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Abstract: In this paper, we establish some new Hermite-Hadamard type inequalities for preinvex
functions and left-right estimates of newly established inequalities for (p, g)-differentiable preinvex
functions in the context of (p, g)-calculus. We also show that the results established in this paper are
generalizations of comparable results in the literature of integral inequalities. Analytic inequalities
of this nature and especially the techniques involved have applications in various areas in which
symmetry plays a prominent role.
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1. Introduction

The Hermite-Hadamard (H-H) inequality, which was independently found by C.
Hermite and J. Hadamard, is particularly important in convex function theory (see, [1-3],
and also [4], p. 137).

T+ 1) 1 b II(7r1) + II(mp)
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where I1is a convex mapping. The aforementioned inequality is true in reverse order for
concave maps. Jensen’s inequality for convex functions can easily capture this inequality [5].
Several generalizations and extensions to classical convex functions have been proposed
in recent years. In [6], the notions about invex function was given that is a significant
generalization of convex functions. Weir and Mond introduced the concept of preinvex
functions in [7], and it is used in optimization theory in a variety of ways. Prequasi-invex
functions are a generalization of the invex functions introduced by Pini in [8]. Following
that, the authors looked at some fundamental properties of generalized preinvex functions
in [9]. Noor established H-H integral inequalities for preinvex functions in [10-12]. The
authors of [13,14] used the ordinary and fractional integrals to calculate the left and right
bounds of the H-H inequalities for preinvex functions. More recent results on the integral
inequalities for various types of preinvexities can be found in [15-24].
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On the other hand, beginning with Euler, various efforts in the subject of g-analysis
have been implemented in order to master the mathematics that underpins quantum
computing. The phrase g-calculus binds mathematics and physics together. It is em-
ployed in subjects including combinatorics, number theory, basic hypergeometric functions,
orthogonal polynomials, and others, as well as relativity theory, mechanics, and quan-
tum theory [25,26]. It has numerous applications in quantum information theory [27,28].
Euler is believed to be the creator of this crucial branch of mathematics since he em-
ployed the g-parameter in Newton’s work on infinite series. Jackson [29,30] introduced
the concept of g-calculus, sometimes known as calculus without limits, for the first time
in a proper manner. Al-Salam [31] introduced the concepts of g-fractional integral and
g-Riemann-Liouville fractional integral in 1996. Because study in this subject is gradu-
ally increasing, Tariboon and Ntouyas [32] proposed the r, D;-difference operator and
g, -integral. Bermudo et al. [33] published their ideas regarding the 2 D,-difference opera-
tor and ¢"2-integral in 2020. By presenting the principles of (p, q)-calculus, Sadjang [34]
broadened the concept of g-calculus. Tung and Gov [35] introduced the (p, q)-variant
of the -, D,-difference operator and g, -integral. Chu et al. established the concepts of
™Dy g-derivative and (p, q) -integral in [36], in 2021.

Quantum and post-quantum integrals have been used to study a variety of integral
inequalities for a variety of functions. For example, multiple authors in [37-45] gave
the H-H inequalities and their right-left estimates for convex and co-ordinated convex
functions via r, D, Dy-derivatives and qr,, g"2-integrals. In the setting of g-calculus,
Noor et al. [46] employed preinvexity to verify H-H inequalities. Nwaeze et al. [47]
discovered several parameterized g-integral inequalities for generalized quasi-convex
functions. In [48], Khan et al. used the concept of Green functions to develop some novel
H-H type inequalities. In the context of g-calculus, Budak et al. [49], Ali et al. [50,51],
and Vivas-Cortez et al. [52] demonstrated new boundaries for Simpson’s and Newton's
type inequalities for convex and coordinated convex functions. For g-Ostrowski inequality
for convex and co-ordinated convex functions, see [53-55]. The authors used the 7, D 4-
difference operator and the (p, q) , -integral to generalize the results of [39] and show H-H
type inequalities and their left estimates [56]. The authors recently established the right
estimates of H-H type inequalities shown by Kunt et al. [56] in [57]. Reference [36] can be
used to solve (p, q)-Ostrowski type inequalities. The findings in [58] are a generalization
of [33].

Inspired by the ongoing studies, we give the generalizations of the results proved
in [33,39,41,59] by proving H-H trapezoid and midpoint type inequalities for preinvex
functions using the concepts of (p, q)-difference operators and (p, q)-integral.

This paper is organized in the following way: Section 2 introduces the basics of g-
calculus and discusses other related research in the field. (p, q)-derivatives and integrals
are discussed in Section 3. In Section 4, we show that in the (p, q)-calculus setting, H-H
type inequalities exist for preinvex functions. Sections 5 and 6 prove new midpoint and
trapezoid type inequalities for differentiable preinvex functions via (p, )-calculus. The link
between the findings reported here and analogous findings in the literature is also taken
into account. Section 7 summarize the findings and suggests research topics for the future.

2. Quantum Derivatives and Integrals

This section discusses the key concepts and findings that will be needed to prove our
critical findings in the next sections.

Definition 1 ([7,9]). A set w C R" is known as invex with respect to the given i : R" x R" —
R if
Aty (y, %) € W,V 3,7 € w, t €[0,1].

The n-connected set is a more frequent name for the invex set w.



Symmetry 2021, 13, 1864

30f18

Definition 2 ([7,9]). Consider an invex set w C R"™ with respect to 7 : R" x R" — R". A
mapping Il : w — R is called preinvex, if

15+ ty (7, 2¢)) < HI(y) + (1 = HT(%), ¥V 2,7 € w, t € [0,1]. )
If —11is preinvex, the mapping 11 is called preconcave.

Remark 1. Definition 2 becomes the definition of convex functions if (<y, s¢) = v — s is set in
Definition 2:

II(se+t(y —2)) < t(y) + (1 —)I1(x),V 3,7 € w, t €[0,1].
Condition C. [9] The function 7 satisfies the following condition if

vy +tGey) = —tn(sx), 3)
oy +n(ey) = (1—=tn(x7)

for every »,y € wand any t € [0,1]. Note that for every s,y € w, t1,t; € [0,1], and from
Condition C, we have the following;:

n(y +tan(s6,7), v + i (s¢,7)) = (2 — )5, 7).

Theorem 1 ([60] (Jensen’s inequality for preinvex functions)). Let IT: w — R be a preinvex
n
function. Let 7y1,72,...,vn € [0,1] be the coefficients such that Y «v; =1, and let ty,t, ..., t, €
i=0
[0, 1] be the coefficients. Then, the inequality

(Z%%HW% ><Z% (s +tin (v, ) )
i=1

holds for all sz, € w.

Set the following notation [26]:

1 .
[y = 1— =14+q+¢*+..+q" Y g€(0,1).

The g-Jackson integral of a mapping I1 from 0 to 71, is given by Jackson [30] which is
defined as:

/H(%) dgse =(1—q)m Y q"TI(72q"), where 0 < g < 1 (5)
n=0

assuming that the sum is absolutely convergent. Moreover, over the interval [7'(1, 7'[2], he
gave the following integral of a mapping I1I:

72H(%) dgre = 7211(%) dgs —71H(%) dgs .
st 0 0

Definition 3 ([32]). The q,-derivative of mapping I1 : [rt1, 2] — R is defined as:

_ () —Tl(gc+ (1 — q)m1)
(1—q)(c—m)

For » = 111, we state , Dgl1(71) = lim,, 7, 7, Dgl1(5c) if it exists and it is finite.

1 DgI(52) , % # M. (6)
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Definition 4 ([33]). The q™-derivative of mapping I1 : [r11, 7] — R is given as:

_ (g + (1 —g)m) —TI(x)
(1—q)(r2 = )

For s« = 715, we state ™2 DgI1(72) = lim,, 7, ™2 D,I1(52) if it exists and it is finite.

2D, I1(52) , % F# T, @)

Definition 5 ([32]). The qn,-definite integral of mapping I1 : [m1, o] — R on [my, mp] is
defined as:

”

/H(T) mdgT = (1—q)(c—m) i gII(g" s+ (1 —q")m), » € [y, m2].  (8)

) n=0

Bermudo et al. [33], on the other hand, state the following concept of the g-definite
integral:

Definition 6 ([33]). The q"2-definite integral of mapping I1 : [m1, o] — R on [my, mo) is
given as:

/H(T) md,t = (1—¢q)(m — ) i}q”ﬂ(q"%—b— (1—g"m), »€[m,m]. )

3. Post-Quantum Derivatives and Integrals

We will go over some basic (p, g)-calculus concepts and notations in this section.
The [n]p 4 is said to be (p, q)-integers and expressed as:

P —1
nl =
g = 2
with0 < g < p <1.The [n]m! and [ Z ]! are called (p, q)-factorial and (p, q)-binomial,

respectively, and expressed as:

n

n],,! = ]j[[k]m, n>11[0],.!=1
|: n :|' _ [n]p,q! )
k [ =K, 'k, !

Definition 7 ([34]). The (p, q)-derivative of mapping I1 : [y, 72| — R is given as:

Dy oT1(3¢) = H(’”(};)_;y’”, % #0 (10)

with0 <g<p <1
Definition 8 ([35]). The (p,q) ,-derivative of mapping 11 : [rt1, 2] — R is given as:

(prxe+ (1 —p)m) — (g + (1 —q)m1)

 Dpalll) = (b — )0 — )

, X F T (11)

with0 <g<p <1

For » = 1y, we state 7, Dy gI1(711) = lim,, 7, 7, Dp,411(5) if it exists and it is finite.
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Definition 9 ([36]). The (p, q)"?-derivative of mapping 1 : [y, 715] — R is given as:

(g + (1 —q)mp) —(px+ (1 —p)m2)

Dpgll() = - 0) (2~ )

, X 75 7Tp. (12)

For » = 1y, we state 2Dy, ,11(712) = lim,,, 7, ™D, 411(5) if it exists and it is finite.

Remark 2. It is clear that if we use p = 1in (11) and (12), then the equalities (11) and (12) reduce
to (6) and (7), respectively.

Definition 10 ([35]). The definite (p, q)x,-integral of mapping I1 : [r1, 12] — Ron [y, 712] is

stated as:
q" q" q"
pn-‘rl H(pn-H x+ (1 B pn+1 o (13)

[T iy = (p - )= m) &

Ual
with0 <g<p <1

Definition 11 ([36]). The definite (p, q)™2-integral of mapping I1 : [rt1, 712] — Ron [y, 3] is

stated as:
7T 0 qn qu qi’l
/ (1) szWT = (p—q)(my — ») Z n+1H< aTA T <1 - n+1>n2> (14)
* n=0 p p p

with0 <g<p <1

Remark 3. It is evident that if we pick p = 1 in (13) and (14), then the equalities (13) and (14)
change into (8) and (9), respectively.

Remark 4. If we take 711 = 0 and » = 11y = 1in (13), then we have

1 0 n n
[ 1) ot = (=) & ST (ST ).
0 oP p

n=

Similarly, by taking » = 711 = 0 and 71p = 1 in (14), then we obtain that

q" q"
pn-‘rlH(l N ptl >
In [56], Kunt et al. proved the following H-H type inequalities for convex functions
via the (p, g) r, -integral:

[ ) gt = (- 0)
n=0

Theorem 2. For a convex mapping I1 : [m1, mp| — R, which is differentiable on [rty, 12|, the
following inequalities hold for the (p, q) . -integral:

prot+(1-p)m
II qm + pmo < 1 / 2 ! H(%) 7T1dp,q% < qn(nl)+PH(7T2) (15)
[Z]p,q p(ﬂz - 7-[1) ot [Z]p,q
where0 < g <p <1

Lemma 1 ([58]). We have the following equalities:
e « 7T (7T2 - 77:1)“+1
Ty —32)" dy g = ~—— st

/711 (72 = 30)" My e +1],,
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)1X+1

T (my—m
w—m)) pdy =~
/711 S [w+1],,

where v € R — {—1}.

4. New H-H Type Inequalities for Post-Quantum Integrals

We present a new variant of the (p, q)-H-H inequality for preinvex functions in this
section. It is also demonstrated that the results presented here are a generalization of
some previously published results. For brevity, we use I = [ + 11(71, 712), 712] and
J = [y, 1 4+ 15(7mp, 711)].

Theorem 3. For a differentiable preinvex mapping I1: I — R, the following inequality holds for
the (p,q)™-integral:

w1, o) + (2], 7T
Y RSttt YD RS S /ﬂ2 T1(3¢) ™y q5¢
2],,4 P11 (72, 1) eyt pig ()
pII(ma + py(m, m2)) + q11(m2)

N [2‘] .4 ’

(16)

where0 < g <p <1

Proof. For preinvex functions, we can use Jensen’s inequality

1 7T 1 Ul
1—17/ %nzd,%>§/ I1(5c) ™2d, ¢
(PU(”Z/ 1) Jra+py(m,ma) P pi (72, 701) Jrgpy () () P

and from the Definition 11, one can easily observe that

1 /-712 p’?(nll 7-[2) + [z]p,qnz

_ 2 2d, e =
pU(NZI 7-[1) T +pi (m1,72) P [2} P4

Thus, the first part of the inequality (16) is proved. To prove the second inequality in (16),
first, we note that IT is preinvex function and we have

I1(7tp + ty (71, 112)) < t11(771) + (1 — £)I1(712). (17)

Applying the (p, q)-integral on the both sides of (17), we have

1 /”2 TT(¢) ™d ¢ < pLL(72 4 py(m, m2)) + q11(702)
p11 (12, 711) Syt py (01, m2) 2],,,q

Hence, the proof is completed. [J

Remark 5. We obtain Theorem 5 in [59], by letting p = 1 in Theorem 3.

Remark 6. If we set p = 1 in Theorem 3 and later assume that n(7y, 11) = —1(m1, M) =
71y — 711, then Theorem 3 becomes Theorem 12 in [33].

Example 1. Let I1(»r) = —|x|. Then, Il is preinvex function with respect to the following
bifunction:

_J x-yifxy 20
(>4 y) { y— 5, if sy < 0.



Symmetry 2021, 13, 1864

7 of 18

1. Let us consider 1t1, 11y > 0, then n(7my, 1p) = 111 — 700 and

H(P’?(m/ﬂz) + [2]p,q7f2> __pmtgm
2l 121y

1 /ﬂz prm + g

_— I1(5) dyge = —F—o—"=
p (72, 701) Syt (e, m2) () g [z]p,q

and

pU (7t + py(m, ) +q11(my) _  pm+qm
2] 2,

P P4
2. Let mmy,mp < 0. Then, (7, m2) = 111 — 7T And
H(pﬂ(n1/n2)+ [z]p,qn2> _ prty + g
2],,4 2],,4
1 /”2 P+ 4
I1(2) ™dy ¢ =
p1 (72, 701) Jry+py(mi,ma) () P [z]p,q

and

pl(m + pry (1, 72)) +qU(7m) _  pra+ g7
2] 2,

r4 I
3. Finally, let 11 < 0 < 719. Then, (1, mp) = 7 — 711 and
- pr(m,m) +2,,m\  _ 2p+q)m—pm
2],,4 2],,4
Tt i
1 / 2 1—[(%) nde,q% _ _(2P+Q)7T2 P71
p1 (72, 701) Jry+py(mi,ma) [2]p,q
and
pIL(my + pyp(m, m2)) +q1L(m2) _ — (2p+q)7m2 — pmy
2y 2y

It is clear that the Theorem 3 is valid.

Theorem 4. For a differentiable preinvex mapping 11 : | — R, the following inequality holds for
(P, q) ,-integral:

I py (o, 1) + [2]pfq7f1 < 1 /erpzy(nz,m) ) i3
12,4 = pn(me,m) Jny m4pq
pII(my) + qIL(m + 5 (o, 1))
= 2) : (18)

pAq

where0 < g <p <1

Proof. One can easily obtain the inequality (18) by following the methodology used in the
proof of Theorem 3 and taking into account Definition 10 of the (p, q) , -integral. O

Remark 7. We obtain Theorem 6 in [59] by letting p = 1 in Theorem 4.

Remark 8. If we set p = 1 in Theorem 4 and later assume that n(mo, 7711) = 7 — 711, then
Theorem 4 reduces to Theorem 6 in [39].
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5. Midpoint Type Inequalities through (p, 4)2-Integral
We present some new midpoint type inequalities using the (p,q)-derivative and

integral in this section.
The following crucial lemma is required to prove the main results of this section.

Lemma 2. Let IT : I — R be a differentiable function on 1°. If ™Dy, 411 is continuous and
integrable on I, then we have the following identity:

_r
77(7‘[2, 7-[1) |:/O [z]p'q qt nsz,qH(t(ﬂ_'z + 17(7'[1, 7'[2)) + (1 - t)n2)dp,qt

+ /;(qt — 1) 2D, T1((ry + 7 (11, 712)) + (1 — t)nz)d,,,qt]

2lpq
71, 700) + (2], 7T
S /”2 T1(5¢) ™d, g0 — 11 prlm, ) + Plypamz ) (19)
pr (72, 1) J o+ () [z]p,q

where0 < g <p <1

Proof. From Definition 9, we have

2Dy gT1((112 + (711, 712) ) + (1 — ) 712)
_ T(gt(m + n(m, m)) + (1 — gt)m) — I(pt (72 + 5 (7, 72)) + (1 — pt)m2) 20)
ty (2, 1) (p — 9) '

From the left side of equality (19), we have

o
(72, 111) l/o pa qt 2Dy o I1(t (712 + (11, 12) ) + (1 — £)712)dp 4

1
+ /L (gt —1) nsz,qH(t(nz +1(m,m)) + (1— t)nz)dp,qt]
[2lp,q

_pr
= y(m, ) /Omw 7D, TI(H(y + (11, 712)) + (1 — £)702)dp gt

1
+ [t DIt + (w1, 72) + (1= D)yt
1
- /0 2Dy gl 1(t (72 + 17 (711, 712)) + (1 = t)”z)dp,qt} : (1)

By the equality (14), we have

LT DTt (2 + (1, 72)) + (1= )7,
I(qt(rr2 + (71, 72)) + (1 — gt) 712)
_ 1 /[21;;1, [(pt(mr2 + 5 (1, 712)) + (1 — pt)72)
(72, 1) (p —q) Jo
1
n(m, m) |/

£

dpqt

t
n+1 n+1
1‘I<[2iq Z”H (12 + (11, 112)) + (1 "o Z”H) 7'(2)
9"

agk

pAq

0

q” p
z}p,q p— (1 + 1 (my, 2)) + (1 — [Z]Mpn>rc2>]

\ﬁ
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. H(T(z) B 1 1 p77(7r1,7r2)+[2]p,q7'[2 (22)
’7(7-[2/ 7-[1) 77(7-[2/ 7-[1) [2} P4 ’
1
/O 72D, TI(H(y + 17(711, 72)) + (1 — £)702)dp gt
I(qt(m2 + (1, m2)) + (1 — gt) 712)
_ 1 /1 —II(pt(m2 +n(my, 12)) + (1 — pt)712) e
1(rm2, 1) (p —¢) Jo t P
O (A _ g
| R (e g )+ (1 T ) )
Cnlmem) | Y (D () + (1- D)
X 11+ (m, ) + (1 ) m2)
_ 1(m) —TI(7m 4 (111, 712)) 23)
1(72, 111)
and
1
/O £72D,  TI(t(ry + (1, 712)) + (1 — £)712)dp gt
_ 1 /1[ I(gt(m2 + n(m, m2)) + (1 — gt)m2) }d ;
n(m, m)(p—q) Jo | —T(pt(ma +n(m, m2)) + (1= pt)ma) |71
[ oo n n+1 n+1
1 n;O ,,ZHH(%W +n(my, m2)) + (1 - %)752)
1(7t2, 701) _ _ngo pZLH(Z—z(m—i—n(m,m))—k (1—2—:)712)
[ 00 a1 n+l n+1
L | ik (e () + (1 ) 0)
10 m) I _%ngo%n(%(”2+ﬂ(ﬂ1,ﬂ2))+ (1—%2)@)
1 [ (A=1) ¥ on( D+, m) + (1- L)
= oD (q P)ngop <p(2 n(m1, m2)) ( p>2)
1\t 7 —11((2 + (711, 712)))
1 [p-g&q (q” ( 6/") )
= Tri( L (e + p(my, ) + (1- L
1 (702, 711) Bz 7;]pn pn(ﬂ'z n(m, m2)) P Tt
1
—qH(nz—i-U(nl,nz))}
1 1 M 1
= IT T2 — =II(m + n(m, 7T ] 24
’7(772/”1)[PQ’?(@/”l)/ﬂﬁP'i(ﬂlﬂz) () Pl g2 = S Tma i (m 72)) 29

By using (22)—(24) in (21), we obtain the desired identity (19). Thus, the proof is com-
pleted. O

Remark 9. We obtain Lemma 3 in [59] by letting p = 1 in Lemma 2.

Remark 10. Ifwe use p = 1in Lemma 2 and later consider (7o, 711) = —1 (711, 702) = 110 — 719,
then Lemma 2 becomes Lemma 2 in [41].
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Theorem 5. Suppose that the assumptions of Lemma 2 hold. If | ™Dy, ;1| is a preinvex function
over I, then we have the following new inequality:

b 71, 7o) + (2], 7T
’ 1 /2 H(%) ”2dp,q%—f[<p’7( 1 2) []p,q 2)‘

p11 (12, 711) Syt py (7, m2) 2],
< (1) [(|2Dpg11(711)| AL(p, ) + |2 DpgI1(72) | A2(p, )
+(|™Dypgl1(711) | A3(p, ) + |2 Dpqgl1(72) | As(p, q))], (25)
where
(p, ) 7
AMlp) = 5
[2]§,q[3]p,q
a(PP(p*+a*—p) +p°3],
Aypg) = ( 2 ’”’),
pat-ivyg
(9+2p)  q*(q4* +3p* +3pq)
As(pq) = 1 - %
’ 21,4 21,81,
*(q+2p)
As(pg) = -1 — As(p,q).
! 12,4 12154 ’

Proof. Taking the modulus in Lemma 2 and using the preinvexity of | D, ,I1
obtain that

, we

7T, 70 ) + (2|, 7T
1 /7-[2 H(%) nzdp,q%—l_[ P’?( 1 2) [ ]p,q 2
(702, 701) Sy py (1, 72) 2],

P
< 5(mp, ) [/0 Plpa qt |™2Dp 11t (11, + 17(11, 712) ) + (1 — t)712) |dp gt
1
+/ (1= qt) 2Dy 1tz + (0, 72)) + (1 — £)702) |dp gt
Plpaq
P
< (m,m) [q/omw E(H™DpgI1(7m1)| + (1= 1) | Dpg1(712)| ) dp gt

1
+ [, (L=qt)(¢[™ Dyl ()| + (1 - t)|n2Dp,qH(”2)|)dp/qt} - (26)
2y

]Pr'i

One can easily compute the integrals that appeared on the right side of the inequality (26)

_r 3
/ a2, = —F 27)
p4a 4
0 215,81,
p 3 (1,2 2 2
o +q%—p) + P23
/mm 1= gt = © (v q4 P) p””, (28)
0 215,413,0
! +2 2(q> +3p* 43
/p (1 gty gt q(?z] p) T s pa) 29)
Plpg A [28,,4131,4
1 2
_ 9 _q(q+2p)
R L i
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1 (72, 711)

[2] pAq [2} z,q [3] pa

Making use of (27)—(30) in (26), gives us the required inequality (25). Hence, the proof is
finished. O

_ <‘7(‘7 +2p)  *(a° +3p* +3pa) ) L G0

Remark 11. We obtain Theorem 9 in [59] by letting p = 1 in Theorem 5.

Remark 12. If we take p = 1 in Theorem 5 and later consider 11(m, 1) = —1(my, M2) =
7Ty — 711, then Theorem 5 reduces to Theorem 5 in [41].

Theorem 6. Suppose that the assumptions of Lemma 2 hold. If | ™Dy 11 ", r > 1is a preinvex
function over 1, then we have the following new inequality:

b 71, 7o) + (2], 7T
1 /2 [ T2 e — T py(m, m2) + (2], 7
T, 7T1)

T+ pi(11,72) 2]

1-1

7

pA

1

2
[{\HZDp,qH(nl)VAl(p,q) + 2Dy 1) | A2(p,9) }

4 3
(2,,,)

+{[P2Dpattm)| Aa(pa) + 2D A} | @1

where A1(p,q) — A4(p, q) are given in Theorem 5.

Proof. Taking the modulus in Lemma 2, applying the well-known power mean inequality
for (p, q)-integrals and the preinvexity of | 2D, ,I1 ",r > 1, wehave

1 4 pr(my, ) + 2], 702
S — T1(5) ™2d, g3 — I1 P4
‘Pﬂ(ﬂzf ) /7T2+P77(7T1ﬂ2) 09 g ( 2]

Iz
_pr

< 5(m,m) [/O W gt |72 D, TI(H(7ty + (711, 12)) + (1= £)712) |dp gt

1

JF/ , (I—qt) |™2Dp g I1(t(7r2 + 5 (711, 712) ) + (1 — £)712) |dp gt
Plpq
-}

<

P
(7o, 111) [(/O[ZJM qtdp,qt>

_r
x{q/om”” t(t|”2Dp,qH(7T1){r +(1-1)] ﬂsz,qH(@)r)‘imt}

17
+ (/1;,(1 - qt)dwt)

1 . .
x{q/ ) (1—qt)(tyﬂsz,qH(m)! +(1—1)| ™Dy I1(r)| )d,,,qt}

1

r
7

1

r

1
1-3

1
= glmm)| [{|”2Dp,qn<m>|’A1<p,q>+|”2Dp,qn<nz>|’Az<p,q>}’
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1
+{]"2Dp,qn(ﬂ1)!rA3(Pﬂ) + ’nsz,qH(ﬁz)’rAAPﬂ)}r]

which completes the proof. [

Remark 13. We obtain Theorem 10 in [59] by letting p = 1 in Theorem 6.

Remark 14. If we put p = 1 in Theorem 6 and later assume that n(mo, 1) = —3 (71, 7T2)
= 7119 — 711, then Theorem 6 reduces to Theorem 6 in [41].

Theorem 7. Suppose that the assumptions of Lemma 2 hold. If | ™Dy 411 ", r > 1is a preinvex
function over 1, then we have the following new inequality:

71, 700) + (2], 7T
1 /ﬂz [L(5e) T2dy 50— T1 pn(m, o) + (2], 72
pn (72, 1) Sy () 2] Pq

2

1
p s+1 p_q % ’ﬂZDp,qH(nl)’T([;}jS ) T
< qn(T[Zr 7T1) () (SS) 2
12,4 ptl — gt +|72 D, o I1(1) " (F%W)
pAq

1 T r [z]p,q7p2 ’
(/1 (1 | ) Ot 215
+ —t> Ayt b, , (32)
/ r (2R -

7 72Dy ()| (q o ‘7)

==

Plpg

where s +r = sr.

Proof. Taking the modulus in Lemma 2, by applying the well-known Holder inequality
for definite (p, q)-integrals and the preinvexity of | ™D, 4I1 ", 7 > 1, we obtain that

7T, 70 ) + (2|, 7T
1 /7-[2 H(%) nzdp,q%—l_[ P’?( 1 2) [ ]p,q 2
(72, 701) S py (1, m2) 2],

IN

o
gn (p, 711) l/o a4 ™2 Dy gIL(t(1y + 1(711, 712) ) + (1 — £)710) |dp gt

1 1
+ /L (q - t) 2Dy g TI(t (712 + (711, 712)) + (1 — t)n2)|dp/qt}
2lpq

1
s

IN
K
=
—
S
A
m
SN—
—
VR
%
3
= =
=
-~
w
QU
3
-
——
~

1
b T
{/omM <t|”2Dp,ql—I(m)|r +(1-1)] nsz,qH(NZ)’r>dPrqt}

1

1 1 s ¢
|/, (q - t) Ayt
[2lp,q

1
/p (tynzpp,qn(m)|’+(1—t)|ﬂzD,,,qn(nz)r)dp,qt} . (33)

1
¥

X

Ay
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One can easily evaluate the integrals that appear on the right side of the inequality (33)

ﬁ % p s+1 p—g %
pa 48 - £ 1
(/0 t dp,qt> ( [Z]P,q> <ps+l _ qs+1) (34)

_P_ 2
/ Tapd, e = P (35)
0 2],,4
P 3 2 2 2
/[z]m (1= t)dy,t = p~+pq +32P q—-pr ’ (36)
0 2]
P4
/ ! td, t = M (37)
ﬁ ra [2]3 4
2} 1z
1 g8+ —p—q
/L(l—t)dp,qt - o . (38)
Iy pa

Making use of (34)-(38), gives us the required inequality (32). Hence, the proof is accom-
plished. O

6. Trapezoidal Type Inequalities through (p, )™-Integral

In this section, we give some new trapezoidal inequalities by using the (p, q)-derivative
and integral.
To prove the main results of this section, we need the following crucial lemma.

Lemma 3. Let IT : I — R be a differentiable function on 1°. If ™Dy, 411 is continuous and
integrable on I, then we have the following identity:

P2 + py(m, m2)) +q1(ma) 1 /"2 [1(3¢) ™d, 3¢
[Z]p,q p]’](ﬂ'z, 7'[1) T +py(71,72)
Ty, 7T 1
‘7’7([2]21) /O (1 - [Z]Mt) 72D, TI(H(ry + 17(m11, 712)) + (1 — £)712) dp gt (39)
p4q

where0 < g <p <1

Proof. From (20) and the right side of (39), we obtain that

’W /01 (1= 20p4t) ™Dp gl Ut + (71, 72)) + (1 = £)712) gt

(qt(m2 + 1(m, m2)) + (1 — qt) 2)

q1 (72, 1) 1 /1 —I(pt(m2 +15(my, m2)) + (1 — pt)m2)
2], | 1(m2,m)(p—9q) Jo t

dpqt

[Py /1{ (gt (02 + (1, 72)) + (1 = gt)72) ]d ;
n(my, m1)(p—q) Jo | —I(pt(ma +n(m, m)) + (1= pt)ma) | P70

From (23) and (24), we have

Lm([;'c]z,nl) /01 (1 - [Z]Mt) 2Dy, It (2 + 1(711, 712)) 4 (1 — £)712) dp gt
pA ’
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I1(7ty) —T1(7t 41 (771,72))
qn (72, ™) n(m,m)

= 2],
[Z]M N ’7(”2}:711) { P‘M(;z,ﬂl) f’ZZ+PW(ﬂ1/”z) I1(>) "y g~ %H(nz +a(m, 712))}

where the identity (39) is obtained and the proof is accomplished. O
Remark 15. We obtain Lemma 2 in [59] by letting p = 1 in Lemma 3.

Remark 16. If we adopt p = 1 in Lemma 3 and later we assume that n(7, 11) = —1(71, 772)
= 711y — 711, then Lemma 3 becomes Lemma 1 in [41].

Theorem 8. Suppose that the assumptions of Lemma 3 hold. If | ™Dy, ;1| is a preinvex function
over I, then we have the following new inequality:

pI(m + py(m, m)) +qll(m) 1 /'7” T1(5¢) ™2d,y g 3¢
2], P (72, 701) Sy () &
Ty, 7T
< W([Zfﬂ [| 2 DpgT1(711) | As(p, ) + | DpgT1(72)| A6(p, 9)], (40)
p4q

where

Astpa) = [ 1](1-2,0) [t
1

As(pp) = [ =] (1= Rlgt)| duat
Proof. Taking the modulus in Lemma 3 and using the preinvexity of | ™D, ,I1|, we have
us
plL(m + py(m, ) + il () 1 / 2 T1(5¢) ™d,y g5
[Z]p,q pr (72, 1) St py ()
q1 (2, 711) /’1 _ 0
< Tm b (1= [2,t) | 2DpaT1(0)| gt

+ /01(1 — t)‘ (1 - [Z]Mt)’ 2D, T1(712) | dp gt

IM([;T}W [| 2Dy, q11(7r1)| As(p, q) + | "2 Dypql1(2)| As(p, 9)]- (41)
P

Thus, the proof is completed. [

Remark 17. We obtain Theorem 7 in [59] by letting p = 1 in Theorem §.

Remark 18. If we adopt p = 1 in Theorem 8 and later we assume that n(7, 7711) = —1(771, 772)
= 7119 — 711, then Theorem 8 becomes Theorem 7 in [41].

Theorem 9. Suppose that the assumptions of Lemma 3 hold. If | ™Dy ;11 ", r > 1is a preinvex
function over 1, then we have the following new inequality:

T
pll(m +py(m, ) +qll(m) 1 /2 [1(5¢) d 3¢
[2]p,q p1 (72, 701) Syt pi (1)
1

< ([ o)

X “ HZDPIqH(ﬂl)rAS(PIQ) + | HZDP,qH(TFZ)VAe(Pr&I)} ’ (42)
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where As(p,q) and Ae(p, q) are given in Theorem 8.

Proof. Taking the modulus in Lemma 3 and applying the well-known power mean in-
equality for (p, q)-integrals and the preinvexity of | 2D, 4I1 ", > 1, we obtain that

[z]p,q a P’?(TQ/ 7T1) To+py(m,m2)

< ‘7’7([721];7“) (/01’1 — 2, dp,qt>1y

X {/01‘1 - [Z]Mt‘ |"2Dy, (T1(t(72 + 17(711, 712)) + (1 — t)nz)}r dp,qt]

LW (/;’1 - [le,qf‘ dp,qf>1r [/01 t‘ (1 - [Z]Mt)‘ 2Dy, T1(711)|" dp ot

1
r

'pﬂ(nz ropmm) palllr) L [1() "2dpq

T

IN

+ '/0'1(1 - t)\ (1 - [Z}Mt) ‘ 72D, T1(7r5)|" dmt}

B ‘7’7([;]2;,:1) (/01'1 - [Z]Mt‘ d!’rqt>1_y

X “ nZDp,qH(nl)VAS(P/Ei) + | Hsz,qH(HZ)VAé(PIQ)} . (43)
Thus, the proof is finished. O
Remark 19. We obtain Theorem 8 in [59] by letting p = 1 in Theorem 9.

Remark 20. If we adopt p = 1 in Theorem 9 and later we assume that 1(mtp, 7w11) = —1(771, 772)
= 711y — 7111, then Theorem 9 becomes Theorem 4 in [41].

Theorem 10. Suppose that the assumptions of Lemma 3 hold. If | 2Dy, ,T1 ", r > 1isapreinvex
function over 1, then we have the following new inequality:

‘PH(N2+P’7(7T11772)) + qI1(7,) 1 /nz I1(5c) "2dp,q5¢

12],,4 (e, 1) Syt (o)

| HZDMH(TH)’V + (mm — 1)| ﬂsz,qH(TCZ)’V] 7/ s

1 s :
< ng:l) ( L=, d,,,,,t) o

where s +r = sr.

Proof. Taking the modulus in Lemma 3 and applying the well-known Holder inequality
for (p, g)-integrals and the preinvexity of | 2D, ;1T ", 7 > 1, we obtain that

7T
| pIl(mp + py(m, 72)) + ql1(m2) 1 / ’ I1(3¢) ™dp,g

[Z]p,q B pr (72, 1) St ()

1
qn (72, 1) /1 s :
< ALl _
B 2] < 0 ‘1 [2}”’#’ Ipat

X [/01 |7T2Dp,qH(t(7'[2 + 17(7'[1,7'[2)) + (] _ t)ﬂz){r dp,qt]

1
r
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1
q17(7T2, 71'1) /1 _ s :
< T ( i 1= 21,0t dpat

1
1 1 T
X [/0 t‘”sz,qH(ﬂl)‘rdp,thr/O (1—1t) |™2Dp ()|  dpat| - (45)

We can calculate the integrals that occur on the right side of (45) as follows:

/1tdmt I (46)
0 2],,4

1 2],,—1

1—t)dy,t = —2d 47
/0( t) Prqt [2]p,q ( )

Making use of (46) and (47) in (45), gives the desired result. Hence, the proof is com-
pleted. O

Remark 21. The left-right estimates of inequality (18) given in Theorem 4 that we left for the
readers can be obtained by using the notions of (p, q) . -derivative and integral, as well as the
techniques used in the previous two sections.

7. Conclusions

In this paper, we proved H-H type inequalities for preinvex functions using the
(p, q)-calculus setup. For (p,q)-differentiable preinvex functions, we also proved some
new midpoint-formula-type and trapezoid-formula-type inequalities. Furthermore, we
demonstrated that the newly discovered inequalities are generalizations of the inequalities
for convex functions in (p, q)-calculus. This study’s conclusions can be used in symmetry.
The results for symmetric functions can be reached by employing the notions of symmetric
convex functions, which will be explored further in future work. It is an intriguing and
novel problem, and future researchers will be able to obtain similar inequalities for co-
ordinated preinvex functions in their studies.
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