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Abstract: Quantum turbulence is characterized by many degrees of freedom interacting non-linearly
to produce disordered states, both in space and in time. In this work, we investigate the decaying
regime of quantum turbulence in a trapped Bose-Einstein condensate. We present an alternative
way of exploring this phenomenon by defining and computing a characteristic length scale, which
possesses relevant characteristics to study the establishment of the quantum turbulent regime. We
reconstruct the three-dimensional momentum distributions with the inverse Abel transform, as
we have done successfully in other works. We present our analysis with both the two- and three-
dimensional momentum distributions, discussing their similarities and differences. We argue that
the characteristic length allows us to intuitively visualize the time evolution of the turbulent state.

Keywords: quantum turbulence; Bose-Einstein condensate; out-of-equilibrium

1. Introduction

Turbulence is a process that occurs in many types of fluids and a broad range of
length scales, and it is characterized by chaotic changes in the flow velocity and pressure.
The field of quantum turbulence (QT) investigates turbulence in quantum fluids, mainly
liquid helium and trapped Bose-Einstein condensates (BECs) [1,2]. Many features of
classical turbulence are not entirely explained, to the extent that Feynman deemed it the
most important unsolved problem in classical physics [3]. Consequently, dealing with
QT may seem a challenging task [3]. However, turbulence in quantum fluids might be
more manageable than its classical equivalent because the vortex circulation is quantized
in the former and continuous in the latter. Furthermore, from a technical point of view,
the advances in cooling and tuning the interparticle interactions in trapped atomic BECs
make them attractive candidates for investigating quantum turbulence and connecting it
to related fields [4].

The first observation of turbulence in a trapped BEC, and its self-similar expansion,
dates to 2009 [5]. Since then, considerable progress has been made in identifying and
characterizing QT. A significant breakthrough in the area was the observation of a particle
cascade, which appears as a power law in the momentum distribution [6,7],

n(k) ∝ k−δ, (1)

where δ is a positive constant, and its value depends on the mechanism behind the genera-
tion of the turbulent state.

There are some intrinsic obstacles in determining the momentum range, where the
power law is observed and its characteristic exponent. The range of momentum scales
present in trapped BEC systems is small compared to superfluid helium, for example. The
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exponent of the power law depends on the mechanism behind the turbulence, and different
theoretical models predict exponents to be close together. Unfortunately, experiments do
not have the necessary precision to distinguish between them. Hence, strategies other
than the power law identification have been employed to identify and characterize QT.
Energy and particle fluxes have been used in simulations [8,9] and experiments [10,11] to
overcome some of these difficulties. Since turbulence and disorder are intimately related,
an approach based on the entropy of turbulent BECs has also been successfully applied [12]
as an alternative method to investigate and characterize quantum turbulence.

A typical scale used to study turbulence in liquid helium is the vortex line density. Its
time dependence provides evidence of the mechanism behind the turbulent regime [13]. In
some 4He experiments, where visualization techniques are well-developed, the geometry
and interactions of vortices can be directly observed [14]. In trapped BECs, where the
range of length scales available is much smaller, the visualization techniques have not yet
reached the same level of detail.

In this work, we employed a length scale associated with the momentum distribution
n(k) to study the onset of turbulence and the turbulent state. It is inspired by the integral
length scale, which is a quantity commonly used in classical turbulence. If we assume
isotropic flow, then the integral length scale LE can be written in terms of the incompressible
kinetic energy spectrum E(k) [13,15,16],

LE(t) ∝

∫ ∞
0 dk E(k, t)/k∫ ∞

0 dk E(k, t)
. (2)

Casting Equation (2) in this form also illustrates that it is the length scale that contains
most of the energy of the system.

It is known from numerical simulations that in some cases turbulence is mainly in
the form of waves, and in sother cases mainly in the form of vortices, depending on the
excitation protocol and boundary conditions of the system. Since moving vortices radiate
waves and strong waves can create vortices, the relative proportion of waves and vortices
depends on the particular experiment. In numerical simulations, one has access to the phase
of the wave function [17]. Thus, the circulation can be computed to distinguish vortices
from waves. Moreover, in the simulations, one can formally identify the compressible
kinetic energy, which comes from waves, and the incompressible kinetic energy related
to vortices. Unlike in the simulations, in the experiments, we cannot separate waves and
vortices so easily.

However, with current experimental techniques, we can measure the momentum
distribution n(k) independently of its origin: waves, vortices, or a combination of both.
Hence, with Equation (2) in mind, we define the following length scale,

L(t) =

∫ ∞
0 dk n(k, t)/k∫ ∞

0 dk n(k, t)
. (3)

Intuitively, L is associated with the scale where most of the particles reside. In this
work, we investigated the behavior of this quantity, and we showed that it is possible to
use it to study a turbulent BEC.

Besides the difficulties mentioned above, there is also an experimental challenge when
studying QT in trapped BECs. The momentum distribution of the cloud is obtained using a
two-dimensional (2D) projection of the three-dimensional (3D) condensate. We employed
the inverse Abel transform, an integral transform that connects the 2D projection of an
axially or spherically symmetric function to its 3D value, to reconstruct the momentum
distribution of the three-dimensional cloud. We showed that the results for the characteristic
length scale are qualitatively the same if calculated using the two-dimensional projection.
This indicates that it is possible to study some aspects of the turbulent states using the
experimental data directly, without reconstructing the three-dimensional cloud.
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This work is structured as follows. First, we provide the experimental details of how
the BECs are produced and excited. Then, we present the momentum distributions in both
two and three dimensions. These are used to compute the characteristic length scale and
other quantities related to it. We discuss both the implications of our findings regarding
the length scale and the projection of the cloud. In the Appendix A, we provide the Abel
transforms of momentum distributions relevant to our system.

2. Experimental Procedure

The first step is the production of a Bose-Einstein condensate in equilibrium. A
typical BEC contains ≈ 4 × 105 rubidium-87 atoms in the hyperfine state |F, mF〉 =
|2, 2〉, confined in a Quadrupole–Ioffe configuration (QUIC) magnetic trap of frequen-
cies ωr/2π = 130.7(8)Hz and ωx/2π = 21.8(2)Hz. Hereafter, we adopted the convention
of reporting the uncertainties as one standard deviation between parenthesis. Before any
excitation is applied, the BEC in equilibrium has a condensate fraction of 70(5)%. The
chemical potential at the center of the cloud is µ0/kB = 124(5) nK, and the healing length
is ξ = 0.15(2)µm.

In Figure 1a, we present schematically the protocol we employed to drive the BEC
out of equilibrium. Following the condensate production, an oscillating magnetic field
is applied while it is still in the trap. The field is produced by a pair of coils, placed in
an anti-Helmholtz configuration, with their axis tilted by a small angle of approximately
5◦ with respect to the axis of the trap. The excitation potential is given by Vexc(r, t) =
A[1− cos (Ωt)]x′/Rx, where x′ is the coordinate in the rotated frame and Rx = 42µm is
the in-trap extent of the BEC along the x-axis of the trap. Since the perturbation is not
aligned with the axes of the trap, the oscillations generate deformations, displacements,
and rotations. Several excitation parameters can be varied, such as the amplitude A, total
excitation time, and perturbation frequency. In this work, we performed the parametric
excitation of fixed frequency Ω/(2π) = 132.8 Hz, close to the radial trapping frequency,
ωr/2π = 130.7(8)Hz.

Figure 1. (a) Schematic representation of the excitation protocol. The experiment begins with the
production of an unperturbed BEC in the trap. Then, a sinusoidal potential of amplitude A and
period τ is applied during texc. The system evolves during a time t, after which the trap is released,
and an absorption image is taken after a time-of-flight tToF. (b) Absorption images for an excitation
amplitude of A = 1.8 µ0 as a function of the holding time.

We increased the excitation amplitude until reaching a value where the momentum
distribution corresponds to an out-of-equilibrium state, and we look for turbulent character-
istics. The energy input to the condensate is related to both the total excitation time and the
amplitude of the perturbation. Larger amplitudes need less time to reach similar conditions
than it would take for smaller amplitudes. The range of amplitudes and excitation times to
obtain a turbulent state was the topic of investigation in previous works [18]. In this work,
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we chose to apply the excitation protocol during a time texc = 5τ, where τ = 2π/Ω. The
amplitude A is varied, ranging from 0 (no perturbation) to 2.2 µ0.

After the excitation is turned off, we hold the cloud for a time t inside the trap, often
called holding time, which is varied from 20 to 90 ms. During this time, the temporal
evolution of the momentum distribution n(k, t), which we are interested in, occurs. Next,
we turn off the trap potential and measure n(k, t) using absorption images taken from the
ballistic expansion of the cloud after a time of flight (ToF) of tToF = 30 ms. In Figure 1b, we
show typical absorption images corresponding to an excitation amplitude of A = 1.8 µ0
for different holding times t.

For each excitation amplitude and holding time, we perform several realizations of the
experiment and then average the results. In Figure 2, we show a typical two-dimensional
momentum distribution obtained from the absorption images. The distance that an atom
has traveled from the center of the cloud, after a time tToF, is given by r = h̄tToFk/m, where
m is the mass of a rubidium-87 atom. Thus, in practice, the ToF technique corresponds to
a Fourier transform of the spatial distribution, which yields the momentum distribution,
n(r) ∝ n(h̄tToFk/m). There are known shortcomings of the ToF technique, which do not
significantly impact the measurement of our momentum distributions, mainly because the
turbulent state is kinetically dominated [19]. For a more detailed discussion, the reader is
referred to Reference [12] and references therein. This technique has been used successfully
in the past to obtain the momentum distribution of turbulent trapped BECs [6,7].

Figure 2. Momentum distribution n(kx, ky) obtained from the absorption images of the cloud for an
excitation of amplitude A = 1.8 µ0 and t = 36.7 ms.

3. Momentum Distributions

We performed angular averages on the momentum distributions n(kx, ky, t) obtained
from the absorption images, such that the resulting profiles depend only on k = (k2

x + k2
y)

1/2.
The two-dimensional momentum distributions n2D(k, t) are normalized according to

2π
∫

dk k n2D(k, t) = 1. (4)

As discussed above, an experimental challenge when studying momentum distribu-
tions of trapped BECs is that the absorption images correspond to a projection of the cloud.
We overcome this difficulty by considering the symmetry of the trapped BEC in momentum
space. The inverse Abel transform [20–22] has been successfully used in the literature [6,7]
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to obtain the 3D momentum distribution from its two-dimensional projection. It is an
integral transform given by

n3D(k, t) = − 1
π

∫ ∞

k

dn2D(k′, t)
dk′

dk′√
k′2 − k2

. (5)

We normalized the distributions according to

4π
∫

dk k2 n3D(k, t) = 1. (6)

The signature of a particle cascade is a power law, n(k) ∝ k−δ. Equations (4) and (6),
together with dimensional analysis, suggest that if we observe a power law both in the
two-dimensional momentum distribution, n2D(k) ∝ k−δ2D , and in the three-dimensional
one, n3D(k) ∝ k−δ3D , then their exponents differ by one, δ3D − δ2D = 1. To go beyond
simple dimension analysis, in Appendix A, we derive this relation analytically for the
case where a power law is present over the whole k-range. Although this toy-model is
nonphysical, it sheds light on how we can reconstruct the three-dimensional momentum
distribution based on symmetry arguments.

In our system, the low-momenta region of n(k) is dominated by the presence of the
condensate, which corresponds to a Gaussian distribution. We show in Appendix A that the
inverse Abel transform of a Gaussian function is also a Gaussian with the same width. This
symmetry is extremely useful because we can work with the two-dimensional projections
for quantities related to the Gaussian shape without the need for 3D reconstruction. This is
the case of the temperature, which is related to the width of the Gaussian.

All the arguments presented above indicate that the power-law exponents in an ideal
situation would be related through δ3D − δ2D ≈ 1. However, the fact that we have the
power-law behavior superimposed with the condensate at the low-momenta region of the
momentum distribution alters this relation. Hence, we need to verify the exponents with
the experimental data.

A power law is simply a line in a log–log plot of the momentum distribution as
a function of k. We then look for a time window when, in a certain k-range, n(k) is
proportional to k−δ, the particle cascade characteristic of a turbulent cloud. We performed
the experiment described in Section 2 employing six different excitation amplitudes. For
only the three highest ones, A = 1.8, 2.0, and 2.2 µ0, we observed the appearance of a
power-law, around t ≈ 35 ms and in the region 10µm−16 k 6 15µm−1. We found the
exponents δ2D = 3.1(1) and δ3D = 3.8(2), which lead to δ3D − δ2D = 0.7(3). It is interesting
to see that even in our finite-sized non-homogeneous system inside an anisotropic trap, we
still have δ3D − δ2D close to one.

In Figure 3, we present the time evolution of both the two- and three-dimensional
momentum distributions for an excitation amplitude of A = 1.8 µ0 (which is qualitatively
the same for A = 2.0 and 2.2 µ0). As we wait after the external excitation has been turned off,
the distribution evolves, promoting the population from low to high momentum values, as
can be seen in Figure 3.

Some words regarding the values of the exponents we found are in order. To the best
of our knowledge, there is no theoretical work that describes all aspects of the experiments
we performed, mainly for two reasons. First, our condensate is produced in an anisotropic
trap. From the theoretical perspective, it is much easier to implement periodic boundary
conditions and describe, or simulate, bulk systems. Second, the route we take is the
inverse of most experiments. We begin with a BEC in equilibrium and then excite it,
while, for example, quench experiments usually start with a thermal gas and produce a
condensate [23,24]. However, after these considerations, we can compare the momentum
distributions and exponent we obtained with other works that share similarities with
our experiment.

One of the first predictions for the time evolution of the momentum distribution
describing Bose-Einstein condensation in a far-from-equilibrium system is given in Ref-
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erence [25]. The authors find a plateau in the lower momenta region and a power law at
higher momenta, akin to what we observe in our experiments; see Figure 3. Since then,
much progress has been made in characterizing turbulent flows in BECs. The advances and
state of the art concerning this topic can be found in Reference [26], for example. Here, we
will discuss two references that capture the essential physical aspects of our experiment.
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Figure 3. Time evolution of the momentum distributions for an excitation amplitude of A = 1.8 µ0.
We present the results obtained with both (a) the angular average of the absorption image and (b) the
three-dimensional reconstruction of the cloud using the inverse Abel transform. In both plots, we
include the curve corresponding to the power-law behavior characteristic of the turbulent states as a
guide to the eye.

The authors of [27] address the topic of turbulence in ultracold Bose gases under the
light of the so-called non-thermal fixed points [28]. They consider a variety of scenarios
and analyze each region of the momentum distributions. For strong turbulence and a freely
(without external energy input or dissipation) decaying initial state, scaling arguments
lead to δ3D = 5 prediction, which was confirmed by accompanying numerical simulations.
We did not expect quantitative agreement with their results, since we have dissipation
in our system, and there are no indications that we are in the strong turbulent regime.
Nonetheless, this is one of the few references that address the decay of turbulence.

Another interesting study that allows comparison, to some extent, to our work is
presented in Reference [29]. The authors performed numerical simulations employing the
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forced-dissipated Gross–Pitaevskii equation to study Bose-Einstein condensation under
non-equilibrium conditions. They observed that the momentum distribution for the late
time dynamics, that is, after the kinetic stage is over, displays an approximately constant
value at low-momenta, in accordance with our findings, and a power law in a higher
momentum region with the exponent δ3D = 4.4 (for some values of the nonlinear term).
This value is relatively close to what we observed in this work, δ3D = 3.8(2). We should
remark that the boundary conditions in their simulations and our experiments are different
and that we are exciting a BEC while they are looking at the inverse process. However, the
agreement warrants further investigations.

4. The Characteristic Length Scale

We computed the characteristic length scale given by Equation (3) using the experi-
mental data available,

L2D(t) =

∫ kd
kD

dk n2D(k, t)∫ kd
kD

dk k n2D(k, t)
= 2π

∫ kd

kD

dk n2D(k, t),

L3D(t) =

∫ kd
kD

dk k n3D(k, t)∫ kd
kD

dk k2 n3D(k, t)
= 4π

∫ kd

kD

dk k n3D(k, t), (7)

where kD∼0.05µm−1 and kd∼30µm−1 are the smallest and largest wave vectors we can
measure, respectively. It is worth noting that although our definition relies on n(k)/k, the
singular behavior when k → 0 will never be reached. The lower limit of the integrals,
kD, is inversely proportional to the largest length scale of the system, which can be large
concerning other scales, but always finite.

Using the momentum distributions obtained with different excitation amplitudes
and holding times, we can study the time evolution of the BEC, ranging from a slightly
perturbed cloud up to a turbulent state. In Figure 4, we present our results for the charac-
teristic length scale computed with both the two-dimensional projection of the cloud and
its three-dimensional reconstruction. Although they differ quantitatively, their qualitative
behavior is remarkably the same.

The L(t) value can be interpreted as the evolution of the length scale where most of
the particles are located. If we think of 1/k as being a weight in Equation (3), then L(t) is
related to the inverse of the momentum value for which n(k)/k is peaked. Nucleation of
excitations occurs during the excitation, whether in the form of vortices or waves. Then
the interaction of these excitations takes place, leading to different stages of deviation
from equilibrium.

For small excitation amplitudes, A = 0.8 µ0, the system is only slightly disturbed and
removed from equilibrium, but it does not have enough energy to reach what is considered
a disordered state. In this case, it evolves differently from the others, and the value of L is
approximately constant with time.

For intermediate perturbations, A = 1.4 and 1.6 µ0, there is a separation between
these results and the smallest amplitude, besides a clear dependence with time. For these
excitation amplitudes, we are in a regime best characterized as the onset of turbulence.
The characteristic length scale decreases on time, indicating the particle transfer to higher-
momenta, but slower than the higher excitation amplitudes.

In this work and previous investigations [12], we identified the highest excitation
amplitudes with turbulent clouds, A = 1.8, 2.0, and 2.2 µ0. The value of L(t) at the end of
the processes seems to depend on the amplitude and, more importantly, if we deal with a
moderate perturbation, the onset of turbulence, or a state with turbulent characteristics. It
is interesting to observe that the turbulent states quickly reach lengths comparable to the
healing length (ξ = 0.15(2)µm), where dissipation processes are expected to occur.



Symmetry 2021, 13, 1865 8 of 12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

 20  30  40  50  60  70  80  90

(a)

L
2
D

 [
µ

m
]

t [ms]

 A=0.8 µ0

 A=1.4 µ0

 A=1.6 µ0

 A=1.8 µ0

 A=2.0 µ0

 A=2.2 µ0

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

 20  30  40  50  60  70  80  90

(b)

L
3
D

 [
µ

m
]

t [ms]

 A=0.8 µ0

 A=1.4 µ0

 A=1.6 µ0

 A=1.8 µ0

 A=2.0 µ0

 A=2.2 µ0

Figure 4. Time evolution of the characteristic length scale for different excitation amplitudes com-
puted with (a) the two-dimensional projection of the cloud and (b) its three-dimensional reconstruc-
tion using the inverse Abel transform. Although the values computed with two-dimensional profiles
are higher, their qualitative behavior is the same.

The behavior of the characteristic length scale can be described by an exponential decay,

L(t) = L0 exp(−t/t0), (8)

where L0 is the extrapolation of the characteristic length scale to the instant when the
excitation was introduced, and t0 is its characteristic time.

In Figure 5, we present the values of L0 and t0 fitted to the functional form of
Equation (8) for different excitation amplitudes. We did not include the results for A = 0.8 µ0,
since we obtain a value of t0 ≈ 750 ms, of the same order as the lifetime of the condensate.
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Figure 5. (a) Extrapolation of the characteristic length scale to the instant when the excitation is
turned on, L0, and (b) the characteristic time of the particle transfer, t0, as a function of the excitation
amplitude. The results were obtained fitting the data to the functional form of Equation (8). Although
the analysis employing two- or three-dimensional momentum distributions produces different values
of L0, both approaches yield the same values for the characteristic time.

Figure 5a shows that the length containing most particles of the system is approxi-
mately the same with respect to the excitation amplitudes. However, if we perform the
analysis employing the two- or three-dimensional momentum distributions, we arrive
at different values for L0. A possible reason for this is that the inverse Abel transform
slightly shifts the n(k) profiles toward higher-momena—see Figure 3—which then implies
a smaller value of L0.

In Figure 5b, we present the characteristic time that the particle transfer takes as a
function of the excitation amplitude. It is observed that t0 decreases with amplitude, as
expected, since larger amplitudes lead to a faster formation of excitations and, therefore,
speed up the decay. It is possible to see that the results obtained in 2D and 3D are in
remarkable agreement. This opens the possibility of studying dynamical processes in 2D
without the need to reconstruct the three-dimensional cloud, depending on the quantity
of interest.

5. Discussion and Final Remarks

In this work, we defined and computed a characteristic length scale related to the
momentum distribution of a trapped BEC, which allowed us to identify distinct out-of-
equilibrium stages: a slightly perturbed cloud, the onset of turbulence, and the turbulent
state. This quantity complements the formal analysis of identifying a power-law in the
momentum distribution as a hallmark of turbulence.

We also focused our efforts on calculating this characteristic length scale using both
two- and three-dimensional momentum distributions. The former is obtained straightfor-
wardly from the experimental data, and the latter is reconstructed based on the symmetry
of the cloud. From a technical point of view, it is preferable to work only with the two-
dimensional distributions, since no assumptions about the symmetry of the cloud have
to be made. Although the length scales are affected by the inverse Abel transform, which
shifts the momentum distributions to higher momenta, the qualitative behavior calculated
in 2D and 3D is remarkably similar. The excellent agreement in the characteristic time of
the particle transfer indicates that the two-dimensional analysis may be appropriate to
investigate dynamical aspects of these systems.

One important remark is that isotropy is assumed through Equation (3) only for the
kinetically dominated regions in Fourier space. Such an assumption can be made even
for inhomogeneous cigar-shaped clouds. This is because such large-scale inhomogeneities
affect only regions in Fourier space up to the order of k ∼ 2π/Lmin, where Lmin is the
smaller linear size of the cigar-shaped cloud. In a previous work [11], we studied the
impact of anisotropy in the energy transfer during the evolution of turbulence in a trapped
BEC. Like the integral length scale, the energy flux can also be computed from the kinetic
energy spectrum. We found that the turbulent state can be identified and characterized
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in terms of the energy flux regardless of whether we employ the whole cloud or just a
region close to the major axis of the expanded cloud. We should note that the axial trapping
frequencies of this work and of Reference [11] are very close; however, in this work, we
employ a radial trapping frequency that is ≈0.7 smaller than the one used in Reference [11].
Thus, the BECs in this work are much less elongated and closer to a spherical shape than
the ones in Reference [11]. Therefore the range of validity for Equation (3) is even larger
than in previous works.

In future works, we intend to vary the excitation protocol to investigate the changes
in the characteristic length. Since there is a compromise between the excitation amplitude
and time [18], it may prove insightful to investigate situations where the same amount of
energy is introduced in the system but varying the time it takes to be injected from very
slow inputs up to abrupt changes.
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QT Quantum turbulence
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Appendix A. The Abel Transform

We used the inverse Abel transform to reconstruct a three-dimensional momentum
distribution from its two-dimensional projection in the main text. It is insightful to take the
inverse route to see what the two-dimensional projection is of a known three-dimensional
n3D(k). In this appendix, we considered two relevant cases for our physical system that
possess analytical solutions.

The Abel transform is given by

n2D(k) = 2
∫ ∞

k
dk′

n3D(k′)k′√
k′2 − k2

. (A1)
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The first case we considered is a Gaussian normalized according to Equation (6),

nG;3D(k) =
√

2√
πσ3 e−k2/(2σ2). (A2)

Using Equation (A1), the normalized two-dimensional projection is

nG;2D(k) =
1
σ2 e−k2/(2σ2). (A3)

Hence, the Abel transform of a Gaussian is a Gaussian of the same width. This is very
convenient in the case of the temperature of the cloud, for example, since it is estimated
through the width of the Gaussian profile of the momentum distribution.

The second case we considered is a power-law with exponent δ3D,

nP;3D(k) = Ak−δ3D , (A4)

with A constant. The standard normalization procedure, Equation (6), is going to fail
because this momentum distribution is not valid in the entire domain. In reality, the
power-law would be observed over a certain k-range, ki 6 k 6 k f with ki 6= 0. How-
ever, this simplified example will have an interesting result as we will see. The Abel
transformation yields

nP;2D(k) =

√
πΓ
(

δ3D−1
2

)
Γ
(

δ3D
2

) Ak−(δ3D−1) ≡ A′k−δ2D , (A5)

where Γ is the gamma function, A′ is another constant, and δ2D = δ3D − 1. The conclusion
is that the bidimensional projection of a power-law with an exponent of δ3D in three
dimensions is also a power-law, but with the exponent increased by one.

Clearly, the momentum distributions we presented in the main text cannot be fully
described by these two simple examples. However, they provide indications of the expected
behavior of the projection procedure.
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