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Abstract: In this article, a new four-parameter lifetime model called the exponentiated generalized 

inverted Gompertz distribution is studied and proposed. The newly proposed distribution is able 

to model the lifetimes with upside-down bathtub-shaped hazard rates and is suitable for describ-

ing the negative and positive skewness. A detailed description of some various properties of this 

model, including the reliability function, hazard rate function, quantile function, and median, 

mode, moments, moment generating function, entropies, kurtosis, and skewness, mean waiting 

lifetime, and others are presented. The parameters of the studied model are appreciated using four 

various estimation methods, the maximum likelihood, least squares, weighted least squares, and 

Cramér-von Mises methods. A simulation study is carried out to examine the performance of the 

new model estimators based on the four estimation methods using the mean squared errors (MSEs) 

and the bias estimates. The flexibility of the proposed model is clarified by studying four different 

engineering applications to symmetric and asymmetric data, and it is found that this model is more 

flexible and works quite well for modeling these data. 

Keywords: inverted Gompertz distribution; exponentiated generalized class; quantiles; moments; 

hazard rate function; mean time to failure; estimation methods; simulation 

 

1. Introduction 

In reliability analysis and life testing situations, we can define the times of occur-

rence of events under study as the "survival times" or "failure times" or "lifetimes". The 

events under study may be the death of an individual, health code compliance, devel-

opment of disease symptoms, and failure of a device. In almost all applied sciences and 

fields, such as life testing problems, medical and biological sciences, environmental 

studies, economics, engineering, insurance and finance, amongst others, statisticians and 

researchers are interested in the analysis and modeling of real lifetime data using the 

statistical distributions. Due to the importance and usefulness of statistical distributions 

in predicting and describing the real-world phenomena in these fields, there has been 

great attention in developing and finding more flexible models over the last decades [1]. 

Extending the exponential distribution by introducing the Gompertz (G) distribution. It 

is a very popular and widely used lifetime model due to its wide applicability in a lot of 

fields, such as biology, demography, computer and marketing sciences, actuaries, and 

gerontology. Furthermore, it has been widely used in survival analysis describing human 

deaths, growth models, and preparing the actuarial tables. An influential characteristic of 
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the G distribution, which decreases its usefulness and flexibility, is that it only has an 

increasing failure rate. Therefore, some extensions or modifications of the G distribution 

are proposed and studied in the statistical literature to provide more flexibility in lifetime 

modeling; for example, see [2–8]. Ref [9] studied and proposed a two-parameter lifetime 

probability distribution, which is called the inverted Gompertz (IG) distribution, with a 

hazard rate function, which is an upside-down bathtub-shaped curve. The cumulative 

distribution function (CDF) and the probability density function (PDF) of the random 

variable 𝑌 that has the IG with the two parameters 𝛼 > 0 and 𝛽 > 0 are given, respec-

tively, as  

𝐺(𝑦) = 𝑒
−
𝛼

𝛽
(e
𝛽
𝑦−1)

 ;  𝑦 > 0;  𝛼, 𝛽 > 0   
(1) 

and 

   𝑔(𝑦) =
𝛼

𝑦2
𝑒
𝛽

𝑦 𝑒
−
𝛼

𝛽
(𝑒

𝛽
𝑦−1)

;  𝑦 > 0;  𝛼, 𝛽 > 0.   (2) 

If we put 𝛼 = 1 in Equations (1) and (2), we will get the CDF and PDF of the 

Adaptable (A) distribution studied by [10]. In the last few years, many various generali-

zations have received increased interest in the literature, for example [11–23]. Ref [17] 

introduced a new class of univariate distributions, which is considered as a generaliza-

tion of the exponentiated type distributions, and mentioned its structural and statistical 

properties. They defined the exponentiated generalized (EG) class of distributions 

whose CDF and PDF are obtained, respectively, by  

𝐹(𝑥) = [1 − (1 − 𝐺(𝑥))𝛾]𝜃         (3) 

and 

𝑓(𝑥) = 𝛾𝜃𝑔(𝑥)(1 − 𝐺(𝑥))
𝛾−1

[1 − (1 − 𝐺(𝑥))𝛾]𝜃−1,   (4) 

where 𝐺(𝑥) and 𝑔(𝑥) represent the CDF and PDF of the baseline random variable. 

Further, 𝛾 > 0  and 𝜃 > 0  are two supplementary shape parameters that make the 

skewness more flexible if it is compared with the baseline model. In this paper, the 

so-called exponentiated generalized inverted Gompertz distribution, abbreviated to 

EGIG, with four parameters, is proposed by substituting from Equations (1) and (2) into 

Equations (3) and (4). This model is capable of modeling the failure rates characterized by 

an upside-down bathtub-shaped curve and is appropriate for describing the positive and 

negative skewness. Moreover, the EGIG model has some lifetime sub-models, such as the 

IG, A, and exponentiated generalized A (EGA) distribution, which extends the A distri-

bution. Finally, the suggested model is suitable to prescribe symmetric and asymmetric 

data numerically. 

Our paper is classified as follows: Section 2 introduces the EGIG distribution. In 

Section 3, some essential and fundamental statistical characteristics of the EGIG are pre-

sented. Four various estimation methods are studied to determine the EGIG parameters 

in Section 4. The goodness of the EGIG estimators is assessed by a simulation study in 

Section 5. Four real data sets from engineering are analyzed, and the results are com-

pared to some well-known distributions in Section 6. Finally, a brief conclusion is pre-

sented for the results in Section 7. 

2. Exponentiated Generalized Inverted Gompertz Distribution  

Assume 𝑋 to be a non-negative random variable that has the EGIG with the pa-

rameters vector 𝛀 = (𝛼, 𝛽, 𝛾, 𝜃), say  𝑋 ∼ EGIG(𝛀), if the CDF of 𝑋 is given by 
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𝐹(𝑥) = [1 − (1 − 𝑒
−
𝛼

𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

]

𝜃

;  𝑥 > 0;  𝛼, 𝛽, 𝛾, 𝜃 > 0.  (5) 

The PDF of the EGIG is found by 

              𝑓(𝑥) =
𝛼𝛾𝜃

𝑥2
𝑒
𝛽

𝑥𝑒
−
𝛼

𝛽
(𝑒

𝛽
𝑥−1)

(1 − 𝑒
−
𝛼

𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾−1

[1 − (1 − 𝑒
−
𝛼

𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

]

𝜃−1

;  𝑥 > 0;  𝛼, 𝛽, 𝛾, 𝜃 > 0 (6) 

where the parameter 𝛽 is the scale parameter and the three parameters 𝛼, 𝛾, and 𝜃 are 

the shape parameters that make the EGIG more useful and flexible. Setting 𝛾 = 𝜃 = 1 in 

Equations (5) and (6), we will obtain the CDF and PDF of the IG model. Furthermore, if 

we put 𝛼 = 𝛾 = 𝜃 = 1 in these equations, we will get the CDF and PDF of the A model. 

Finally, if we substitute 𝛼 = 1 into Equations (5) and (6), we will obtain the CDF and 

PDF of a new distribution, which can be named "exponentiated generalized A (EGA) 

distribution". This confirms the fact that the new model extends the IG, A, and EGA dis-

tributions. The reliability function of 𝑋 is obtained by 

𝑅(𝑥) = 1 − [1 − (1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

]

𝜃

. (7) 

The failure rate function (HRF) of 𝑋 and its reversed HRF are expressed by 

ℎ(𝑥) =

𝛼𝛾𝜃
𝑥2

𝑒
𝛽
𝑥𝑒

−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

(1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾−1

[1 − (1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

]

𝜃−1

1 − [1 − (1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

]

𝜃
 (8) 

and 

𝑟(𝑥) =

𝛼𝛾𝜃
𝑥2

𝑒
𝛽
𝑥𝑒

−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

(1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾−1

1 − (1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾 . (9) 

Figure 1 represents the graphical performance of the HRF and PDF for EGIG with 

various choices of 𝛼, 𝛽, 𝛾, and 𝜃. It is obvious that the HRF has an upside-down bath-

tub-shaped curve, and the PDF is unimodal-shaped.  
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Figure 1. The plots of HRF (left panel) and PDF (right panel) for EGIG with different choices of 𝛼, 𝛽, 𝛾, and 𝜃. 

3. Statistical and Mathematical Properties of EGIG  

3.1. The Quantile Function and Median 

We will derive, in this subsection, the quantile function and median for the new 

model. Assume 𝑋 ∼ EGIG(𝛀), then the quantile 𝑥𝑞 of the EGIG is given as follows 

𝑥𝑞 =
𝛽

ln{1−
𝛽

𝛼
 𝑙𝑛(1−(1−𝑞

1
𝜃)

1
𝛾
)} 

;  0 < 𝑞 < 1 .  
(10) 

Setting 𝑞 =
1

2
  in Equation (10) to get the median of the EGIG as follows 

𝑀𝑒𝑑(𝑋) =
𝛽

ln{1 −
𝛽
𝛼
 𝑙𝑛 (1 − (1 − (

1
2
)

1
𝜃
)

1
𝛾

)}  

 

(11) 

3.2. The Mode  

Assume 𝑋 ∼ EGIG(𝛀), then we can solve the following non-linear equation for 𝑥 to 

find the mode of 𝑋. 

𝛼𝑒
𝛽
𝑥

{
 
 
 

 
 
 

𝛾(𝜃 − 1)

𝑒
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

[(1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

1−𝛾

− 1] + 1

+ (1 −
𝛾 − 1

𝑒
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

− 1

)

}
 
 
 

 
 
 

− 2𝑥 − 𝛽 = 0. (12) 

We can use some numerical methods to conclude the solution of the above equation. 

3.3. The 𝑟𝑡ℎ Moment  

The 𝑟𝑡ℎ moment of 𝑋 ∼ EGIG(𝛀) is found by 
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𝜇(𝑟) = 𝐸(𝑥𝑟) = ∫ 𝑥𝑟
∞

0

𝑓(𝑥)𝑑𝑥.  (13) 

Substitute from Equation (6) into Equation (13), and we will obtain the 𝑟𝑡ℎ moment 

as follows 

                             𝜇(𝑟) =∑ ∑ ∑∑∑ (
𝜃 − 1
ℓ

) (
𝛾(ℓ + 1) − 1

𝑘
)

∞

𝑚=0

𝑖

𝑗=0

∞

𝑖=0

𝛾(ℓ+1)−1

𝑘=0

𝜃−1

ℓ=0

 

×
(−1)𝑖+𝑗+𝑘+ℓ+1(𝑘 + 1)𝑖(1 + 𝑖)𝑚𝛼𝑖+1𝛽𝑟−𝑖−1𝑗𝑟−𝑚−1𝛾𝜃 Γ(𝑚 − 𝑟 + 1)

𝑗!𝑚! (𝑖 − 𝑗)!
.  

(14) 

3.4. The Moment Generating Function  

Assume 𝑋 ∼ EGIG(𝛀), then the moment generating function of the EGIG can be 

obtained as  

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑥) =∑

𝑡𝑟

𝑟!

∞

𝑟=0

∫ 𝑥𝑟𝑓(𝑥; 𝛀)𝑑𝑥
∞

0

=∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇(𝑟) (15) 

Substitute from Equation (14) into Equation (15), we conclude that   

                           𝑀𝑋(𝑡) =∑∑ ∑ ∑∑∑ (
𝜃 − 1
ℓ

) (
𝛾(ℓ + 1) − 1

𝑘
)

∞

𝑚=0

𝑖

𝑗=0

∞

𝑖=0

𝛾(ℓ+1)−1

𝑘=0

𝜃−1

ℓ=0

∞

𝑟=0

 

×
(−1)𝑖+𝑗+𝑘+ℓ+1(𝑘 + 1)𝑖(1 + 𝑖)𝑚𝛼𝑖+1𝛽𝑟−𝑖−1𝑗𝑟−𝑚−1𝛾𝜃 𝑡𝑟Γ(𝑚 − 𝑟 + 1)

𝑟! 𝑗!𝑚! (𝑖 − 𝑗)!
. 

(16) 

3.5. Probability-weighted Moment  

The expectation of a specific function of 𝑋, which is used to appreciate the parame-

ters of a certain distribution that has no explicit formula for its inverse form is called the 

probability-weighted moment (PWM). The PWM of 𝑋 whose CDF 𝐹(𝑥), say 𝜉𝑠,𝑟, is de-

termined by 

𝜉𝑠,𝑟 = 𝐸(𝑥
𝑠𝐹𝑟(𝑥)) = ∫ 𝑥𝑠𝐹𝑟(𝑥)

∞

0

𝑓(𝑥)𝑑𝑥.  (17) 

If 𝑋 ∼ EGIG(𝛀), then the PWM 𝜉𝑠,𝑟 is found by 

                                                   𝜉𝑠,𝑟 = ∑ ∑ ∑∑∑ (
𝜃(𝑟 + 1) − 1

ℓ
) (
𝛾(ℓ + 1) − 1

𝑘
)

∞

𝑚=0

𝑖

𝑗=0

∞

𝑖=0

𝛾(ℓ+1)−1

𝑘=0

𝜃(𝑟+1)−1

ℓ=0

 

×
(−1)𝑖+𝑗+𝑘+ℓ+1(𝑘 + 1)𝑖(1 + 𝑖)𝑚𝛼𝑖+1𝛽𝑠−𝑖−1𝑗𝑠−𝑚−1𝛾𝜃 Γ(𝑚 − 𝑠 + 1)

𝑗!𝑚! (𝑖 − 𝑗)!
  

(18) 

3.6. Entropy Function and 𝜌 −Entropy 

The entropy function is a measure of variability for the uncertainty related to 𝑋 

whose PDF 𝑓(𝑥). It plays a fundamental role in computer science, engineering, and oth-

ers. The Rényi entropy of 𝑋, say 𝐼𝜌(𝑋), is determined using  

𝐼𝜌(𝑋) =
1

1 − 𝜌
𝑙𝑜𝑔∫ 𝑓𝜌(𝑥)

∞

0

𝑑𝑥, 𝜌 ∈]0,∞[−{1}.   (19) 
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If 𝑋 ∼ EGIG(𝛀), then 𝐼𝜌(𝑋) is obtained by 

 𝐼𝜌(𝑋) =
1

1 − 𝜌
𝑙𝑜𝑔 { ∑ ∑ ∑∑∑ (

𝜌(𝜃 − 1)

ℓ
) (
𝛾(ℓ + 𝜌) − 𝜌

𝑘
)

∞

𝑚=0

𝑖

𝑗=0

∞

𝑖=0

𝛾(ℓ+𝜌)−𝜌

𝑘=0

𝜌(𝜃−1)

ℓ=0

 

×
(−1)𝑖+𝑗+𝑘+ℓ+1(𝜌 + 𝑘)𝑖(𝜌 + 𝑖)𝑚𝛼𝜌+𝑖𝛽−2𝜌−𝑖+1𝑗−2𝜌−𝑚+1𝛾𝜌𝜃𝜌 Γ(2𝜌 + 𝑚 − 1)

𝑗!𝑚! (𝑖 − 𝑗)!
} 

(20) 

Further, the 𝜌 −entropy of 𝑋, say 𝐻𝜌(𝑋), takes the formula 

𝐻𝜌(𝑋) =
1

1 − 𝜌
𝑙𝑜𝑔[1 − (1 − 𝜌)𝐼𝜌(𝑋)] (21) 

3.7. Skewness and Kurtosis 

We can use the quantiles of the EGIG distribution given in Equation (10) to examine 

the effect of 𝛾 and 𝜃 (shape parameters) on the skewness (𝑆𝑘) and the kurtosis (𝐾𝑢). The 

Bowley skewness proposed by [24] is determined by  

𝑆𝑘 =
𝑞(0.75) + 𝑞(0.25) − 2𝑞(0.5)

𝑞(0.75) − 𝑞(0.25)
. (22) 

Furthermore, the Moors kurtosis proposed by [25] is determined by 

𝐾𝑢 =
𝑞(0.375) + 𝑞(0.875) − 𝑞(0.625) − 𝑞(0.125)

𝑞(0.75) − 𝑞(0.25)
, (23) 

Where 𝑞(. ) represents the quantiles of 𝑋. Figure 2 illustrates the plots of 𝐾𝑢 and 𝑆𝑘 for 

various choices of 𝛾 as 𝛼 = 1.5 and 𝛽 = 0.5. It shows that the EGIG is suitable for 

modeling the negative and positive skewness, and also both 𝑆𝑘 and 𝐾𝑢 are sensitive to 

the shape parameters 𝛾 and 𝜃. 

  

Figure 2. The plots of 𝑆𝑘 (left panel) and the plots of 𝐾𝑢 (right panel) for the EGIG model. 

3.8. Mean Time to Failure 

Assume 𝑋 ∼ EGIG(𝛀), then the mean time to failure of 𝑋, say 𝑀𝑇𝑇𝐹, is given using  

𝑀𝑇𝑇𝐹 = ∫ 𝑥𝑓(𝑥;𝛀)𝑑𝑥
∞

0

= 𝜇(1).  
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Substitute from Equation (14), as = 1 , to obtain  

𝑀𝑇𝑇𝐹 =∑ ∑ ∑∑∑ (
𝜃 − 1
ℓ

) (
𝛾(ℓ + 1) − 1

𝑘
)

∞

𝑚=0

𝑖

𝑗=0

∞

𝑖=0

𝛾(ℓ+1)−1

𝑘=0

𝜃−1

ℓ=0

 

                              ×
(−1)𝑖+𝑗+𝑘+ℓ+1(𝑘 + 1)𝑖(1 + 𝑖)𝑚𝛼𝑖+1𝛽−𝑖𝑗−𝑚𝛾𝜃 Γ(𝑚)

𝑗!𝑚! (𝑖 − 𝑗)!
 

(24) 

3.9. Mean Residual and Waiting Lifetimes 

The mean residual lifetime (MRL), say 𝑀𝑟(𝑡), can be obtained by the formula 

𝑀𝑟(𝑡) = 𝐸(𝑇 − 𝑡|𝑇 > 𝑡 ).  

If 𝑇 ∼ EGIG(𝛀), then the MRL of 𝑇 is found by 

    𝑀𝑟(𝑡) =
1

𝑅(𝑡)
∫ 𝑅(𝑥)
∞

𝑡

𝑑𝑥 

=
1

1 − 𝐹(𝑡)
[𝜇(1) − 𝑡 +∑∑∑∑(

𝜃
ℓ
) (
𝛾ℓ
𝑘
)
(−1)𝑖+𝑗+𝑘+ℓ𝑘𝑖𝛼𝑖𝛽−𝑖

𝑗! (𝑖 − 𝑗)!

𝑖

𝑗=0

∫ 𝑒
(𝑖−𝑗)𝛽
𝑥

𝑡

0

𝑑𝑥

∞

𝑖=0

𝛾ℓ

𝑘=0

𝜃

ℓ=0

] 

=
1

1 − 𝐹(𝑡)
[𝜇(1) − 𝑡 +∑∑∑∑∑ (

𝜃
ℓ
) (
𝛾ℓ
𝑘
)
(−1)𝑖+𝑗+𝑘+ℓ𝑘𝑖𝛼𝑖𝛽𝑚−𝑖(𝑖 − 𝑗)𝑚𝑡1−𝑚

𝑗!𝑚! (𝑖 − 𝑗)! (1 − 𝑚)

∞

𝑚=0

𝑖

𝑗=0

∞

𝑖=0

𝛾ℓ

𝑘=0

𝜃

ℓ=0

] 

(25) 

Furthermore, the mean inactive (waiting) lifetime (MWT), say 𝑀𝑤(𝑡), can be ob-

tained by the formula 

  𝑀𝑤(𝑡) = 𝐸(𝑡 − 𝑇|𝑇 ≤ 𝑡).  

If 𝑇 ∼ EGIG(𝛀), then the MWT of 𝑇 is found by 

    𝑀𝑤(𝑡) =
1

𝐹(𝑡)
∫ 𝐹(𝑥)
𝑡

0

𝑑𝑥 

=
1

𝐹(𝑡)
∑∑∑∑∑ (

𝜃
ℓ
) (
𝛾ℓ
𝑘
)
(−1)𝑖+𝑗+𝑘+ℓ𝑘𝑖𝛼𝑖𝛽𝑚−𝑖(𝑖 − 𝑗)𝑚𝑡1−𝑚

𝑗!𝑚! (𝑖 − 𝑗)! (1 − 𝑚)

∞

𝑚=0

𝑖

𝑗=0

∞

𝑖=0

𝛾ℓ

𝑘=0

𝜃

ℓ=0

 

(26) 

4. Parameter Estimation  

The new model parameters will be estimated in this section, using four various es-

timation methods to illustrate how different estimators of the EGIG model perform for 

some parameter combinations and various sample sizes. The estimation methods used 

here are: the maximum likelihood, least squares, weighted least squares, and Cramér-von 

Mises methods.  

4.1. Maximum Likelihood Estimation (MLE) 

Suppose that 𝑥1, 𝑥2, … , 𝑥𝑛 is a randomly selected sample of size 𝑛 from EGIG(𝛀), 

thus maximum likelihood estimators (MLEs) of the EGIG parameters 𝛼̂, 𝛽̂, 𝛾̂, and 𝜃̂ are 

found by maximizing the log-likelihood function  

  𝐿(𝛀) = 𝑛𝑙𝑛(α𝛾𝜃) − 2∑ln(𝑥𝑖) +𝛽∑
1

𝑥𝑖
−

𝑛

𝑖=1

𝛼

𝛽

𝑛

𝑖=1

∑(𝑒
𝛽
𝑥𝑖 − 1)

𝑛

𝑖=1

 (27) 
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                                                 +(𝛾 − 1)∑ln

(

 1 − 𝑒

−𝛼
𝛽
(𝑒

𝛽
𝑥𝑖−1)

)

 

𝑛

𝑖=1

+ (𝜃 − 1)∑ln

[
 
 
 
 

1 −

(

 1 − 𝑒

−𝛼
𝛽
(𝑒

𝛽
𝑥𝑖−1)

)

 

𝛾

]
 
 
 
 𝑛

𝑖=1

 

The normal equations of 𝐿(𝛀) can be obtained if we derive the first partial deriva-

tives of 𝐿(𝛀) for 𝛼, 𝛽, 𝛾, and 𝜃 and equating it to zero as follows 

𝑛

𝛾̂
+∑ln

(

 1 − 𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

)

 = 0,                      

𝑛

𝑖=1

 (28) 

𝑛

𝜃̂
+∑ln

[
 
 
 
 

1 −

(

 1 − 𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

)

 

𝛾̂

]
 
 
 
 

= 0,                             

𝑛

𝑖=1

 (29) 

      
𝑛

𝛼̂
−
1

𝛽̂
∑(𝑒

𝛽̂
𝑥𝑖 − 1)

𝑛

𝑖=1

+
(𝛾̂ − 1)

𝛽̂
∑

𝑒
𝛽̂
𝑥𝑖 − 1

𝑒

𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

− 1

                                                               

𝑛

𝑖=1

 

−
𝛾̂(𝜃̂ − 1)

𝛽̂
∑

(𝑒
𝛽̂
𝑥𝑖 − 1)𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

(

 1 − 𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

)

 

𝛾̂−1

1 −

(

 1 − 𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

)

 

𝛾̂
= 0                        

𝑛

𝑖=1  

(30) 

and 

∑
1

𝑥𝑖

𝑛

𝑖=1

−
𝛼̂

𝛽̂
∑

1

𝑥𝑖
𝑒
𝛽̂
𝑥𝑖

𝑛

𝑖=1

+
𝛼̂

𝛽̂2
∑(𝑒

𝛽̂
𝑥𝑖 − 1)

𝑛

𝑖=1

+
𝛼̂(𝛾̂ − 1)

𝛽̂2
∑

( 𝛽̂
𝑥𝑖
− 1) 𝑒

𝛽̂
𝑥𝑖 + 1

𝑒

𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

− 1

                                

𝑛

𝑖=1

 

−
𝛼̂𝛾̂(𝜃 − 1)

𝛽̂2
∑

[(
𝛽̂
𝑥𝑖
− 1) 𝑒

𝛽̂
𝑥𝑖 + 1] 𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

(1 − 𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

)

𝛾̂−1

1 − (1 − 𝑒

−𝛼̂

𝛽̂
(𝑒

𝛽̂
𝑥𝑖−1)

)

𝛾̂
= 0.  

𝑛

𝑖=1

 

(31) 

Some numerical methods can be used to solve the non-linear system of equations 

given in Equations (28)–(31) to find the MLEs (𝛼̂, 𝛽̂, 𝛾̂, 𝜃̂). 

4.2. Least Squares Estimation (LSE) 

Suppose that 𝑥(1), 𝑥(2), … , 𝑥(𝑛) is the order statistics of the random sample with size 𝑛 

taken from EGIG(𝛀), thus the least square estimators (LSEs) of the EGIG parameters are 

appreciated by minimizing the function  
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𝑆(𝛼, 𝛽, 𝛾, 𝜃) =∑[𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝛾, 𝜃) −
𝑖

𝑛 + 1
]
2𝑛

𝑖=1

 

=∑[(1 − (1 − 𝑒
−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

)

𝜃

−
𝑖

𝑛 + 1
]

2

.             

𝑛

𝑖=1

 

(32) 

for 𝛼, 𝛽, 𝛾, and 𝜃. The LSEs (𝛼̂, 𝛽̂, 𝛾̂, 𝜃̂) are found by solving the non-linear system of 

equations, which can be obtained by deriving the first partial derivatives of 𝑆(𝛼, 𝛽, 𝛾, 𝜃) 

for 𝛼, 𝛽, 𝛾 ,and 𝜃 and equating it to zero. 

4.3. Weighted Least Squares Estimation (WLSE) 

Suppose that 𝑥(1), 𝑥(2), … , 𝑥(𝑛) is the order statistics of a random sample with size 𝑛 

taken from EGIG(𝛀), thus the weighted least square estimators (WLSEs) of EGIG pa-

rameters can be found by minimizing, for 𝛼, 𝛽, 𝛾 ,and 𝜃, the function  

𝑊(𝛼, 𝛽, 𝛾, 𝜃) =∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝛾, 𝜃) −

𝑖

𝑛 + 1
]
2𝑛

𝑖=1

 

=∑
(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
[(1 − (1 − 𝑒

−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

)

𝜃

−
𝑖

𝑛 + 1
]

2

.    

𝑛

𝑖=1

 

(33) 

If we derive the first partial derivatives of 𝑊(𝛼, 𝛽, 𝛾, 𝜃)  for 𝛼, 𝛽, 𝛾, and 𝜃  and 

equate it to zero, we will obtain a non-linear system of equations that are solved numer-

ically to compute the WLSEs (𝛼̂, 𝛽̂, 𝛾̂, 𝜃̂).   

4.4. Cramér-Von Mises Estimation (CVME) 

Suppose that 𝑥(1), 𝑥(2), … , 𝑥(𝑛) is the order statistics of the random sample with size 𝑛 

taken from EGIG(𝛀), thus the Cramér-von Mises estimators (CVMEs) of the EGIG pa-

rameters are found if we minimize the function 

𝐶(𝛼, 𝛽, 𝛾, 𝜃) =
1

12𝑛
+∑[𝐹(𝑥(𝑖)|𝛼, 𝛽, 𝛾, 𝜃) −

2𝑖 − 1

2𝑛
]
2𝑛

𝑖=1

 

=
1

12𝑛
+∑[(1 − (1 − 𝑒

−
𝛼
𝛽
(𝑒

𝛽
𝑥−1)

)

𝛾

)

𝜃

−
2𝑖 − 1

2𝑛
]

2

.            

𝑛

𝑖=1

 

(34) 

for 𝛼, 𝛽, 𝛾, and 𝜃. If we derive the first partial derivatives of 𝐶(𝛼, 𝛽, 𝛾, 𝜃) for 𝛼, 𝛽, 𝛾, and 

𝜃 and equate it to zero, we will obtain a non-linear system of equations that are solved 

numerically to compute the CVMEs (𝛼̂, 𝛽̂, 𝛾̂, 𝜃̂). 

5. Simulation Results  

A simulation study will be implemented, in this section, to appreciate the perfor-

mance of the MLEs, LSEs, WLSEs, and CVMEs by using two different metrics: mean 

squared errors (MSEs) and the bias estimates. Our main goal is to see that the estimated 

MSEs and biases should be near to zero when n is sufficiently large in the case of the four 

estimation techniques. Two simulation studies are accomplished here and are summa-

rized as follows:  

5.1. Simulation Study 1 
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The first simulation performed is repeated n = 300 times. The sample sizes used here 

are 𝑛 = 20, 50, 100, 150, 200, 250, and 300 . The parameter values are (𝛼 , 𝛽 , 𝛾 , 𝜃) =

(1.1, 4.2, 3.5, 0.9). Figure 3 displays the simulation results, which verify that the estimated 

MSEs and biases decrease when the sample sizes 𝑛 are increased. That is, the MLE, LSE, 

WLSE, and CVME approaches can be used effectively to estimate the model parameters 

for different sample size. This confirms the consistency property for the MLEs, LSEs, 

WLSEs, and CVMEs when n grows.  

 

Figure 3. The MSEs and bias estimates of the EGIG for some values of 𝑛 when (𝛼, 𝛽, 𝛾, 𝜃) = (1.1, 4.2, 3.5, 0.9). 

5.2. Simulation Study 2 

As in the first simulation, the simulation replication number was n = 300. The sample 

sizes used are: 𝑛 = 20, 50, 100, 150, 200, 250 ,and 300. The parameter values are (𝛼,𝛽, 𝛾, 

𝜃) = (1.5, 6.1, 3.8, 0.8). Figure 4 gives the simulation results, which verify the same result 

obtained with the first simulation. This indicates that the MLE, LSE, WLSE, and CVME 

approaches perform quite well in estimating the EGIG model parameters.  
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Figure 4. The MSEs and bias estimates of the EGIG for some values of 𝑛 when (𝛼, 𝛽, 𝛾, 𝜃) = (1.5, 6.1, 3.8, 0.8). 

6. Data Analysis  

The empirical importance of the EGIG model is illustrated and discussed in this 

section, using four different applications to complete actual and upper record data. Our 

model is compared here with nine other various competitive lifetime models; namely, 

inverted Weibull (IW), exponentiated generalized inverted Weibull (EGIW), inverted 

exponential (IE), inverted Rayleigh (IR), inverted flexible Weibull (IFW), exponentiated 

inverted flexible Weibull (EIFW), A, EGA, and IG distributions. The fitted distributions 

are compared using some different criteria, such as the log-likelihood values (–L), An-

derson-Darling (A*) statistic and Cramér-von Mises (W*) statistic. In addition to the 

Kolmogorov-Smirnov (KS) statistic, the corresponding p-values are also computed. The 

MLEs, LSEs, WLSEs, CVMEs, KS, and their p-values will be obtained for the EGIG to 

compare the four estimation methods with each set of data. Finally, the likelihood ratio 

test (LRT) is conducted here to examine if the fitting using EGIG is statistically superior 

to the fitting by the models A, IG, and EGA with the complete data sets. 

6.1. Data Set I  

The real data mentioned here are studied in [26], and they give the strength of glass 

for a sample of thirty-one aircraft windows. These data are listed below.  

18.83 20.8 21.657 23.03 23.23 24.05 24.321 25.5 25.52 25.8 26.69 

26.77 26.78 27.05 27.67 29.9 31.11 33.2 33.73 33.76 33.89 34.76 

35.75 35.91 36.98 37.08 37.09 39.58 44.045 45.29 45.381  



Symmetry 2021, 13, 1868 12 of 22 
 

 

The MLEs, K-S, corresponding p-values, and the goodness of fit measures are men-

tioned in Table 1 for all fitted distributions. We find that the EGIG model with the 

four-parameters 𝛼, 𝛽, 𝛾, and 𝜃 has the lowest K-S value and the highest p-value. Fur-

thermore, the goodness of fit measures –L, A*, and W* are the smallest for the EGIG 

model. This means that the EGIG appears to be a highly competitive lifetime model to the 

first data set when it is compared with the other nine various lifetime models. 

Figure 5 shows the nonparametric Kernel density estimation (KDE) plot, the box 

plot, the total time test (TTT) plot, and the quantile–quantile (Q–Q) plot. The initial shape 

of data set I can be explored by the KDE plot, and it is noted that the KDE plot for data set 

I appears to be nearly symmetric. The extreme values of data set I can be explored by the 

box plot, and it is noted that no extreme values were found, and the Q–Q plot emphasizes 

this result. The empirical HRF of data set I can be explored by the TTT plot, and it is 

noted that the empirical HRF appears to be monotonically increasing. Figure 6 gives the 

estimated PDF, probability–probability (P–P) plot, estimated CDF, and estimated sur-

vival function (SF) for the first data set. Table 2 presents the MLE, LSE, WLSE, and CVM 

estimators, K-S test statistic and the p-values for the EGIG, and it is found that the WLSE 

method is the best one to estimate the EGIG parameters because it has the smallest K-S 

value and the largest p-value. Figure 7 introduces the estimated PDFs, estimated CDFs, 

and the estimated SFs for the first data set using the estimators in Table 2. The values of 

the LRT (Λ), degree of freedom (𝑑. 𝑓), and the corresponding p-values for the first data set 

are presented in Table 3. According to the p-values, it is clear that the null hypothesis (𝐻0) 

is rejected at 𝛼 = 0.05.  

Table 1. The MLEs, K-S, p-values, –L, A*, and W* values for the first data set. 

Statistics 
Models 

IW EGIW IE IR IFW EIFW A EGA IG EGIG 

𝜶̂ 4.46 × 106 34.756 29.215 810.504 61.167 2.376 125.662 –– 1.249 64.009 

𝜷̂ 4.655 0.637 –– –– 0.086 0.164 –– 9.526 119.762 63.247 

𝜸̂ –– 94.688 –– –– –– 81.512 –– 3.909 –– 37.998 

𝜽̂ –– 3.759 –– –– –– –– –– 1.95 × 105 –– 0.18 

K-S 0.146 0.124 0.477 0.325 0.146 0.136 0.162 0.145 0.139 0.123 

p-value 0.482 0.678 <0.001 0.002 0.479 0.567 0.354 0.485 0.538 0.690 

–L 105.323 104.102 137.262 118.201 104.963 104.141 107.95 105.615 107.884 
103.28

6 

W* 0.083 0.077 0.074 0.075 0.078 0.074 0.122 0.085 0.118 0.056 

A* 0.503 0.407 0.392 0.403 0.467 0.397 0.804 0.521 0.778 0.309 
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Figure 5. The KDE plot, box plot, TTT plot, and Q–Q plot for the data set I. 

 

Figure 6. The estimated PDF, P–P plot, estimated CDF, and estimated SF for data set I. 
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Table 2. The MLE, LSE, WLSE and CVM estimators, KS, and p-values for data set I. 

Method 𝜶̂ 𝜷̂ 𝜸̂ 𝜽̂ K-S

 

p-Value 

MLE 64.009 63.247 37.998 0.180 0.123 0.690 

LSE 94.141 54.489 63.339 0.145 0.094 0.945 

WLSE 91.462 55.085 63.959 0.147 0.090 0.963 

CVM 89.188 56.341 64.313 0.149 0.098 0.929 

 

Figure 7. The estimated PDFs, the estimated CDFs, and the estimated SFs for data I. 

Table 3. The LRT, 𝑑. 𝑓, and p-values for data set I. 

Models Null Hypothesis (𝑯𝟎) 𝚲 𝒅. 𝒇 p-Value 

A 𝛼 = 𝛾 = 𝜃 = 1 or  𝑥1, 𝑥2, … , 𝑥𝑛~𝐴(𝛽) 9.328 3 0.025 

IG 𝛾 = 𝜃 = 1  or  𝑥1, 𝑥2, … , 𝑥𝑛~𝐼𝐺(𝛼, 𝛽) 9.196 2 0.010 

EGA 𝛼 = 1  or 𝑥1, 𝑥2, … , 𝑥𝑛~𝐸𝐺𝐴(𝛽, 𝛾, 𝜃) 4.658 1 0.031 

6.2. Data Set II  

This data is presented by [27] and they describes the tiredness lifetime of 101 

6061-T6 aluminum coupons. It is given as 

70 90 96 97 99 100 103 104 104 105 107 152 

112 113 114 114 114 116 119 120 120 120 121 174 

124 128 128 129 129 130 130 130 131 131 131 109 

134 134 134 134 134 136 136 137 138 138 138 124 

142 142 142 142 144 144 145 146 148 148 149 132 

157 157 157 158 159 162 163 163 164 166 166 141 

109 124 132 142 156 212 112 124 133 142 157 155 

108 121 131 139 151 168 108 123 131 139 151 196 

170 108 124 132 141        
 

Table 4 gives the MLEs, K-S, p-values, and the goodness of fit measures for the 

mentioned models. The EGIG model has the highest p-value and the lowest K-S value, 

and also the goodness of fit measures are the smallest for it. This means that EGIG is the 

best lifetime model to represent the second data set than the nine tested models. Figure 8 

gives the KDE plot, the box plot, the TTT plot, and the Q–Q plot. The initial shape of data 

set II can be explored by the KDE plot, and it is noted that the KDE plot for data set II 

appears to be nearly symmetric. The extreme values of data set II can be explored by the 
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box plot, and it is noted that some extreme values were found, and the Q–Q plot empha-

sizes this result. The empirical HRF of data set II can be explored by the TTT plot, and it is 

noted that the empirical HRF appears to be monotonically increasing. 

Table 4. The MLEs, K-S, p-values, –L, A*, and W* values for the second data set. 

Statistics 

Models 

IW 
EGI

W 
IE IR IFW EIFW A EGA IG EGIG 

𝜶̂ 3.28× 1010 
106.23

6 
129.933 

1.64×
104 

295.466 78.792 705.55 –– 7.435 469.618 

𝜷̂ 5.051 0.935 –– –– 0.021 0.039 –– 94.472 501.775 175.869 

𝜸̂ –– 11.981 –– –– –– 58.724 –– 3.041 –– 258.604 

𝜽̂ –– 77.271 –– –– –– –– –– 6.17× 105 –– 0.375 

K-S 0.133 0.125 0.506 0.403 0.139 0.113 0.366 0.186 0.206 0.067 

p-value 0.055 0.085 < 0.001 < 0.001 0.039 0.153 < 0.001 0.002 < 0.001 0.749 

–L 475.186 
466.60

2 
595.547 530.197 476.101 465.265 517.597 482.509 494.448 458.896 

W* 0.432 0.299 0.121 0.172 0.437 0.238 1.204 0.491 0.803 0.089 

A* 2.493 1.694 0.689 0.975 2.548 1.349 7.025 2.851 4.707 0.593 

 

Figure 8. The KDE plot, box plot, TTT plot, and Q–Q plot for data set II. 

Figure 9 introduces the estimated PDF, the P–P plot, estimated CDF and estimated 

SF for data II. Table 5 presents the MLE, LSE, WLSE, and CVM estimators, K-S test sta-

tistic, and the p-values for the EGIG, and it is found that the WLSE method is the best one 

to estimate the EGIG parameters because it has the lowest K-S value and the largest 

p-value. Figure 10 gives the estimated PDFs, estimated CDFs, and the estimated SFs for 

data set II using the estimators in Table 5. The values of LRT, 𝑑. 𝑓, and the p-values for 

data set II are given in Table 6. Based on the p-values, the null hypotheses are rejected at 
𝛼 = 0.05. 



Symmetry 2021, 13, 1868 16 of 22 
 

 

 

Figure 9. The estimated PDF, P–P plot, estimated CDF, and estimated SF for data set II. 

Table 5. The MLE, LSE, WLSE, and CVM estimators, K-S, and p-values for data set II. 

Method 𝜶̂ 𝜷̂ 𝜸̂ 𝜽̂ K-S

 

p-Value 

MLE 469.618 175.869 258.604 0.375 0.067 0.749 

LSE 515.696 121.802 225.434 0.632 0.057 0.897 

WLSE 397.808 172.611 141.765 0.529 0.057 0.904 

CVM 490.022 134.638 218.369 0.600 0.072 0.666 

 

Figure 10. The estimated PDFs, the estimated CDFs, and the estimated SFs for data set II. 
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Table 6. The LRT, 𝑑. 𝑓, and p-values for data set II. 

Models Null Hypothesis (𝑯𝟎) 𝚲 𝒅. 𝒇 p-Value 

A 𝛼 = 𝛾 = 𝜃 = 1 or  𝑥1, 𝑥2, … , 𝑥𝑛~𝐴(𝛽) 117.402 3 0.0 

IG 𝛾 = 𝜃 = 1  or  𝑥1, 𝑥2, … , 𝑥𝑛~𝐼𝐺(𝛼, 𝛽) 71.104 2 0.0 

EGA 𝛼 = 1  or 𝑥1, 𝑥2, … , 𝑥𝑛~𝐸𝐺𝐴(𝛽, 𝛾, 𝜃) 47.226 1 0.0 

6.3. Data Set III 

The actual data introduced here are offered by [28] and they represents the simu-

lated strengths for a sample of 63 glass fibers. These data are given as 

1.014 1.081 1.082 1.185 1.223 1.248 1.267 1.271 1.748 

1.288 1.292 1.304 1.306 1.355 1.361 1.364 1.379 3.197 

1.481 1.484 1.501 1.506 1.524 1.526 1.535 1.541 1.276 

1.602 1.666 1.670 1.684 1.691 1.704 1.731 1.735 1.459 

1.867 1.876 1.878 1.910 1.916 1.972 2.012 2.456 1.581 

1.278 1.460 1.591 1.800 1.286 1.476 1.593 1.806 1.757 

1.272 1.409 1.568 1.747 2.592 1.275 1.426 1.579 4.121 

The MLEs, K-S, p-values, and the goodness of fit statistics are listed for all tested 

models in Table 7. The EGIG model has the highest p-value and the lowest K-S value, and 

also the goodness of fit statistics are the smallest for it. This confirms that EGIG is the best 

lifetime model to represent the third data set among the tested models. The KDE plot, the 

box plot, the TTT plot, and the Q–Q plot are presented in Figure 11. The initial shape of 

data set III can be explored by the KDE plot, and it is noted that the KDE plot for data set 

III appears to be asymmetrically right-skewed with a heavy tail. The extreme values of 

data set III can be explored by the box plot, and it is noted that some extreme values were 

found, and the Q–Q plot emphasizes this result. The empirical HRF of data set III can be 

explored by the TTT plot, and it is noted that the empirical HRF appears to be monoton-

ically increasing. Figure 12 shows the estimated PDF, P–P plot, estimated CDF, and es-

timated SF for the current data. Table 8 introduces the MLE, LSE, WLSE, and CVM esti-

mators, K-S test statistic, and the p-values for EGIG, and it is found that the LSE method 

is the best one to estimate the EGIG parameters because the LSE method has the lowest 

K-S value, and also the highest p-value. Figure 13 gives the estimated PDFs, estimated 

CDFs, and the estimated SFs for data set III using the estimators in Table 8. The values of 

LRT, 𝑑. 𝑓, and the p-values for data set III are introduced in Table 9, and it is obvious that 

𝐻0 is rejected at 𝛼 = 0.05. From Table 7, we notice that the value of W* for the EGA 

model (0.059) is smaller than the value of W* for EGIG model (0.061). Moreover, the 

p-value for the EGA model mentioned in Table 9 is more than 0.05, this means that 𝐻0 is 

not rejected with this model. This result confirms that the EGA model is also suitable to 

describe data set III as well as our proposed model. 

Table 7. The MLEs, K-S, p-values, –L, A*, and W* values for the third data set. 

Statisti

cs 

Models 

IW EGIW IE IR IFW EIFW A EGA IG EGIG 

𝜶̂ 6.498 1.161 1.526 2.233 3.732 4.169 2.111 –– 0.032 0.495 

𝜷̂ 5.438 3.529 –– –– 1.869 1.666 –– 1.54 7.583 3.761 

𝜸̂ –– 1.731 –– –– –– 0.544 –– 6.249 –– 3.656 

𝜽̂ –– 8.139 –– –– –– –– –– 7.331 –– 1.461 

K-S 0.077 0.071 0.468 0.36 0.082 0.084 0.521 0.069 0.101 0.068 

p-value 0.819 0.889 <0.001 <0.001 0.756 0.739 <0.001 0.904 0.508 0.916 

–L 20.064 19.879 92.805 53.381 20.618 20.593 63.322 19.913 22.809 19.706 

W* 0.071 0.062 0.126 0.087 0.079 0.081 0.063 0.059 0.138 0.061 
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A* 0.533 0.488 0.982 0.709 0.61 0.616 0.514 0.482 0.928 0.469 

 

Figure 11. The KDE plot, box plot, TTT plot, and Q–Q plot for data set III. 
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Figure 12. The estimated PDF, P–P plot, estimated CDF, and the estimated SF for data set III. 

Table 8. The MLE, LSE, WLSE, and CVM estimators, KS, and p-values for data set III. 

Method 𝜶̂ 𝜷̂ 𝜸̂ 𝜽̂ K-S

 

p-Value 

MLE 0.495 3.761 3.656 1.461 0.068 0.916 

LSE 0.596 3.278 4.339 1.999 0.067 0.927 

WLSE 0.847 2.722 5.856 2.369 0.075 0.866 

CVM 0.589 3.300 4.363 2.031 0.072 0.898 

 

Figure 13. The estimated PDFs, the estimated CDFs, and the estimated SFs for data set III. 

Table 9. The LRT, 𝑑. 𝑓, and p-values for data set III. 

Models Null Hypothesis (𝑯𝟎) 𝚲 𝒅. 𝒇 p-Value 

A 𝛼 = 𝛾 = 𝜃 = 1 or  𝑥1, 𝑥2, … , 𝑥𝑛~𝐴(𝛽) 87.232 3 0.0 

IG 𝛾 = 𝜃 = 1  or  𝑥1, 𝑥2, … , 𝑥𝑛~𝐼𝐺(𝛼, 𝛽) 6.206 2 0.045 

EGA 𝛼 = 1  or 𝑥1, 𝑥2, … , 𝑥𝑛~𝐸𝐺𝐴(𝛽, 𝛾, 𝜃) 0.414 1 0.519  

6.4. Data Set V (Upper Record Data) 

In some applications, such as meteorology, seismology, economics, and athletic 

events, the record values have an extensive importance. The upper record value can be 

defined as the value that is bigger than all observed values yet. If 𝑥1, 𝑥2, … , 𝑥𝑛 is a ran-

dom sample from EGIG(𝛀) and 𝑋 = {𝑋𝑈(1), 𝑋𝑈(2), … , 𝑋𝑈(𝑛)}  are the upper record values 

taken from it, then the likelihood function of 𝑋 is obtained by the formula (see [29]) 

ℓ𝑟𝑒𝑐𝑜. = 𝑓(𝑥𝑈(𝑛); 𝛀)∏
𝑓(𝑥𝑈(𝑖), 𝛀)

𝑅(𝑥𝑈(𝑖), 𝛀)
, 0 ≤ 𝑥𝑈(1) < 𝑥𝑈(2) < ⋯ < 𝑥𝑈(𝑛) < ∞.           

𝑛−1

𝑖=1

 (35) 

Substituting from Equations (6) and (7) into Equation (35), the 𝐿(𝛀) of 𝑋 will be  

𝐿(𝛀) = 𝑛𝑙𝑛(α𝛾𝜃) − ln(𝑥𝑈(𝑛)
2 ) +

𝛽

𝑥𝑈(𝑛)
−
𝛼

𝛽
(𝑒

𝛽
𝑥𝑈(𝑛) − 1) + (𝛾 − 1)ln

(

 1 − 𝑒

−𝛼
𝛽
(𝑒

𝛽
𝑥𝑈(𝑛)−1)

)

  

+(𝜃 − 1)ln

[
 
 
 
 

1 −

(

 1 − 𝑒

−𝛼
𝛽
(𝑒

𝛽
𝑥𝑈(𝑛)−1)

)

 

𝛾

]
 
 
 
 

−∑ ln(𝑥𝑈(𝑖)
2 )

𝑛−1

𝑖=1

+ 𝛽∑
1

𝑥𝑈(𝑖)

𝑛−1

𝑖=1

−
𝛼

𝛽
∑(𝑒

𝛽
𝑥𝑈(𝑖) − 1)

𝑛−1

𝑖=1

 

(36) 
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𝛾
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1 −

(
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−𝛼
𝛽
(𝑒

𝛽
𝑥𝑈(𝑖)−1)

)

 

𝛾

]
 
 
 
 
𝜃

}
 
 

 
 

.

𝑛−1

𝑖=1

                                                                     

By differentiating Equation (36) for 𝛼, 𝛽, 𝛾, and 𝜃 and equating it to zero, we will 

obtain a non-linear system of equations that are solved numerically to find 𝛼̂, 𝛽̂, 𝛾̂, and  𝜃̂. 

The record data studied here are mentioned by [30] and represents the lifetimes to 

breakdown for a sample of 11 electric isolating fluids exposed to 30 kilovolts. The data 

considered here are 2.836, 3.120, 3.045, 5.169, 4.934, 4.970, 3.018, 3.770, 5.272, 3.856, and 

2.046. The upper record values of these data are 2.836, 3.120, 5.169, and 5.272. The MLEs, 

–L, KS, and p-values for the A, IG, EGA, and EGIG distributions are listed in Table 10. 

The EGIG has the smallest –L and K-S values and the largest p-value, and this result 

confirms that the EGIG fits data set V better than the A, IG and EGA models. 

Table 10. The MLEs, –L, K-S, and p-values for data set V. 

Models

 

MLEs

 

–L

 

K-S p-Value

 A 𝛼̂ = 7.136

 

7.592 0.687 0.046 

IG 𝛼̂ = 2.82 × 10−3, 𝛽̂ = 26.399

 

3.25 0.513 0.285 

EGA 𝛽̂ = 9.598, 𝛾̂ = 4.062, 𝜃̂ = 0.655 2.992 0.479 0.319 

EGIG 𝛼̂ = 1.409, 𝛽̂ = 13.086, 𝛾̂ = 4.178, 𝜃̂ = 0.112

 

2.873 0.469 0.341 
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7. Conclusions 

This article studied and proposed a lifetime model with four parameters, shortly 

EGIG, which is considered as an extension to the inverted Gompertz distribution. The 

EGIG is capable of modeling the lifetimes with upside-down bathtub-shaped HRF and is 

suitable to describe the negative and positive skewness in addition to the symmetric data 

sets. Furthermore, the EGIG is convenient for testing the goodness of fit of three special 

sub-models, the A, IG, and EGA models. Some distributional properties of the EGIG are 

derived and discussed, such as the PDF, CDF, SF, HRF, reversed HRF, quantile function 

and median, moments (PWMs), entropy function, MWT and MRL, and others. The pa-

rameters of the EGIG are estimated by using four various estimation methods. A simu-

lation study is carried out to examine and study the performance of the MLEs, LSEs, 

WLSEs, and CVMEs according to both the MSEs and biases. The simulation results 

supported that the four estimation methods performed quite well when estimating the 

EGIG parameters. The empirical significance of the EGIG model is clarified using three 

complete data sets, symmetric and asymmetric, from engineering and it is compared 

with nine other various competitive lifetime models. The EGIG model can be used quite 

effectively to give better fits than the nine other tested lifetime models. Moreover, our 

model is compared with the A, IG, and EGA models for the upper record data. Finally, 

we hope that the suggested model (EGIG) will serve a lot of applications in reliability, 

engineering, and others. 
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