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Abstract: In this paper, two control problems for a symmetric model of cell dynamics related to
leukemia are considered. The first one, in connection with classical chemotherapy, is that the
evolution of the disease under treatment should follow a prescribed trajectory assuming that the
drug works by increasing the cell death rates of both malignant and normal cells. In the case of the
second control problem, as for targeted therapies, the drug is assumed to work by decreasing the
multiplication rate of leukemic cells only, and the control objective is that the disease state reaches a
desired endpoint. The solvability of the two problems as well as their stability are proved by using a
general method of analysis. Some numerical simulations are included to illustrate the theoretical
results and prove their applicability. The results can possibly be used to design therapeutic scenarios
such that an expected clinical evolution can be achieved.

Keywords: control problem; dynamic system; leukemia

MSC: 34H05; 93B05

1. Introduction
1.1. Biological Background

Hematological malignancies were the first types of cancer for which chemotherapy
was attempted and then refined [1]. The blood stem cell was the first stem cell ever discov-
ered (reviewed in [2]), and the well-established developmental hierarchy of hematopoiesis
allowed for its rigorous functional characterization. Leukemias were the first malignancies
in which cancer stem cells were documented (reviewed in [3]).

Classical cancer chemotherapeutics have strong cell cycle dependence [4] and, unlike
targeted therapies, act preferentially on cancer cells rather than on normal cells, mainly
because of the higher division rate of cancer cells. Any normal cell line with a high
turnover rate will be also affected to a degree, as is the case with the highly active normal
hematopoietic cells in the bone marrow. From the point of view of chemotherapy, the
population of leukemia cells (to eliminate) and the population of normal cells (to be spared)
are pharmacologically much closer and harder to discriminate between than, say, a colon
cancer entoured by normal colonic mucosa or a hepatocarcinoma surrounded by normal
hepatic parenchyma [5]. This narrower error margin makes leukemias an ideal proving
ground for models of safety in chemotherapy and highlights the need for an accurate control
of therapy. The diffuse and homogenous distribution of leukemic infiltrate within the
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marrow of axial bones [6] simplifies the assumptions of pharmacokinetic models, eliminates
confusion factors, and allows focus on the study on the antineoplastic effect itself.

Unlike in solid tumors, leukemic cells do not possess the intracellular and cell surfaces
necessary for tumor cohesion. The cellular mass of leukemias is fluidic, lacking, to a
degree [7], a fixed and meaningful positional relationship between individual cells. As
such, the spatial aspects of tumorigenesis can be reasonably abstracted away, which renders
leukemias, as in the case of other types of population dynamics, especially suited for
modeling with systems of ordinary differential equations.

In our model, the chemotherapeutics are not represented directly (as a system variable);
they are instead modeled as an effect on the growth rates and removal rates of cells. It is
unclear how to modify such parameters in response to a drug, as there is a conceptual gap
between individual cell models and global tumor models. Taking the case of the common
anti-tumor drug Paclitaxel [8], its prime effect on the cell is mitotic arrest: the affected cell
will stop dividing and often (but not always) suffer apoptotic death. The way to proceed
from this point is dependent on opinion more than fact. One can model its effect as an
increase in the tumor cell death rate (the most common way), or as a combination of growth
rate decrease and death rate increase. Our first problem, considered in Section 3, concerns
a hypothetical drug that acts by increasing solely the death rates of both malignant and
normal cells, while for the second problem (Section 4), the drug is assumed to act only on
the growth rate of malignant cells.

One can expect that one of the directions of improvement in cancer therapeutics in the
near future will consist of treatment algorithms. At the limit, adjusting the drug delivery to
a very fine-grained schedule (see Remark 1 (b)) means identifying a continuous change of
one or more kinetic parameters so that a clinical evolution can be achieved. If this detailed
level of control proves to be beneficial, chemotherapy could be delivered via solutions that
are already in clinical practice, such as infusion pumps, either extracorporeal or implanted.

There are two metrics of control over the course of a disease, relating to the disease
trajectory and to the disease endpoint, respectively. Traditionally, the endpoint refers to
therapeutic efficiency (reduction of the leukemic burden below a set threshold, inducing
remission, etc.) and the parcourse to therapeutic safety (such as the total amount of toxic
chemotherapy to which the patient is exposed over the entire treatment time course). Still,
the delegation of efficiency only to the endpoint criteria is limiting. The recognition of
cancer as a dynamic disease makes it obvious that some critical aspects, such as the risk of
relapse, can only be taken into account by an analysis of its full trajectory in time [9]. As
an immediate example, if the total leukemic cell number is massive for the largest part of
the treatment, then the probability of inducing drug resistance is greater, compared to the
situation where the leukemic cell number is rapidly reduced from the onset, even if in both
cases the treatment manages to bring the leukemic cell number down to the same final size.

Consequently, it may be desirable not only to reach a given endpoint but also to reach
it along a specific route in the space of possible disease states, which is complex and only
partially observable. We have formulated these two situations separately: one situation is
where the dynamics matter as well as the endpoint, and the tumoral mass must decrease
under treatment along a prespecified curve (the first control problem, Section 3), and the
other situation is where only the end state is of interest (i.e., bringing the tumoral mass to a
given low value; Section 4—the second control problem).

In the first case, the drug works by increasing the cell death rate, acts on both normal
and leukemic cells, and can model any classical chemotherapy in exclusive use for any
acute form of leukemia (myeloid or lymphoblastic). The case cannot apply, however, to the
modern treatment of blast crises occurring in chronic myeloid leukemia (acute-like form),
in which a targeted drug is used in addition to classical therapy.

In the second case, the drug works by decreasing the multiplication rate, acts on
leukemic cells only, and models the effect of targeted therapies used in isolation. This case
refers specifically to the chronic or accelerated phases of chronic myeloid leukemia, involv-
ing a targeted drug from the tyrosine kinase inhibitor family (TKI) (Imatinib, Dasatinib,
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Nilotinib, Bosutinib, Ponatinib). These drugs have only marginal toxicity on normal cells
from the bone marrow, and a TKI is the single antileukemic treatment administered.

Note that an interesting application of the first control problem lies outside of the field
of leukemia treatment. If we replace the “normal” and “malignant” cell populations with
two—both normal—cell lineages, with different responses to a growth signal, the problem
relates to bone marrow homeostasis. Some other applications of our control problems, or
of some of their variants, to population dynamics in general could be also imagined.

1.2. Mathematical Model and Approach

Several mathematical models for cell dynamics in hematology have been proposed in
the last decades [10–26]. Most of these, as is the case with the pioneering model of blood
production from Mackey–Glass [27], use differential equations involving sigmoid or Hill
functions, since hematopoiesis is a self-limiting process. The kind of model expressed as

x′(t) =
ax(t)

1 + b(x(t) + y(t))
− cx(t)

y′(t) =
Ay(t)

1 + B(x(t) + y(t))
− Cy(t)

was introduced by Dingli and Michor [16] in order to describe the time competition between
the populations x(t) and y(t) of normal and leukemic hematopoietic stem cells. This system
has only two nonzero equilibria (steady states) that correspond to the normal hematological
state and the acute leukemic state, respectively, and thus the model does not support a
stable equilibrium in which both cell populations are non-zero, as in the case of the chronic
phase of the disease. This can, however, be achieved, as recently shown in [22], if more
realistically, instead of a unique sensitivity coefficient b for both normal and leukemic
populations, different sensitivity parameters b1, b2 with b1 > b2 are considered. Thus,
in [22], the authors arrived at the following model:

x′(t) =
ax(t)

1 + b1x(t) + b2y(t)
− cx(t) (1)

y′(t) =
Ay(t)

1 + B(x(t) + y(t))
− Cy(t)

where x(t), y(t) are the normal and malignant cell populations at time t, respectively; a, A
are the growth rates; c, C are the cell death rates; and b1, b2, B are sensitivity parameters
that govern the self-limiting process.

As is the case for many systems in population dynamics, the structure of this model
is symmetrical. The fact that the sensitivity coefficients b1, b2 in the first equation are
different (b1 > b2), unlike those in the second equation, where both are equal to B, is
only a simplification of the work, not a structural one, as explained on page 5 of [22]. The
structural symmetry of the model is further found in its qualitative analysis as performed
in [22]. Indeed, letting

d =
1
b1

( a
c
− 1
)

, D =
1
B

(
A
C
− 1
)

, d1 =
1
b2

( a
c
− 1
)

,

where the case D < d corresponds to the normal hematologic state; the case d < D < d1
corresponds to the chronic phase of the disease; and the case d1 < D stands for the acute
phase. In the first case, the system has the unique stable equilibrium (d, 0); in the second
case, the equilibrium is of the form (x∗, y∗), where both x∗, y∗ are positive; and in the third
case, the stable equilibrium is (0, D). We may say that the chronic case is the expression of
symmetry, while the normal and acute cases introduce asymmetry.

The present paper reports on the controllability of system (1). More exactly, two
controllability problems are considered. For the first control problem, in Section 3, the
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control is given by a function λ(t) (which quantifies the effect of the administered drug
dose, which is adjustable over time), which is intended to change the death rates c, C of
both normal and malignant cells such that a desired clinical evolution is achieved over
a given period of time. The model is related to classical chemotherapy. For the second
control problem, in Section 4, the control is a constant λ (connected to a constant drug dose)
intended to decrease the growth rate A of malignant cells. This model could be related to
targeted therapies. The stability of the two control problems is also established. Due to this
stability property, the actual administration of only an approximate dose leads, however,
to a result close to the expected one. The level of freedom to choose an approximate dose is
exactly established in terms of the parameters of the problem.

The analysis is based on a new method for the controllability of an abstract fixed
point equation and the stability of the general control problem, which is first introduced
in Section 2. Some numerical simulations accompany the theoretical results from Section 3
in order to demonstrate their practical applicability.

2. Controllability of a Fixed Point Equation

The two control problems inspired by hematology that are considered in this paper
are directly related to the general problem of the control systems as defined, for example,
by V. Barbu [28] (p. 34): “The general problem of control theory is that of reconstituting a
differential system (as a matter of fact, some of its parameters viewed as control variables)
from certain properties of the solution”. In this section, we first give a mathematical
formulation of the general problem of control theory, a solving principle, and a notion of
stability. All of these are stated in terms of nonlinear analysis, more exactly of the fixed
point theory.

2.1. A General Controllability Principle

Consider a general control problem that consists of finding (w, λ) a solution to the
following system: {

w = N(w, λ)
w ∈W, λ ∈ Λ, (w, λ) ∈ D.

(2)

where w is the state variable, λ is the control variable, W is the domain of the states, Λ is
the domain of controls, and D is the controllability domain, usually given by means of some
condition imposed to w, or to both w and λ. Notice the very general formulation of the
control problem, in terms of sets, where W, Λ and D ⊂W×Λ are not necessarily structured
sets and N is any mapping from W ×Λ to W.

In this context, we say that the equation w = N(w, λ) is controllable in W ×Λ with
respect to D, providing that problem (2) has a solution.

Let Σ be the set of all possible solutions (w, λ) of the fixed point equation and Σ1 be the
set of all w that are the first components of some solutions of the fixed point equation; that is,

Σ = {(w, λ) ∈W ×Λ : w = N(w, λ)},
Σ1 = {w ∈W : there is λ ∈ Λ with w = N(w, λ)}.

Clearly, the set of all solutions of the control problem (2) is given by Σ ∩ D.
Consider the set-valued map F : Σ1 → Λ defined as

F(w) = {λ ∈ Λ : w = N(w, λ) and (w, λ) ∈ D}.

Obviously, F(w) 6= ∅ for every w ∈ Σ1.
We have the following general principle for solving the control problem (2).

Proposition 1. If for some extension F̃ : W → Λ of F from Σ1 to W, there exists a fixed point
w ∈W of the set-valued map

Ñ(w) := N
(

w, F̃(w)
)

,
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i.e.,
w = N(w, λ), (3)

for some λ ∈ F̃(w), then, the couple (w, λ) is a solution of the control problem (2).

Proof. Since w ∈ W and λ ∈ Λ, one has w ∈ Σ1. Hence, F̃(w) = F(w). Then, λ ∈ F(w)
and from the definition of F, it follows that (w, λ) ∈ D. Therefore, (w, λ) solves (2).

Note that F and F̃ can be single-valued maps in particular.

2.2. Stability of the General Control Problem

Consider the control problem (2). Assume that (Λ, dΛ) is a metric space and consider
a family D = {Dε} of subsets of W × Λ, indexed by ε, where 0 ≤ ε < ε0, with the
following properties:

Dε ⊂ Dε′ for 0 ≤ ε ≤ ε′ < ε0, D0 = D,
⋂

0<ε≤ε0

Dε = D.

We say that a solution (w, λ) of the control problem (2) isD-stable if for every ε ∈ (0, ε0)
there exists δ = δ(ε, w, λ) > 0 such that(

w, λ
)
∈ Σ, dΛ

(
λ, λ

)
≤ δ =⇒

(
w, λ

)
∈ Dε.

We say that the control problem is D-stable if all its solutions are D-stable.
The following proposition contains a sufficient condition for the D-stability of the

control problem (2). It relies on a double continuous dependence of λ and of w.

Proposition 2. Assume that (W, dW) and (Λ, dΛ) are metric spaces and that the following
conditions are satisfied:

(a) For each solution (w, λ) ∈ Σ and ε > 0, there exists δ = δ(ε, w, λ) > 0 such that(
w, λ

)
∈ Σ, dΛ

(
λ, λ

)
≤ δ =⇒ dW(w, w) ≤ ε;

(b) For each solution (w, λ) ∈ Σ∩D and ε ∈ (0, ε0), there exists ε = ε(ε, w, λ) > 0 such that(
w, λ

)
∈ Σ, dW(w, w) ≤ ε =⇒

(
w, λ

)
∈ Dε.

Then, the control problem (2) is D-stable.

Proof. Let (w, λ) ∈ Σ ∩ D be any solution of the control problem and let ε ∈ (0, ε0). Let
ε and δ be the numbers guaranteed by conditions (b) and (a), respectively. If

(
w, λ

)
∈

Σ and dΛ
(
λ, λ

)
≤ δ, then from (a), we have dW(w, w) ≤ ε and next from (b),

(
w, λ

)
∈ Dε.

Hence, the solution (w, λ) is D-stable. The arbitrariness of the solution makes the control
problem to be D-stable.

Next, the above general principles of controllability and stability are applied to the
normal–leukemic system.

3. First Control Problem for the Normal–Leukemic System

We now apply Proposition 1 to the two-dimensional system of ordinary differential
equations modeling normal–leukemic cell dynamics in leukemia, namely

x′(t) = ax(t)
1+b1x(t)+b2y(t) − λ(t)cx(t)

y′(t) = Ay(t)
1+B(x(t)+y(t)) − λ(t)Cy(t)

x(0) = x0, y(0) = y0,

(4)
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where a > c, A > C, b1 > b2 > B. Here, λ is the control function, and it is assumed that
the patient starts the treatment with the initial cell populations x(0) = x0 and y(0) = y0.

3.1. Solving of the Control Problem

Let us change the variables as follows:

u := ln x, v := ln y

and denote u0 = u(0) = ln x(0), v0 = v(0) = ln y(0). First, dividing the two equations by
x and y, respectively, and then integrating, we obtain the integral system equivalent to the
initial value problem (4), namely u(t) = u0 +

∫ t
0

(
a

1+b1eu+b2ev − λ(s)c
)

ds

v(t) = v0 +
∫ t

0

(
A

1+B(eu+ev)
− λ(s)C

)
ds.

(5)

This is our equation w = N(w, λ), where w = (u, v), N = (N1, N2),

N1(u, v, λ)(t) = u0 +
∫ t

0

(
a

1 + b1eu + b2ev − λ(s)c
)

ds, (6)

N2(u, v, λ)(t) = v0 +
∫ t

0

(
A

1 + B(eu + ev)
− λ(s)C

)
ds.

Here, W = C
(
[0, T],R2), Λ = L∞(0, T), and the controllability domain D is intro-

duced by means of an objective condition of the type

v(t)
u(t)

= k(t)
v0

u0
=: r(t), t ∈ [0, T], (7)

for a given function

0 ≤ k(t) ≤ 1 (0 ≤ r(t) ≤ v0

u0
)

describing the expected response to treatment with r(0) = v0/u0. Assume that r ∈
W1,∞(0, T). For example, we may take the linear function

r(t) = k0
v0

u0

t
T
+

v0

u0

(
1− t

T

)
, t ∈ [0, T],

for which r(0) = v0/u0 and r(T) = k0v0/u0 for some number k0 < 1. This corresponds to
a linear response to the treatment, from the initial patient state v0/u0, to the final expected
state k0v0/u0. More generally, we may take r(t) of the form

r(t) =


v0
u0

, 0 ≤ t ≤ T0

v0
u0

[
1−

(
1− km

0
)( t−T0

T−T0

)n] 1
m

, T0 ≤ t ≤ T,
(8)

where 0 ≤ T0 < T, n ≥ 1 and m > 0 are fixed numbers, and again r(0) = v0/u0 and
r(T) = k0v0/u0. Furthermore, one can take a piecewise linear function that gives values at
some intermediate times as required by the medical protocol and verified by laboratory
tests. Obviously, other objective conditions can be considered instead (see Section 3.4).

The interpretation is as follows: the patient begins the treatment with the initial
ratio ln y0/ ln x0 , and during the treatment, it is expected that the ratio ln y(t)/ ln x(t) is
k(t)-times smaller than the initial ratio, and at the end T of the treatment time interval, it
reaches a prescribed safe level. Of course, the control variable λ by which the cell death rates
c and C are increased in order to guarantee the desired patient evolution depends on the
drug dose.
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The choice of v(t)/u(t) and y(t)/x(t) (Section 3.4), as opposed to other possible
tumor measures, is based on reasons grounded in medical practice. In hematology, the
treatment outcome is evaluated as a ratio between malignant cells and total (blood) cells.
This applies to the older cytology (the percentage of malignant cells out of total cells, as
seen under the microscope) and to more recent molecular methods (the number of copies of
the malignancy gene BCR-ABL vs. number of copies of normal ABL gene). The use of these
ratios originates in the technical impossibility of having an absolute count of leukemic cells
(or a proxy thereof) in a living organism. This is unlike the situation in general oncology,
where the volume of solid tumors can be assessed by MRI, CT, etc., and where the number
of malignant cells alone would have made sense as an objective function. The obtained
mathematical predictions can be easily mapped to biomedical data such as BCR-ABL ratios
and the percentage of blasts in the bone marrow or peripheral blood.

Theorem 1. If r ∈W1,∞(0, T), r(0) = v0/u0 and r(t) 6= C/c for all t ∈ [0, T], then the control
problem (5)–(7) has a unique solution (u, v, λ) ∈ C

(
[0, T],R2)× L∞(0, T).

Proof. Let (u, v) ∈ Σ1, that is (u, v) ∈ C
(
[0, T],R2) solves (5) for some λ ∈ L∞(0, T). Using

(5), replacing in (7) and solving in
∫ t

0 λ(s)ds, we obtain

∫ t

0
λ(s)ds (9)

=
r(t)u0 − v0

r(t)c− C
+

1
r(t)c− C

(
r(t)

∫ t

0

a
1 + b1eu + b2ev ds−

∫ t

0

A
1 + B(eu + ev)

ds
)

= : H(u, v).

Since r ∈ W1,∞(0, T), one has H : Σ1 → W1,∞(0, T). Then F : Σ1 → L∞(0, T) is a
single-valued map given by

F(u, v) = λ(t) =
d
dt

H(u, v).

Clearly, we may extend H from Σ1 to the whole space C
(
[0, T],R2) by using the

above expression of H. Let H̃ : C
(
[0, T],R2)→W1,∞(0, T) be this extension. Then we may

consider F̃ : C
(
[0, T],R2)→ L∞(0, T),

F̃(u, v) =
d
dt

H̃(u, v).

Now, our fixed point equation w = Ñ(w) becomes u = N1

(
u, v, F̃(u, v)

)
v = N2

(
u, v, F̃(u, v)

)
.

(10)

Since r(0) = v0/u0, one has H̃(u, v)(0) = 0 and so∫ t

0
F̃(u, v)(s)ds = H̃(u, v)(t).

Then using (6) we obtain

Ñ1(u, v)(t) = u0 − H̃(u, v)c +
∫ t

0

a
1 + b1eu + b2ev ds,

Ñ2(u, v)(t) = v0 − H̃(u, v)C +
∫ t

0

A
1 + B(eu + ev)

ds.
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Replacing H̃(u, v) by its expression (9) gives

Ñ1(u, v) = u0 − c
r(t)u0 − v0

r(t)c− C
+

(
1− r(t)c

r(t)c− C

) ∫ t

0

a
1 + b1eu + b2ev ds

+
c

r(t)c− C

∫ t

0

A
1 + B(eu + ev)

ds,

Ñ2(u, v) = v0 − C
r(t)u0 − v0

r(t)c− C
− r(t)C

r(t)c− C

∫ t

0

a
1 + b1eu + b2ev ds

+

(
1 +

C
r(t)c− C

) ∫ t

0

A
1 + B(eu + ev)

ds.

Since the functions a
1+b1eu+b2ev and A

1+B(eu+ev)
are Lipschitz continuous in both u and

v in R2, and the operator N is of Volterra type, using Bielecki’s technique of equivalent
norms and Banach’s contraction principle, one arrives to the conclusion that system (10) has
a unique solution (u, v). In addition, the solution is the limit of the successive approximation
sequence starting with any initial point. Thus, system (4) is controllable. Finally, using
the solution (u, v), we first compute H(u, v) according to (9) and then the control function
λ(t) by

λ(t) =
d
dt

H(u, v)

=
r′(t)u0

r(t)c− C
− (r(t)u0 − v0)r′(t)c

(r(t)c− C)2 +
r′(t)

r(t)c− C

∫ t

0

a
1 + b1eu + b2ev ds

+
r(t)a

(r(t)c− C)(1 + b1eu + b2ev)
− r(t)r′(t)c

(r(t)c− C)2

∫ t

0

a
1 + b1eu + b2ev ds

− A
(r(t)c− C)(1 + B(eu + ev))

+
r′(t)c

(r(t)c− C)2

∫ t

0

A
1 + B(eu + ev)

ds.

Remark 1. Let (u, v, λ) be the solution of the control problem.

(a) (control regularity) In case r ∈ C1[0, T], one has λ ∈ C[0, T].
(b) (continuous dependence) If uk → u and vk → v as k → ∞, uniformly on [0, T] and

λk(t) := dH(uk, vk)/dt, then λk → λ as k→ ∞ in L∞(0, T).

3.2. Stability of the Control Problem

We now discuss the stability of the control problem (5)–(7) by using Proposition 2.
Let (u, v, λ) be the solution of the control problem with the objective condition

v(t)/u(t) = r(t). The stability issue that we consider is the following: how close to
the exact drug prescription given by function λ(t) should be the administrated treatment,
let it be λ(t), in order that the final result v(T)/u(T) =: r(T) differs from the desired one
r(T) by at most ε? More exactly, for a given ε > 0, find δ > 0 such that∥∥λ− λ

∥∥
∞ ≤ δ implies |r(T)− r(T)| ≤ ε.

The even more complete response is given by the following theorem.

Theorem 2. Let (u, v, λ) be the solution of the control problem (5)–(7). For a given λ ∈ L∞(0, T),
we denote by (u, v) the corresponding solution of system (5) and by r(t) the ratio v(t)/u(t).
Then, for any small ε > 0, denoting γ = (c + C)Te(a+A)T , one has

∥∥λ− λ
∥∥

∞ ≤
εu(T)

(1 + r(T)− ε)γ
=: δ implies ‖r− r‖∞ ≤ ε. (11)
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Proof. Using the Lipschitz-type estimate∣∣∣∣ a
1 + b1eu + b2ev −

a
1 + b1eu + b2ev

∣∣∣∣ ≤ a(|u− u|+ |v− v|)

and the analogue inequality for A/(1 + B(eu + ev)) gives

|u(t)− u(t)| ≤ a
∫ t

0
(|u(s)− u(s)|+ |v(t)− v(t)|)ds + δcT,

|v(t)− v(t)| ≤ A
∫ t

0
(|u(s)− u(s)|+ |v(t)− v(t)|)ds + δCT.

Then, taking the sum

|u(t)− u(t)|+ |v(t)− v(t)| ≤ (a + A)
∫ t

0
(|u(s)− u(s)|+ |v(t)− v(t)|)ds

+δ(c + C)T

and Gronwall’s inequality yields

|u(t)− u(t)|+ |v(t)− v(t)| ≤ δ(c + C)Te(a+A)T = δγ =: ε.

This implies

u(t)− ε ≤ u(t) ≤ u(t) + ε,

v(t)− ε ≤ v(t) ≤ v(t) + ε,

where
v(t)− ε

u(t) + ε
− r(t) ≤ r(t)− r(t) ≤ v(t) + ε

u(t)− ε
− r(t),

or equivalently

− ε(1 + r(t))
u(t) + ε

≤ r(t)− r(t) ≤ ε(1 + r(t))
u(t)− ε

.

Then,

|r(t)− r(t)| ≤ ε(1 + r(t))
u(t) + ε

≤ ε (t ∈ [0, T]), (12)

where ε ≥ ε maxt∈[0,T]
1+r(t)
u(t)+ε

.

Thus, the conditions of Proposition 2 are fulfilled for

Dε : = {(w, λ) ∈ C
(
[0, T],R2

)
×W1,∞(0, T) :

w = (u, v), | v(t)− r(t)u(t)| ≤ ε|u(t)| for all t ∈ [0.T]},

ε = ε min
t∈[0,T]

u(t)
1− ε + r(t)

, δ =
ε

γ
,

which shows that the control problem (2) is D-stable.
Finally, conclusion (11) is immediate from (12).

Remark 2. The medical interpretation of the result in Theorem 2 is as follows: if the administrated
drug dose is close enough to the prescribed dose given by the solution of the control problem, then
the result of the treatment applied to the patient does not differ much from the intended result.

3.3. Numerical Simulations

Below, we illustrate the theoretical results obtained for the first controllability problem
by numerical simulations using the Maple software and an modified package for numerical
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and graphical solutions of Volterra integral equations. The initial Maple package for
numerical solutions of Volterra integral equations was published by L.C. Backer and
M. Wheeler [29]. For more information about numerical methods for Volterra integral
equations, see the books by T.A. Burton [30] and P. Linz [31].

In this section, we compute some numerical simulations considering the system of
Volterra integral equations (10); more exactly,

u(t) = u0 − c r(t)u0−v0
r(t)c−C +

∫ t
0

{(
1− r(t)c

r(t)c−C

)
a

1+b1eu(s)+b2ev(s) +
c

r(t)c−C
A

1+B(eu(s)+ev(s))

}
ds

v(t) = v0 − C r(t)u0−v0
r(t)c−C +

∫ t
0

{
− r(t)C

r(t)c−C
a

1+b1eu(s)+b2ev(s) +
(

1 + C
r(t)c−C

)
A

1+B(eu(s)+ev(s))

}
ds.

For these numerical simulations, we may take the expression of the function r(t) given
by (8).

We restrict our simulations to two cases: Case 1 (the chronic phase of the disease),
where the parameters of the nonlinear Volterra integral system have values such that the
condition of chronicity (d < D < d1) holds a = 5, b1 = 0.75× 10−5, b2 = 0.38× 10−5,
c = 0.05, A = 7, B = 0.19× 10−5, C = 0.2; and Case 2 (the accelerated–acute phase of the
disease), where the parameters of the nonlinear Volterra integral system have values such
that the condition of the accelerated–acute phase (d1 < D) holds a = 5, b1 = 0.75× 10−5,
b2 = 0.38× 10−5, c = 0.05, A = 7, B = 0.19× 10−5, C = 0.1. The parameters of the
function r(t) are k0 = 0.1, T = 20, n = 2, m = 1/2, T0 = 0 and the initial conditions for
this two simulations are u0 = 15.76142071, v0 = 16.11809565. The above parameter values
were first estimated in the paper of Dingli and Michor [16], and we have analyzed this
set of parameters in our previous work Parajdi et al. [22]. The step size for the numerical
integration is h = 0.1.

Note that, although no longer relevant to clinical practice, in order to illustrate how
the overall appearance of λ(t) changes with different model parameters, we have made
computations for a parameter set of chronic myeloid leukemia (CML) as well. This describes
a purely hypothetical case in which a chronic disease was treated with conventional
chemotherapy (for the chronic phase of CML see Figures 1 and 2, and Table 1, and in
addition for the accelerated-acute phase of CML see Figures 3 and 4, and Table 2).

(a) The graph of function r(t). (b) The control function λ(t).

Figure 1. The graph of the function r(t) and the graph of the control function λ(t) in Case 1 (chronic
phase) of the simulations.
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(a) The graph of function u(t). (b) The graph of function v(t).

Figure 2. The approximate solutions of the system of two nonlinear Volterra integral equations, given
by (10), obtained in Case 1 (chronic phase).

(a) The graph of function r(t). (b) The control function λ(t).

Figure 3. The graph of the function r(t) and the graph of the control function λ(t) in Case 2
(accelerated–acute phase) of simulations.

(a) The graph of function u(t). (b) The graph of function v(t).

Figure 4. The approximate solutions of the system of two nonlinear Volterra integral equations, given
by (10), obtained in Case 2 (accelerated–acute phase).
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Table 1. Numerical simulations of the system of two nonlinear Volterra integral equations, given
by (10), obtained in Case 1 (the chronic phase of the disease).

t u(t) v(t) v(t)/u(t) λ(t)

0.0 15.76142 16.11810 1.02263 1.03667861
1.0 15.74559 16.04691 1.01914 1.82681929
2.0 15.69218 15.82858 1.00869 2.72096808
3.0 15.60090 15.46682 0.99141 3.73208846
4.0 15.47141 14.96789 0.96745 4.88700566
5.0 15.30324 14.34054 0.93709 6.21220861
6.0 15.09671 13.59667 0.90064 7.72168000
7.0 14.85444 12.75238 0.85849 9.42156274
8.0 14.58279 11.82826 0.81111 11.31917081
9.0 14.29297 10.84895 0.75904 13.40181913

10.0 14.00196 9.84183 0.70289 15.58459339
11.0 13.73138 8.83391 0.64334 17.68482475
12.0 13.50188 7.84645 0.58114 19.48688614
13.0 13.32522 6.89067 0.51712 20.85563950
14.0 13.20103 5.96906 0.45217 21.77786674
15.0 13.12077 5.08115 0.38726 22.31403995
16.0 13.07384 4.22854 0.32343 22.53852452
17.0 13.05129 3.41688 0.26180 22.51022240
18.0 13.04694 2.65569 0.20355 22.26679888
19.0 13.05703 1.95760 0.14993 21.82786481
20.0 13.07965 1.33756 0.10226 21.19948845

Table 2. Numerical simulations of the system of two nonlinear Volterra integral equations, given
by (10), obtained in Case 2 (the accelerated–acute phase of the disease).

t u(t) v(t) v(t)/u(t) λ(t)

0.0 15.76142 16.11810 1.02263 3.15804
1.0 15.59321 15.89161 1.01914 6.05741
2.0 15.27793 15.41073 1.00869 9.93469
3.0 14.76795 14.64103 0.99141 16.19792
4.0 13.93492 13.48141 0.96745 29.76677
5.0 12.57768 11.78644 0.93709 57.07073
6.0 11.49280 10.35085 0.90064 66.27579
7.0 11.14817 9.57058 0.85849 66.82106
8.0 11.05090 8.96350 0.81111 67.63740
9.0 11.01412 8.36017 0.75904 68.47741
10.0 10.99174 7.72598 0.70289 69.17105
11.0 10.97355 7.05969 0.64334 69.69562
12.0 10.95824 6.36825 0.58114 70.06188
13.0 10.94651 5.66061 0.51712 70.28064
14.0 10.93937 4.94642 0.45217 70.35631
15.0 10.93770 4.23573 0.38726 70.28740
16.0 10.94224 3.53910 0.32343 70.06809
17.0 10.95364 2.86770 0.26180 69.68924
18.0 10.97248 2.23344 0.20355 69.13897
19.0 10.99933 1.64909 0.14993 68.40266
20.0 11.03477 1.12845 0.10226 67.46265

3.4. A Different Objective Condition

As already noted, some other objective conditions can be considered for the first
control problem. One of these, with immediate practical importance, consists of following
a predefined path for the ratio y(t)/x(t) instead of ln y(t)/ ln x(t) from (7). Hence, given a
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function r(t) with k0
y0
x0
≤ r(t) ≤ y0

x0
(t ∈ [0, T]), r(0) = y0/x0 and r(T) = k0y0/x0, we look

for λ(t) such that problem (4) has a solution (x, y) such that

y(t)
x(t)

= r(t), t ∈ [0, T].

With the notations from Section 3.1, from (5), one has

v(t)− u(t) = v0 − u0 +
∫ t

0

(
A

1 + B(eu + ev)
− a

1 + b1eu + b2ev

)
ds

+(c− C)
∫ t

0
λ(s)ds.

Assuming that C 6= c and taking into account that v(t)− u(t) = ln(y(t)/x(t)), we find∫ t

0
λ(s)ds =

1
c− C

(
ln r(t)− ln r(0) +

∫ t

0

(
a

1 + b1eu + b2ev −
A

1 + B(eu + ev)

)
ds
)

.

Hence,

λ(t) =
1

c− C

(
r′(t)
r(t)

+
a

1 + b1x(t) + b2y(t)
− A

1 + B(x(t) + y(t))

)
.

This gives the expression of F̃(x, y), and adding this into the integral equivalent
version of (4) leads to a fixed point equation in (x, y) which, as in Section 3.1, has a unique
solution.

The stability of the solution and numerical simulations for this problem can be deter-
mined similarly.

4. Second Control Problem for the Normal–Leukemic System

Our second problem for the normal–leukemic cell dynamic system is to reduce the
leukemic cell population to an acceptable level; this time, by controlling the proliferation
rate of leukemic cells. Thus, we consider the system

x′ = ax
1+b1x+b2y − cx

y′ = λAy
1+B(x+y) − Cy

x(0) = x0, y(0) = y0

(13)

where number λ > 0 is the control parameter.

4.1. Solving of the Control Problem

Making the same change of variables as above yields the following system of inte-
gral equations: {

u(t) = u0 − ct +
∫ t

0
a

1+b1eu+b2ev ds
v(t) = v0 − Ct + λ

∫ t
0

A
1+B(eu+ev)

ds
(14)

to which we associate the objective condition

v(T) = vT , (15)

where vT is the expected level of leukemic cells after a period of time T.
Compared with the abstract problem from Section 2, here

W = C
(
[0, T],R2

)
, Λ = R+, D = {(u, v, λ) ∈ C

(
[0, T],R2

)
×R+ : v(T) = vT}

and system (14) stands for the fixed point equation w = N(w, λ), with w = (u, v).
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Applying the general principle given by Proposition 1, we obtain the following
controllability result.

Theorem 3. For each number vT with max{0, v0 − CT} < vT < v0, the control problem
(14) and (15) has a solution (u, v, λ) ∈ C

(
[0, T],R2)× (0,+∞).

Proof. Let (u, v) ∈ Σ1, that is (u, v) ∈ C
(
[0, T],R2) solves (14) for some λ ∈ R+. From the

second equation of (14), we then have

λ =
1∫ T

0
A

1+B(eu+ev)
ds

(vT − v0 + CT), (16)

hence, F : Σ1 → R+ is given by

F(u, v) =
1∫ T

0
A

1+B(eu+ev)
ds

(vT − v0 + CT).

Clearly, we may extend F from Σ1 to C
(
[0, T],R2) by using the same expression, namely

F̃(u, v) =
1∫ T

0
A

1+B(eu+ev)
ds

(vT − v0 + CT) for (u, v) ∈ C
(
[0, T],R2

)
.

Now, our fixed point equation w = Ñ(w), with Ñ(w) = N
(

w, F̃(w)
)

, becomes


u = u0 − ct +

∫ t
0

a
1+b1eu+b2ev ds

v = v0 − Ct + vT−v0+CT∫ T
0

A
1+B(eu+ev) ds

∫ t
0

A
1+B(eu+ev)

ds.

Hence,

Ñ1(u, v)(t) = u0 − ct +
∫ t

0

a
1 + b1eu + b2ev ds,

Ñ2(u, v)(t) = v0 − Ct +
vT − v0 + CT∫ T
0

A
1+B(eu+ev)

ds

∫ t

0

A
1 + B(eu + ev)

ds.

The existence of a fixed point w of Ñ can be guaranteed by using Schauder’s fixed
point theorem. Indeed, the operator Ñ is completely continuous, as follows immediately
from the Arzelà–Ascoli theorem. On the other hand, one has

u0 − cT ≤ Ñ1(u, v)(t) ≤ u0 + aT,

v0 − CT ≤ Ñ2(u, v)(t) ≤ vT + CT.

Consequently, there are R1, R2 > 0 with∥∥∥Ñ1(u, v)
∥∥∥

∞
≤ R1,

∥∥∥Ñ2(u, v)
∥∥∥

∞
≤ R2

for all u, v ∈ C[0, T]. Hence, Ñ(S) ⊂ S, where S := {(u, v) ∈ C
(
[0, T],R2) : ‖u‖∞ ≤ R1,

‖v‖∞ ≤ R2}. Thus, Schauder’s fixed point theorem applies and guarantees the existence in
S of a fixed point w = (u, v) of Ñ. Finally, the control λ is calculated using Formula (16),
with u and v thus determined.
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Remark 3. Since (13) is a Volterra system with Lipschitz nonlinearities, for any given λ, system (13)
has a unique solution (u, v). In particular, for the value λ corresponding to a solution (u, v, λ) of
the control problem, the trajectory (u, v) is unique. We may interpret this note in the following
way: for a prescribed drug dose, the patient’s evolution is uniquely determined.

4.2. Stability of the Control Problem

Theorem 4. Let (u, v, λ) be a solution of the control problem (14) and (15). For a given λ ∈ R+,
denote by (u, v) the corresponding solution of system (14) and vT := v(T). Then, for any small
ε > 0, one has ∣∣λ− λ

∣∣ ≤ ε

AT
e−(a+λA)T =: δ implies |vT − vT | ≤ ε. (17)

Proof. As before, using the Lipschitz estimates, one has

|u(t)− u(t)| ≤ a
∫ t

0
(|u(s)− u(s)|+ |v(t)− v(t)|)ds,

|v(t)− v(t)|

≤
∣∣λ− λ

∣∣ ∫ t

0

A
1 + B(eu + ev)

ds + λ
∫ t

0

∣∣∣∣ A
1 + B(eu + ev)

− A
1 + B(eu + ev)

∣∣∣∣ds

≤ ATδ + λA
∫ t

0
(|u− u|+ |v− v|)ds.

Then, taking the sum

|u(t)− u(t)|+ |v(t)− v(t)| ≤ (a + λA)
∫ t

0
(|u(s)− u(s)|+ |v(t)− v(t)|)ds

+ATδ

and Gronwall’s inequality yields

|u(t)− u(t)|+ |v(t)− v(t)| ≤ ATδe(a+λA)t. (18)

In view of the expression of δ, this implies

|vT − vT | ≤ ε.

Remark 4. Estimate (18) shows us that for a treatment λ close enough to the prescribed treatment λ,
the patient’s evolution (u(t), v(t)) remains in the vicinity of the prescribed evolution (u(t), v(t)).

5. Discussion

Model applicability: In the developmental hierarchy of bone marrow, whether nor-
mal or leukemic, there are four cell types (stem cells, progenitors, differentiated, and
terminally differentiated). Our model aggregates over the properties of all cell types in
the hierarchy to model a unique cell type for the normal phenotype and another unique
cell type for the leukemic phenotype. Our abstract cells have regulatory negative feed-
back on the growth found at the stem cell level 1/(1 + b1x + b2y) and 1/(1 + Bx + By),
respectively), the high growth rates of progenitor cells (large a and A), and the differen-
tiated and terminally differentiated bulk mass effect, which eventually accounts for the
disease dynamics.

Although our model was developed for chronic myelogenous leukemia, it applies to
any leukemia type, acute or chronic, as long as it can be assumed that, over the considered
timespan, all basic parameters of cell kinetics are time invariant. It does not apply to the
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natural course of chronic leukemia as a whole, from subclinical to blast crises, where the
growth rate A increases by orders of magnitude with disease progression.

Moreover, our model can be easily extended to other physiological conditions. In our
stability analysis, we have defined the satisfactory success criterion as |r− r| < ε, allowing
for small deviances both above and beyond the set point. This relates our model to general
models of tissue development and homeostasis, where two normal cell populations (instead
of normal and leukemic) compete for space but are both desirable and are regulated by a
single molecular signal (instead of chemotherapy).

First control problem: We divided up the treatment protocol into two phases. The
first is a burn-in phase, from time t = 0 to T0, in which the drug infusion only freezes
the cellular status quo, keeping the malignant/normal cells ratio constant in time (at
pretreatment value). In practice, this phase should be very short, as it exposes the patient to
additional drug toxicity. It could be useful in clinical trial settings to assess the side effects
of chemotherapy separately from the effects of the disease progression or to avoid tumor
lysis syndrome at the onset of an induction cycle.

In the next phase, from t = T0 to final T, the tumor mass is reduced along a predefined
curve, with its final point dependent on the subunitary parameter k0, and its steepness on
the exponent m.

Theorem 2 explores the stability conditions of the control problem, namely establishing
the maximum allowable deviation of the drug delivery rate from an ideal delivery schedule,
such as if the actual endpoint of the treatment remains within the vicinity of the desired
endpoint (only a small fraction of malignant cells remaining, k0v0/u0). Crucially, we found
the admissible error for the infusion function λ(t) to decrease exponentially with both the
growth rates a (of the normal cells) and A (of leukemic cells). This suggests that it may
be much harder to achieve an ideal control of acute leukemia, compared to other tumor
types, due to the higher division rates of leukemia and its normal cellular background. The
admissible error only depends inversely on a linear combination of the cell decay rates c
and C, indicating that the rates of spontaneous cell death only marginally influence the
control compared with the growth rates.

We found the same inverse exponential dependence on the total time treatment, T.
Acute leukemia cannot be equated with a “time-compressed” version of chronic leukemia,
which behaves and is treated quite differently. Still, our results may suggest generally that
the control of a slowly growing tumor, over a longer time, is equally hard to obtain as the
control of an “acute” tumor over a shorter time span, insofar as the assumptions of our
model hold.

In practice, the main sources of oscillations of the drug delivery function λ(t) are the
pharmacokinetic excursions of systemic drug levels, since chemotherapy is administered
discontinuously. Our results establish a theoretical limit for how large these excursions can
be, while still allowing for a cure (and implicitly a limit on the interdose intervals).

Second control problem: We obtained a similar exponential relation for the stability
of the second control problem (Theorem 4), where the drug dose lambda is constant in
time. The caveat here is that factor is e−(a+λA)T instead of e−(a+A)T . This implies that,
with faster leukemic cell production rates A and a subsequent need for higher drug levels
λ, to achieve the same end result, the control is exponentially harder to obtain.
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