3kaks(4kb−L2ks)
4L(2kakb+4kbks−L2ks2)

.
(84)

It is clear that the stiffness matrix C(1) depends on only three constants χ
(1)
1M, χ

(1)
2M and

χ
(1)
3M, which indicates that the pentamode metamaterial possesses the cubic symmetry in

the current case with the representative cell in orientation # 1. These stiffness constants
are the same as those obtained in [18] for the pentamode material with the diamond unit
cell using an equilibrium equation-based approach, thereby providing a validation of the
current model.



Symmetry 2021, 13, 1870 21 of 33

The effective compliance matrix S(1)
= [C(1)

]
−1

based on the representative cell in
orientation # 1 can be readily obtained from Equations (83) and (84) as

S(1)
=



ζ
(1)
1M ζ

(1)
2M ζ

(1)
2M 0 0 0

ζ
(1)
2M ζ

(1)
1M ζ

(1)
2M 0 0 0

ζ
(1)
2M ζ

(1)
2M ζ

(1)
1M 0 0 0

0 0 0 ζ
(1)
3M 0 0

0 0 0 0 ζ
(1)
3M 0

0 0 0 0 0 ζ
(1)
3M


, (85)

where
ζ
(1)
1M = 4

√
3L

9ka
+ 32

√
3Lkb

9ks(4kb−L2ks)
, ζ

(1)
2M = 4

√
3L

9ka
− 16

√
3Lkb

9ks(4kb−L2ks)
,

ζ
(1)
3M = 4

√
3L

9ka
+ 8

√
3Lkb

9ks(4kb−L2ks)
.

(86)

For a cubic material, the directional dependence of the engineering constants can be
described by (e.g., [49,50])

E(n) = 1
S11

=
[

1
9κ + 1

3µ2
−
(

1
µ2
− 1

µ1

)
F(n)

]−1
,

G(n, m) = 1
4S66

=
[

1
µ1

+ 2
(

1
µ2
− 1

µ1

)
D(n, m)

]−1
,

ν(n, m) = − S12
S11

= E(n)
[
− 1

9κ + 1
6µ2
− 1

2

(
1

µ2
− 1

µ1

)
D(n, m)

]
,

(87)

where E, G and ν are, respectively, the effective Young’s modulus, shear modulus and
Poisson’s ratio, κ, µ1 and µ2 are the three principal elastic constants given by

κ =
C11 + 2C12

3
, µ1 =

C66

4
, µ2 =

C11 − C12

2
, (88)

{n, m, t} is an orthonormal set of unit vectors, and F(n) and D(n, m) are defined as

F(n) = n2
1n2

2 + n2
2n2

3 + n2
3n2

1, D(n, m) = n2
1m2

1 + n2
2m2

2 + n2
3m2

3, (89)

with n = (n1, n2, n3) and m = (m1, m2, m3).
Consider the triad {no, mo, to} aligned with the base vectors

{
E(1)

1 , E(1)
2 , E(1)

3

}
of

the coordinate system in Figure 8a with no = E(1)
1 , mo = E(1)

2 , to = E(1)
3 , and the triad{

n f , m f , t f
}

aligned with the base vectors
{

E(2)
1 , E(2)

2 , E(2)
3

}
of the coordinate system

in Figure 8b with n f = E(2)
1 , m f = E(2)

2 , t f = E(2)
3 . Since E(1)

3 remains unchanged (with

E(1)
3 = E(2)

3 ), n and m, which are two orthonormal vectors rotated from E(1)
1 and E(1)

2 by an
angle of θ, can be obtained as

n = E(1)
1 cos θ + E(1)

2 sin θ, m = −E(1)
1 sin θ + E(1)

2 cos θ. (90)

Using Equations (83), (84) and (88)–(90) in Equation (87) leads to

Ehom(θ) =
3
√

3kaks(4kb−L2ks)
2L[3(4kakb+4kbks−L2k2

s)+(4kakb−4kbks+L2k2
s) cos(4θ)]

,

Ghom(θ) =
3
√

3kaks(4kb−L2ks)
16L[6kakb+(−4kakb+4kbks−L2k2

s) cos2(2θ)]
,

νhom(θ) =
(4kakb−4kbks+L2k2

s)[1+cos(4θ)]

3(4kakb+4kbks−L2k2
s)+(4kakb−4kbks+L2k2

s) cos(4θ)
,

(91)
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which establish the functional relations between the effective engineering constants and
the angle θ for the pentamode metamaterial using the stiffness matrix based on the repre-
sentative cell in orientation # 1 shown in Figure 8a.

Homogenization Based on the Second Representative Cell

For the representative cell in orientation # 2 shown in Figure 8b, the coordinate
transformation matrix with respect to the coordinate system {X2, Y2, Z2} for each strut
satisfying Equation (72) is selected to be

Q(1) =


0 −

√
2
3 − 1√

3

0 − 1√
3

√
2
3

−1 0 0

, Q(2) =


0

√
2
3 − 1√

3

0 − 1√
3
−
√

2
3

−1 0 0

,

Q(3) =


√

2
3 0 1√

3
1√
3

0 −
√

2
3

0 1 0

, Q(4) =


−
√

2
3 0 1√

3
1√
3

0
√

2
3

0 1 0

.

(92)

In addition, the position vector for each of the five nodes in the representative cell in
Figure 8b with respect to the coordinate system {X2, Y2, Z2} can be written as

X1 = L
{

0 −
√

2
3 − 1√

3

}T
, X2 = L

{
0
√

2
3 − 1√

3

}T
,

X3 = L
{ √

2
3 0 1√

3

}T
, X4 = L

{
−
√

2
3 0 1√

3

}T
, X5 =

{
0 0 0

}T .
(93)

Substituting Equations (18) and (93) into Equation (22) gives the boundary conditions
at the four boundary nodes as

uX21

uY21

uZ21

 = − L√
3


√

2εX2Y2 + εX2Z2√
2εY2Y2 + εY2Z2√
2εY2Z2 + εZ2Z2

,


uX22

uY22

uZ22

 = L√
3


√

2εX2Y2 − εX2Z2√
2εY2Y2 − εY2Z2√
2εY2Z2 − εZ2Z2

,


uX23

uY23

uZ23

 = L√
3


√

2εX2X2 + εX2Z2√
2εX2Y2 + εY2Z2√
2εX2Z2 + εZ2Z2

,


uX24

uY24

uZ24

 = L√
3


−
√

2εX2X2 + εX2Z2

−
√

2εX2Y2 + εY2Z2

−
√

2εX2Z2 + εZ2Z2

,

(94)


MX21
MY21
MZ21

 =


MX22
MY22
MZ22

 =


MX23
MY23
MZ23

 =


MX24
MY24
MZ24

 =


0
0
0

. (95)

Using Equations (1), (2), (7), (9), (12), (13), (92) and (94) in Equation (30) or Equation
(95) yields the rotation components at the four boundary nodes as


θX21
θY21
θZ21

 =


θX2o +

Lks(−
√

2LεY2Y2+LεY2Z2+
√

2LεZ2Z2−
√

3uY2o+
√

6uZ2o−3LθX2o)
6kb

θY2o +
Lks(
√

2LεX2Y2+LεX2Z2+
√

3uX2o−LθY2o+
√

2LθZ2o)
6kb

θZ2o −
Lks(2LεX2Y2+

√
2LεX2Z2+

√
6uX2o−

√
2LθY2o+2LθZ2o)

6kb


, (96)


θX22
θY22
θZ22

 =


θX2o −

Lks(−
√

2LεY2Y2−LεY2Z2+
√

2LεZ2Z2+
√

3uY2o+
√

6uZ2o+3LθX2o)
6kb

θY2o −
Lks(
√

2LεX2Y2−LεX2Z2−
√

3uX2o+LθY2o+
√

2LθZ2o)
6kb

θZ2o −
Lks(2LεX2Y2−

√
2LεX2Z2−

√
6uX2o+

√
2LθY2o+2LθZ2o)

6kb


, (97)
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
θX23
θY23
θZ23

 =


θX2o −

Lks(
√

2LεX2Y2+LεY2Z2−
√

3uY2o+LθX2o−
√

2LθZ2o)
6kb

θY2o −
Lks(−

√
2LεX2X2+LεX2Z2+

√
2LεZ2Z2+

√
3uX2o−

√
6uZ2o+3LθY2o)

6kb

θZ2o +
Lks(2LεX2Y2+

√
2LεY2Z2−

√
6uY2o+

√
2LθX2o−2LθZ2o)

6kb


, (98)


θX24
θY24
θZ24

 =


θX2o −

Lks(−
√

2LεX2Y2+LεY2Z2−
√

3uY2o+LθX2o+
√

2LθZ2o)
6kb

θY2o −
Lks(
√

2LεX2X2+LεX2Z2−
√

2LεZ2Z2+
√

3uX2o+
√

6uZ2o+3LθY2o)
6kb

θZ2o −
Lks(−2LεX2Y2+

√
2LεY2Z2−

√
6uY2o+

√
2LθX2o+2LθZ2o)

6kb


. (99)

Substituting Equations (1), (2), (7), (9), (12), (13), (92), (94) and (96)–(99) into the
equilibrium equations at the interior nodes listed in Equation (31) gives the displacement
and rotation components at the central node as



uX2o
uY2o
uZ2o
θX2o
θY2o
θZ2o


=



√
3
(
− 1

3 + 2kakb
2kakb+4kbks−L2k2

s

)
εX2Z2 L

√
3
(

1
3 −

2kakb
2kakb+4kbks−L2k2

s

)
εY2Z2 L

√
3
(
− 1

6 + kakb
2kakb+4kbks−L2k2

s

)(
εX2X2 − εY2Y2

)
L

0
0
0


. (100)

It follows from Equations (1), (2), (7), (9), (15), (25), (29), (92), (94), (96)–(99) and (100)
that the strain energy density function in this case is given by

u =
√

3
8

[
k2

a+7kaks+k2
s

3L(ka+2ks)
− Lks

2

24kb
− 3Lk2

ak2
s

4(ka+2ks)(2kakb+4kbks−L2k2
s)

](
ε2

X2X2
+ ε2

Y2Y2

)
+
√

3
24L

(
ka + 2ks − L2k2

s
2kb

)
ε2

ZZ + 3
√

3kaks
8(ka+2ks)

(
2
L −

Lkaks
2kakb+4kbks−L2k2

s

)(
ε2

X2Z2
+ ε2

Y2Z2

)
+
√

3
8L

(
2ks − L2k2

s
2kb

)
ε2

XY +
√

3
12L

(
ka − ks +

L2k2
s

4kb

)(
εX2X2 εZ2Z2 + εY2Y2 εZ2Z2

)
+
√

3
8

[
2(ka−ks)

2

3L(ka+2ks)
− Lk2

s
12kb

+ 3Lk2
ak2

s
2(ka+2ks)(2kakb+4kbks−L2k2

s)

]
εX2X2 εY2Y2 .

(101)

Clearly, there is no unknown kinematic variable in Equation (101).

Finally, from Equations (32) and (101) the effective stiffness matrix C(2) for the penta-
mode metamaterial based on the representative cell in orientation # 2 shown in Figure 8b
can be obtained as the coefficient matrix of the following constitutive equations:



σX2X2

σY2Y2

σZ2Z2

σY2Z2

σX2Z2

σX2Y2


=



χ
(2)
1M χ

(2)
2M χ

(2)
3M 0 0 0

χ
(2)
2M χ

(2)
1M χ

(2)
3M 0 0 0

χ
(2)
3M χ

(2)
3M χ

(2)
4M 0 0 0

0 0 0 χ
(2)
6M 0 0

0 0 0 0 χ
(2)
6M 0

0 0 0 0 0 χ
(2)
5M





εX2X2

εY2Y2

εZ2Z2

εY2Z2

εX2Z2

εX2Y2


= C(2)



εX2X2

εY2Y2

εZ2Z2

εY2Z2

εX2Z2

εX2Y2


, (102)
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where
χ
(2)
1M =

√
3(26kakb+4kbks−L2ks

2)
96Lkb

− 3
√

3k2
akb

8L(2kakb+4kbks−L2ks2)
,

χ
(2)
2M =

√
3(4kakb−4kbks+L2k2

s)
2

96Lkb(2kakb+4kbks−L2k2
s)

, χ
(2)
3M =

√
3(ka−ks)

12L +
√

3Lk2
s

48kb
,

χ
(2)
4M =

√
3(ka+2ks)

12L −
√

3Lk2
s

24kb
, χ

(2)
5M =

√
3ks

2L −
√

3Lk2
s

8kb
,

χ
(2)
6M =

3
√

3kaks(4kb−L2ks)
4L(2kakb+4kbks−L2k2

s)
.

(103)

Clearly, Equations (102) and (103) show that the stiffness matrix C(2) of the pentamode
metamaterial obtained using the representative cell in orientation # 2 does not exhibit the

cubic symmetry. This differs from the stiffness matrix C(1) derived in Equations (83) and
(84) based on the representative cell in orientation # 1.

The effective compliance matrix S(2)
= [C(2)

]
−1

based on the representative cell in
orientation # 2 can then be readily obtained from Equations (102) and (103) as

S(2)
=



ζ
(2)
1M 0 ζ

(2)
2M 0 0 0

0 ζ
(2)
1M ζ

(2)
2M 0 0 0

ζ
(2)
2M ζ

(2)
2M ζ

(2)
3M 0 0 0

0 0 0 ζ
(2)
4M 0 0

0 0 0 0 ζ
(2)
4M 0

0 0 0 0 0 ζ
(2)
5M


, (104)

where
ζ
(2)
1M = 8

√
3L

9ka
+ 16

√
3Lkb

9ks(4kb−L2ks)
, ζ

(2)
2M = 4

√
3L

9ka
− 16

√
3Lkb

9ks(4kb−L2ks)
,

ζ
(2)
3M = 4

√
3L

9ka
+ 32

√
3Lkb

9ks(4kb−L2ks)
, ζ

(2)
4M = 4

√
3L

9ka
+ 8

√
3Lkb

9ks(4kb−L2ks)
,

ζ
(2)
5M = 8

√
3Lkb

3ks(4kb−L2ks)
.

(105)

It can be readily verified that the effective stiffness and compliance matrices obtained
in Equations (102) and (103) and Equations (104) and (105) from the representative cell
in orientation # 2 shown in Figure 8b can be reproduced from the effective stiffness and
compliance matrices derived in Equations (83) and (84) and Equations (85) and (86) based
on the representative cell in orientation # 1 displayed in Figure 8a by using a coordinate
transformation, as shown next.

When the coordinate system # 1 is rotated by an angle of θ about the common Z-axis
to the coordinate system # 2, the effective stiffness and compliance matrices satisfy the
following transformation relations [51]

C(2)
V = RC(1)

V RT , S(2)
V = R−TS(1)

V R−1, (106)

R =



cos2 θ sin2 θ 0 0 0 2 cos θ sin θ

sin2 θ cos2 θ 0 0 0 −2 cos θ sin θ
0 0 1 0 0 0
0 0 0 cos θ − sin θ 0
0 0 0 sin θ cos θ 0

− cos θ sin θ cos θ sin θ 0 0 0 cos2 θ − sin2 θ

, (107)

where the subscript “V” denotes the matrix based on ε =
[

ε11 ε22 ε33 2ε23 2ε31 2ε12
]T

(the Voigt notation), and the superscripts “(1)” and “(2)” refer to the effective stiffness or
compliance matrix obtained using the coordinate systems adopted in the representative
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cells in orientations # 1 and # 2, respectively. By setting θ = − 45 ◦(i.e., clockwise rotation
from the orientation # 1 to the orientation # 2) and noting the difference between the C and
S matrices obtained earlier in this section based on ε =

[
ε11 ε22 ε33 ε23 ε31 ε12

]T

and the CV and SV matrices, Equations (106) and (107) will lead to the matrices C(2) and

S(2) in Equations (102) and (104) for orientation # 2 from C(1) and S(1) in Equations (83)
and (85) for orientation # 1.

Similarly, it can be readily shown that the engineering constants determined by

substituting S(2)
11 , S(2)

12 and S(2)
66 obtained from Equations (106) and (107) into Equation (87)

are the same as those given by Equation (91).
These verify and support the newly proposed homogenization approach.

3.2.3. Homogenization with Periodicity Constraints

Periodicity constraints are considered in homogenizing the pentamode metamaterial
shown in Figure 10 using the method proposed in Section 2.4. As discussed earlier, the unit
cell is repetitive along three directions which are not mutually perpendicular to each other.

Figure 10. Periodic pentamode metamaterial: (a) microstructure; (b) diamond-shaped unit cell.

From Figure 10, it is seen that the pentamode material can be generated by repeating

the diamond-shaped unit cell along the directions
↔

BA,
↔

BD and
↔
BE. This indicates that

nodes A, D and E on the cell boundary can each form a periodic pair with node B. That
is, the four boundary nodes belong to one periodic pair. From Equations (35) and (36), it
follows that for the periodic pair of the four boundary nodes A, B, D and E based on the
representative cell in orientation # 1,

u∗X11
u∗Y11
u∗Z11
θ∗X11
θ∗Y11
θ∗Z11


=



u∗X12
u∗Y12
u∗Z12
θ∗X12
θ∗Y12
θ∗Z12


=



u∗X13
u∗Y13
u∗Z13
θ∗X13
θ∗Y13
θ∗Z13


=



u∗X14
u∗Y14
u∗Z14
θ∗X14
θ∗Y14
θ∗Z14


=



u∗X1

u∗Y1

u∗Z1

θ∗X1

θ∗Y1

θ∗Z1


,



FX11 + FX12 + FX13 + FX14

FY11 + FY12 + FY13 + FY14

FZ11 + FZ12 + FZ13 + FZ14

MX11 + MX12 + MX13 + MX14

MY11 + MY12 + MY13 + MY14

MZ11 + MZ12 + MZ13 + MZ14


=



0
0
0
0
0
0


, (108)

and for the periodic pair of the four boundary nodes based on the representative cell in
orientation # 2,

u∗X21
u∗Y21
u∗Z21
θ∗X21
θ∗Y21
θ∗Z21


=



u∗X22
u∗Y22
u∗Z22
θ∗X22
θ∗Y22
θ∗Z22


=



u∗X23
u∗Y23
u∗Z23
θ∗X23
θ∗Y23
θ∗Z23


=



u∗X24
u∗Y24
u∗Z24
θ∗X24
θ∗Y24
θ∗Z24


=



u∗X2

u∗Y2

u∗Z2

θ∗X2

θ∗Y2

θ∗Z2


,



FX21 + FX22 + FX23 + FX24

FY21 + FY22 + FY23 + FY24

FZ21 + FZ22 + FZ23 + FZ24

MX21 + MX22 + MX23 + MX24

MY21 + MY22 + MY23 + MY24

MZ21 + MZ22 + MZ23 + MZ24


=



0
0
0
0
0
0


. (109)
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Homogenization Based on the First Representative Cell with Periodicity Constraints

For the representative cell shown in Figure 8a, the displacement and rotation com-
ponents at the four boundary nodes can be obtained from Equations (18), (37), (74) and
(108) as

uX11

uY11

uZ11

 = − L√
3


εX1X1 + εX1Y1 + εX1Z1

εX1Y1 + εY1Y1 + εY1Z1

εX1Z1 + εY1Z1 + εZ1Z1

+


u∗X1

u∗Y1

u∗Z1

,


uX12

uY12

uZ12

 = L√
3


εX1X1 + εX1Y1 − εX1Z1

εX1Y1 + εY1Y1 − εY1Z1

εX1Z1 + εY1Z1 − εZ1Z1

+


u∗X1

u∗Y1

u∗Z1

,


uX13

uY13

uZ13

 = L√
3


εX1X1 − εX1Y1 + εX1Z1

εX1Y1 − εY1Y1 + εY1Z1

εX1Z1 − εY1Z1 + εZ1Z1

+


u∗X1

u∗Y1

u∗Z1

,


uX14

uY14

uZ14

 = L√
3


−εX1X1 + εX1Y1 + εX1Z1

−εX1Y1 + εY1Y1 + εY1Z1

−εX1Z1 + εY1Z1 + εZ1Z1

+


u∗X1

u∗Y1

u∗Z1

.

(110)


θX11
θY11
θZ11

 =


θX12
θY12
θZ12

 =


θX13
θY13
θZ13

 =


θX14
θY14
θZ14

 =


θ∗X1
θ∗Y1
θ∗Z1

. (111)

Using Equations (1), (2), (7), (9), (12), (13), (73), (110) and (111) in the anti-periodicity
conditions listed in Equation (108) yields the periodic parts of the displacement and rotation
at the four boundary nodes as


u∗X1

u∗Y1

u∗Z1

 =


uX1o −

(√
3L
3 −

√
3Lka

ka+2ks

)
εY1Z1

uY1o −
(√

3L
3 −

√
3Lka

ka+2ks

)
εX1Z1

uZ1o −
(√

3L
3 −

√
3Lka

ka+2ks

)
εX1Y1


,


θ∗X1

θ∗Y1

θ∗Z1

 =



(
1− L2ks

2kb+kt

)
θX1o(

1− L2ks
2kb+kt

)
θY1o(

1− L2ks
2kb+kt

)
θZ1o


. (112)

Next, applying the equilibrium conditions at the central node o (an interior node)
listed in Equation (31) leads to, after using Equations (1), (2), (7), (9), (12), (13), (73) and
(110)–(112) and setting uXo = uYo = uZo = 0 (i.e., no rigid-body displacement enforced at
the central node o),

θX1o = θY1o = θZ1o = 0. (113)

From Equations (1), (2), (9), (15), (25), (29), (73) and (110)–(113), it follows that the
strain energy density function in this case is given by

u =
√

3(ka+2ks)
24L

(
ε2

X1X1
+ ε2

Y1Y1
+ ε2

Z1Z1

)
+ 3

√
3kska

4L(ka+2ks)

(
ε2

X1Y1
+ ε2

X1Z1
+ ε2

Y1Z1

)
+
√

3(ka−ks)
12L

(
εX1X1 εY1Y1 + εX1X1 εZ1Z1 + εY1Y1 εZ1Z1

)
,

(114)

which no longer depends on the strut bending stiffness kb, unlike that obtained in Equation
(82) without the periodicity constraints. This is consistent with what is observed from
comparing the 2-D cases with and without the periodic constraints in Section 3.1.

Then, the effective stiffness matrix C(1)
P for the pentamode metamaterial based on

the representative cell in orientation # 1 shown in Figure 8a with the periodic boundary
conditions listed in Equations (110)–(112) can be obtained from Equations (32) and (114) as



σX1X1

σY1Y1

σZ1Z1

σY1Z1

σX1Z1

σX1Y1


=



χ
(1)
1P χ

(1)
2P χ

(1)
2P 0 0 0

χ
(1)
2P χ

(1)
1P χ

(1)
2P 0 0 0

χ
(1)
2P χ

(1)
2P χ

(1)
1P 0 0 0

0 0 0 χ
(1)
3P 0 0

0 0 0 0 χ
(1)
3P 0

0 0 0 0 0 χ
(1)
3P





εX1X1

εY1Y1

εZ1Z1

εY1Z1

εX1Z1

εX1Y1


= C(1)

P



εX1X1

εY1Y1

εZ1Z1

εY1Z1

εX1Z1

εX1Y1


, (115)
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where

χ
(1)
1P =

√
3(ka + 2ks)

12L
, χ

(1)
2P =

√
3(ka − ks)

12L
, χ

(1)
3P =

3
√

3kaks

2L(ka + 2ks)
. (116)

Clearly, Equations (115) and (116) show that the pentamode metamaterial with the peri-
odicity constraints based on the representative cell in orientation # 1 exhibits the cubic
symmetry, which is the same as what is observed from Equations (83) and (84) for the same
representative cell and orientation but without the periodicity constraints. In addition, it is
seen from Equations (115) and (116) that the effective stiffness components do not depend
on the strut bending stiffness kb, which differs from those given in Equations (83) and (84)
for the pentamode metamaterial without imposing the periodicity constraints.

The compliance matrix S(1)
P = [C(1)

P ]
−1

based on the representative cell in orientation
# 1 with the periodicity constraints can then be readily determined as

S(1)
P =



ζ
(1)
1P ζ

(1)
2P ζ

(1)
2P 0 0 0

ζ
(1)
2P ζ

(1)
1P ζ

(1)
2P 0 0 0

ζ
(1)
2P ζ

(1)
2P ζ

(1)
1P 0 0 0

0 0 0 ζ
(1)
3P 0 0

0 0 0 0 ζ
(1)
3P 0

0 0 0 0 0 ζ
(1)
3P


, (117)

where

ζ
(1)
1P =

4
√

3L
9

(
1
ka

+
2
ks

)
, ζ

(1)
2P =

4
√

3L
9

(
1
ka
− 1

ks

)
, ζ

(1)
3P =

4
√

3L
9

(
1
ka

+
1

2ks

)
. (118)

Homogenization Based on the Second Representative Cell with Periodicity Constraints

For the representative cell in orientation # 2 shown in Figure 8b, the displacement and
rotation vectors at the four boundary nodes can be obtained from Equations (18), (37), (93)
and (109) as

uX21
uY21
uZ21

 = − L√
3


√

2εX2Y2 + εX2Z2√
2εY2Y2 + εY2Z2√
2εY2Z2 + εZ2Z2

+


u∗X2

u∗Y2

u∗Z2

,


uX22
uY22
uZ22

 = L√
3


√

2εX2Y2 − εX2Z2√
2εY2Y2 − εY2Z2√
2εY2Z2 − εZ2Z2

+


u∗X2

u∗Y2

u∗Z2

,


uX23
uY23
uZ23

 = L√
3


√

2εX2X2 + εX2Z2√
2εX2Y2 + εY2Z2√
2εX2Z2 + εZ2Z2

+


u∗X2

u∗Y2

u∗Z2

,


uX24
uY24
uZ24

 = L√
3


−
√

2εX2X2 + εX2Z2

−
√

2εX2Y2 + εY2Z2

−
√

2εX2Z2 + εZ2Z2

+


u∗X2

u∗Y2

u∗Z2

,

(119)


θX21
θY21
θZ21

 =


θX22
θY22
θZ22

 =


θX23
θY23
θZ23

 =


θX24
θY24
θZ24

 =


θ∗X2
θ∗Y2
θ∗Z2

. (120)

Using Equations (1), (2), (7), (9), (12), (13), (92), (119) and (120) in Equation (109) gives
the periodic parts of the displacement and rotation components at the four boundary
nodes as


u∗X2
u∗Y2
u∗Z2

 =


uX2o +

2
√

3
3

ks−ka
ka+2ks

εX2Z2 L

uY2o − 2
√

3
3

ks−ka
ka+2ks

εY2Z2 L

uZ2o +
√

3
3

ks−ka
ka+2ks

(
εX2X2 − εY2Y2

)
L

,


θ∗X2
θ∗Y2
θ∗Z2

 =



(
1− L2ks

2kb+kt

)
θX2o(

1− L2ks
2kb+kt

)
θY2o(

1− L2ks
2kb+kt

)
θZ2o


. (121)
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Next, applying the equilibrium conditions at the central node o (an interior node)
listed in Equation (31) results in, after using Equations (1), (2), (7), (9), (12), (13), (92) and
(119)–(121) and setting uXo = uYo = uZo = 0 (i.e., no rigid-body displacement enforced at
the central node o),

θX2o = θY2o = θZ2o = 0. (122)

From Equations (1), (2), (9), (15), (25), (29), (92) and (119)–(122), the strain energy
density function in this case can be obtained as

u =
√

3
24L

k2
a+7kaks+ks

2

ka+2ks

(
ε2

X2X2
+ ε2

Y2Y2

)
+
√

3(ka+2ks)
24L ε2

Z2Z2
+
√

3
12L

(ka−ks)
2

ka+2ks
εX2X2 εY2Y2

+
√

3(ka−ks)
12L

(
εX2X2 εZ2Z2 + εY2Y2 εZ2Z2

)
+ 3
√

3
4L

kska
ka+2ks

(
ε2

Y2Z2
+ ε2

X2Z2

)
+
√

3ks
4L ε2

X2Y2
.

(123)

Clearly, this strain energy density function does not depend on the strut bending stiffness
kb, which is different from that obtained in Equation (101) based on the representative cell
shown in Figure 8b without using the periodicity constraints. This is similar to what is
observed from comparing Equations (114) and (82), which are based on the representative
cell shown in Figure 8a with and without the periodicity constraints.

Then, it follows from Equations (32) and (123) that the effective stiffness matrix C(2)
P

for the pentamode metamaterial based on the representative cell in orientation # 2 shown in
Figure 8b with the periodic boundary conditions listed in Equations (119)–(121) is given by



σX2X2

σY2Y2

σZ2Z2

σY2Z2

σX2Z2

σX2Y2


=



χ
(2)
1P χ

(2)
2P χ

(2)
3P 0 0 0

χ
(2)
2P χ

(2)
1P χ

(2)
3P 0 0 0

χ
(2)
3P χ

(2)
3P χ

(2)
4P 0 0 0

0 0 0 χ
(2)
6P 0 0

0 0 0 0 χ
(2)
6P 0

0 0 0 0 0 χ
(2)
5P





εX2X2

εY2Y2

εZ2Z2

εY2Z2

εX2Z2

εX2Y2


= C(2)

P



εX2X2

εY2Y2

εZ2Z2

εY2Z2

εX2Z2

εX2Y2


, (124)

where
χ
(2)
1P =

√
3(ka

2+7kaks+ks
2)

12L(ka+2ks)
, χ

(2)
2P =

√
3(ka−ks)

2

12L(ka+2ks)
, χ

(2)
3P =

√
3(ka−ks)

12L ,

χ
(2)
4P =

√
3(ka+2ks)

12L , χ
(2)
5P =

√
3ks

2L , χ
(2)
6P = 3

√
3kaks

2L(ka+2ks)
.

(125)

The compliance matrix S(2)
P = [C(2)

P ]
−1

based on the representative cell in orientation
# 2 with the periodicity constraints can then be readily obtained as

S(2)
P =



ζ
(2)
1P 0 ζ

(2)
2P 0 0 0

0 ζ
(2)
1P ζ

(2)
2P 0 0 0

ζ
(2)
2P ζ

(2)
2P ζ

(2)
3P 0 0 0

0 0 0 ζ
(2)
4P 0 0

0 0 0 0 ζ
(2)
4P 0

0 0 0 0 0 ζ
(2)
5P


, (126)

where

ζ
(2)
1P = 4

√
3L

9

(
2
ka
+ 1

ks

)
, ζ

(2)
2P = 4

√
3L

9

(
1
ka
− 1

ks

)
, ζ

(2)
3P = 4

√
3L

9

(
1
ka
+ 2

ks

)
,

ζ
(2)
4P = 4

√
3L

9

(
1
ka
+ 1

2ks

)
, ζ

(2)
5P = 2

√
3L

3ks
.

(127)

It can be readily shown that the effective stiffness and compliance matrices obtained
in Equations (124) and (126) based on the representative cell in orientation # 2 can be
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reproduced from those in Equations (115) and (117) based on the representative cell in
orientation # 1 through a coordinate transformation given in Equations (106) and (107) with
θ = − 45 ◦.

The engineering constants in this case with the periodicity constraints can be obtained
from Equations (87)–(90), (115) and (116) as

Eper(θ) =
3
√

3kaks
2L[3(ka+ks)+(ka−ks) cos(4θ)]

,

Gper(θ) =
3
√

3kaks
8L[3ka−2(ka−ks) cos2(2θ)]

,

νper(θ) =
(ka−ks)[1+cos(4θ)]

3(ka+ks)+(ka−ks) cos(4θ)
.

(128)

From Equation (128), it is seen that the effective engineering constants Eper, Gper and νper do
not show any dependency on the strut bending stiffness kb, unlike the effective engineering
constants Ehom, Ghom and νhom given in Equation (91).

Note that Equations (91) and (128) can be further simplified to, with the help of
Equations (4) and (5),

Ehom(θ) =
9
√

3πEd4

8L2[3(16L2+3d2)+(16L2−3d2) cos(4θ)]
,

Ghom(θ) =
9
√

3πEd4

64L2[24L2−(16L2−3d2) cos2(2θ)]
,

νhom(θ) =
(16L2−3d2)[1+cos(4θ)]

3(16L2+3d2)+(16L2−3d2) cos(4θ)
,

(129)

Eper(θ) =
9
√

3πEd4

8L2[3(4L2+3d2)+(4L2−3d2) cos(4θ)]
,

Gper(θ) =
9
√

3πEd4

64L2[6L2−(4L2−3d2) cos2(2θ)]
,

νper(θ) =
(4L2−3d2)(cos(4θ)+1)

3(4L2+3d2)+(4L2−3d2) cos(4θ)
,

(130)

where d, L and E are the diameter, length and Young’s modulus of the struts in the
pentamode metamaterial.

By setting r = d/L, Equations (129) and (130) can be rewritten as

Ehom(θ)
E = 9π

√
3r4

8[3(16+3r2)+(16−3r2) cos(4θ)]
, Eper(θ)

E = 9π
√

3r4

8[3(4+3r2)+(4−3r2) cos(4θ)]
,

Ghom(θ)
E = 9π

√
3r4

64[24+(3r2−16) cos2(2θ)]
, Gper(θ)

E = 9π
√

3r4

64[6+(3r2−4) cos2(2θ)]
,

νhom(θ) =
(16−3r2)[1+cos(4θ)]

3(16+3r2)+(16−3r2) cos(4θ)
, νper(θ) =

(4−3r2)[1+cos(4θ)]

3(4+3r2)+(4−3r2) cos(4θ)
.

(131)

From Equation (131), it follows that

Eper(θ)

Ehom(θ)
= 1 + 12[3+cos(4θ)]

3(4+3r2)+(4−3r2) cos(4θ)
, Gper(θ)

Ghom(θ)
= 1 + 18−12 cos2(2θ)

6−(4−3r2) cos2(2θ)
,

νper(θ)

νhom(θ)
= 1 + 216r2

(−16+3r2)[3(4+3r2)+(4−3r2) cos(4θ)]
.

(132)

For r < 1, which is typical for most cellular structures, it can be readily verified that the
first two ratios defined in Equation (132) are always greater than 1. This means that the
homogenization with the periodicity constraints results in larger effective Young’s and
shear moduli than those without them. If r << 1, which is the case for Euler–Bernoulli
beams, Equation (132) can be simplified to

lim
r→0

Eper(θ)

Ehom(θ)
= lim

r→0

Gper(θ)

Ghom(θ)
= 4, lim

r→0

νper(θ)

νhom(θ)
= 1. (133)
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Figure 11 shows the normalized effective engineering constants varying with θ ∈
[−90◦, 0]. The numerical values are obtained from Equation (131) with r = 1/(15

√
3).

It is seen that at θ = 0◦ or −90◦ (i.e., the representative cell in orientation # 1 shown in
Figure 8a), the effective Young’s modulus is the smallest, the effective shear modulus is
the largest, and the effective Poisson’s ratio is nearly 0.5. However, at θ = −45 ◦ (i.e., the
representative cell in orientation # 2 shown in Figure 8b), the effective Young’s modulus
is the largest, the effective shear modulus is the smallest, and the effective Poisson’s ratio
reaches zero.
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Figure 11 also reveals that both the effective Young’s modulus and shear modulus
of the pentamode metamaterial with the periodicity constraints are higher than those
without the constraints for any orientation θ ∈ [−90◦, 0], while the effective Poisson’s ratio
is almost the same in the two cases for all orientations. The former reaffirms what has been
qualitatively observed earlier from analyzing Equation (132).

In addition, the ratios given in Equation (132) are plotted in Figure 12. It is seen from
Figure 12 that the smaller r (= d/L) is, the closer the results are to the limiting values listed
in Equation (133), as expected. Moreover, it is observed from Figure 12 that the ratio of
the effective shear moduli Gper/Ghom does not depend on r at θ = −45◦. This can also be
directly seen from Equation (132), which analytically predicts Gper/Ghom = 4 at θ = −45◦.
for any value of r.

Furthermore, by setting θ = 0◦ in Equation (128), the effective Poisson’s ratio in the
periodic case is obtained as

ν|θ=0 =
ka − ks

2ka + ks
, (134)

which clearly shows that the effective Poisson’s ratio of the pentamode metamaterial based
on the unit cell in orientation # 1 displayed in Figure 8a is controlled by the numerical
values of the axial and shear stiffness constants of the strut. This indicates that auxetic
pentamode metamaterials with ν < 0 can be obtained if struts with ks > ka (i.e., the strut’s
shear stiffness being larger than its axial stiffness) are used. On the other hand, the same
geometrical configuration of the struts can lead to a rubber-like material with ν ∼= 0.5 if
ka >> ks(i.e., the strut’s axial stiffness being much larger than its shear stiffness—stretching
dominated). These findings reveal that a full spectrum of Poisson’s ratio can be attained by
the pentamode metamaterial if struts are designed to have a tailorable ratio of ka/ks.
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4. Conclusions

A generalized strain energy-based homogenization method is provided for 2-D and
3-D cellular materials with and without periodicity constraints by using Hill’s lemma and
the matrix method for spatial frames. In the newly proposed homogenization method, the
equilibrium equations are imposed at all boundary and interior nodes, and the interior
nodes are allowed to translate and rotate without constraints, unlike in the existing strain
energy-based methods that do not enforce the equilibrium conditions at the interior nodes.
The new method can be applied to all types of 2-D and 3-D cellular structures with no
geometrical constraints, which differs from the existing methods that can only be used
to accurately predict effective elastic properties of cellular materials with symmetric or
simple microstructures.

An asymmetric 2-D cellular material and a 3-D pentamode metamaterial, with and
without periodicity constraints in each group, are homogenized by directly using the new
method. In all four cases, closed-form expressions are obtained for the components of
the effective stiffness matrix. For the 3-D pentamode metamaterial, the effective stiffness
and compliance components are derived using two representative cells in two different
orientations for both cases with and without periodicity constraints. The results based on
the representative cell in one orientation show that the pentamode metamaterial displays
the cubic symmetry and can be tailor-designed to be a rubber-like incompressible material
or an auxetic material with a negative Poisson’s ratio.

Finally, it should be mentioned that the effective stiffness matrix obtained without the
periodic constraints has been found to be different from that acquired with the periodic
constraints in each of the 2-D and 3-D homogenization examples considered. These
analytical results attained using the newly proposed homogenization method need to
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be compared with experimental data, when they become available, to further verify the
new method and to determine which one, with or without the periodic constraints, is
more accurate.
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