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Abstract: We obtain new results on 3-rainbow domination numbers of generalized Petersen graphs
P(6k, k). In some cases, for some infinite families, exact values are established; in all other cases, the
lower and upper bounds with small gaps are given. We also define singleton rainbow domination,
where the sets assigned have a cardinality of, at most, one, and provide analogous results for this
special case of rainbow domination.
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1. Introduction

Inspired by several facility location problems, Brešar, Henning and Rall [1–3] initiated
the study of the k-rainbow domination problem. The problem is proved to be NP-complete,
even if the input graph is a chordal graph or a bipartite graph [2]. This variation of the gen-
eral domination problem has already attracted considerable attention. The growing interest
in domination problems [4] is based on a variety of practical applications on one hand and,
on the other hand, expected (and usually proven) intractability on general graphs.

In [5], 2-rainbow domination of generalized Petersen graphs was extensively stud-
ied. Here, we continue this avenue of research and study the 3-rainbow domination of
generalized Petersen graphs.

First, we recall the definitions and some other preliminary material from [5].

1.1. Graphs and Rainbow Domination

A (simple) graph G = (V(G), E(G)) is a combinatorial object, where V = V(G) is a
set whose elements are called vertices, and E = E(G) is a set of edges. Edges are pairs of
vertices: e = {u, v}. If {u, v} ∈ E(G), then we say that vertices u and v are neighbors. The
set of all neighbors of a vertex is its neighborhood. The degree of a vertex is the number
of its neighbors. A graph is called 3-regular or cubic if all vertices are of degree three.
Graph H is an induced subgraph of graph G if V(H) ⊆ V(G) and for any pair of vertices
v, u ∈ v(H), {u, v} ∈ E(G) implies {u, v} ∈ E(H). The interval of integers is denoted by
[i, j] = {k ∈ N | i ≤ k ≤ j}. All subscripts in this paper are taken as modulo n.

Given a graph G and a positive integer t, the goal is to assign a subset of the color set
{1, 2, · · · , t} to every vertex of G such that every vertex with the empty set assigned has all
t colors in its neighborhood. Such an assignment is called a t-rainbow dominating function
(tRD function) of the graph G. The weight of assignment g, a tRDF of a graph G, is the
value w(g) = ∑v∈V(G) |g(v)|. We also say that G is tRD-colored (or simply, colored) by g.
A vertex is tRD-dominated if either it is assigned a nonempty set of colors, or it has all
colors in its neighborhood. A vertex is said to be colored if g(v) 6= ∅ and is not colored or
uncolored otherwise. The t-rainbow domination number γrt(G) is the minimum weight over
all tRD functions in G. We also study a special case where vertices are colored by sets with,
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at most, one color. Such functions are called singleton tRD functions (StRD functions) and
the minimal weight obtained when considering only StRD functions is singleton t-rainbow
domination number, denoted by γ̃rt.

1.2. Generalized Petersen Graphs

For n ≥ 3 and k, 1 ≤ k ≤ n − 1, the generalized Petersen graph P(n, k) is a
graph on 2n vertices with V(P(n, k)) = {vi, ui | 0 ≤ i ≤ n − 1} and E(P(n, k)) =
{{ui, ui+1}, {ui, vi}, {vi, vi+k} | 0 ≤ i ≤ n− 1}. This standard notation was introduced by
Watkins [6] (see Figure 1).

v1 u1

v2
u2

v3

u3
v4

u4

v0
u0

vn−1
un−1

Figure 1. A generalized Petersen graph P(n, k).

It is well known that the graphs P(n, k) are 3-regular unless k = n
2 and that P(n, k) are

highly symmetric [6,7]. As P(n, k) and P(n, n− k) are isomorphic, it is natural to restrict
attention to P(n, k) with n ≥ 3 and k, 1 ≤ k < n

2 . In this work, we implicitly make use
of another symmetry of Petersen graphs. It is well-known that the mapping which maps
vi → vi+1 and ui → ui+1 is an automorphism. Hence, any rotation along the long cycle is
an automorphism.

1.3. Related Previous Work

The early papers [1–3] already provide various results on k-rainbow domination. The
special cases, 2-rainbow and 3-rainbow domination, have been studied in a number of
works where the rainbow domination numbers of several graph classes were established;
see [8–12] and the references therein. In particular, k-rainbow domination number of the
Cartesian product of cycles, Cn�Cm, for k ≥ 4 is considered in [13]. Among other things,
based on the results in [14], it is shown that γrk(Cn�Cm) = mn for k ≥ 8. In [15], exact
values of the 3-rainbow domination number of C3�Cm and C4�Cm and bounds on the
3-rainbow domination number of Cn�Cm for n ≥ 5 are given. In [16], sharp upper bounds
on the k-rainbow domination number for all values of k are proved. Furthermore, they
also consider the problem with minimum degree restrictions on the graph. In particular,

for every connected graph G of order n ≥ 5, γr3(G)) ≤ 8n
9

. In [17], the authors proved that

for every connected graph G of order n ≥ 8 with δ(G) ≥ 2, γr3(G) ≤ 5n
6

. Computing the
rainbow domination of graphs is an NP-hard problem, as it holds for most of the variations
of domination problems. An exact algorithm and a faster heuristic algorithm to obtain the
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3-rainbow domination number is given in [18]. Therefore, while it is possible to compute
exact 3-rainbow domination numbers for small or moderate size graphs, it is very hard or
intractable to handle large graphs.

Generalized Petersen graphs have been studied extensively in the past, often as very
interesting examples in research of various graph invariants. The interest seems to be even
more intensive recently, the problems studied including domination [19], independent
rainbow domination [20,21], Italian domination [22], Roman and double Roman domina-
tion [12,23,24], to name just a few. Many papers focus on subfamilies of Petersen graphs.
Popular examples are P(n, c), for fixed (and usually small) c, and P(ck, k), for fixed c and
arbitrary k (hence infinitely many n = ck). In [25] the exact values of γrt(P(n, 1)) for any
t ≥ 8 and t = 4 are determined and it is proved that γrt(P(2k, k)) = 4k for t ≥ 6.

In [26] the 3-rainbow domination numbers of several classes of graphs, such as paths,
cycles and the generalized Petersen graphs P(n, k), were investigated. The 3-rainbow
domination number of P(n, k) for some cases are determined and the upper bounds for
P(n, 2), n ≥ 5, and P(n, 3), n ≥ 30, were provided. In particular, the general lower bound
was established, γr3(P(n, k)) ≥ n, and it was proved that if k ≡ 1(mod6), n ≡ 0(mod6)
and n > 2k ≥ 6, then γr3(P(n, k)) = n. Additionally, it was determined that for n ≥ 6,
γr3(P(n, 1)) = n + α, where α = 0 for n ≡ 0(mod6), α = 1 for n ≡ 1, 2, 3, 5(mod6),
and α = 2 for n ≡ 4(mod6). The upper bound, γr3(P(n, 2)) ≤ d 6n

5 e for n ≥ 5 was
provided. It follows that γr3(P(6k, k)) ≥ 6k for each k ≥ 1, γr3(P(6k, k)) = 6k if k ≡
1(mod6), and 12 ≤ γr3(P(12, 2)) ≤ 15.

The following two results are of particular importance for the present work. First, we
recall the general bound n ≤ γr3(P(n, k)), which was proved in [2] and directly implies the
next proposition.

Proposition 1. 6k ≤ γr3(P(6k, k)).

In cases when n = 6k, on the other hand, we have the following upper bound for
generalized Petersen graphs [26].

Proposition 2. Let k = 1(mod6), n = 0(mod6) and n ≥ 2k ≥ 6. Then γr3(P(n, k)) ≤ n.

Propositions 1 and 2 together imply exact values for one infinite family.

Proposition 3. Let k = 1(mod6), n = 0(mod6) and n ≥ 2k ≥ 6. Then γr3(P(n, k)) = n.

1.4. Our Results

Recall that the tRD functions assign sets of colors to vertices. An interesting special
case are tRD functions that assign only singletons or empty sets. We call such functions sin-
gleton tRD functions (StRD functions) and the minimal weight obtained when considering
only StRD functions singleton t-rainbow domination number denoted by γ̃rt. Clearly,

γrt ≤ γ̃rt .

In this paper, we study both γrt and γ̃rt. In both cases, we give the exact values of
3-rainbow domination number for some, and bounds with a small gap for all other infinite
subfamilies of generalized Petersen graphs, P(6k, k). The main results are given in the
following two theorems.

Theorem 1. For the 3-rainbow domination number γr3 of generalized Petersen graphs P(6k, 6)
we have the following:

• If k = 1, 5 (mod6), then γr3(P(6k, k)) = 6k;
• If k ≡ 0 (mod2), then 6k < γr3(P(6k, k)) ≤ 6k + 3;
• If k ≡ 3 (mod6), then 6k < γr3(P(6k, k)) ≤ 6k + 6.
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In the special case when only singleton 3RD functions are considered, we obtain
bounds and in some cases exact values of singleton 3RD domination number.

Theorem 2. For the singleton 3-rainbow domination number γ̃r3 of generalized Petersen graphs
P(6k, 6) we have the following:

• If k = 1, 5 (mod6), then γ̃r3(P(6k, k)) = 6k;
• If k = 0 (mod2), then γ̃r3(P(6k, k)) = 6k + 3;
• If k = 3 (mod6), then 6k < γ̃r3(P(6k, k)) ≤ 6k + 6.

Finally, for a member of one family for which the exact values remain unknown
we provide an example for which the general bounds are improved, we show that
21 ≤ γ̃r3(P(18, 3)) ≤ 23 (Proposition 9).

2. Constructions and Proofs

We start with a useful result that sheds some light in relation between the lower
bounds for singleton 3RD functions and general 3RD functions.

Lemma 1. Let G be a 3-regular graph on n vertices. Let f be a 3RD function that assigns empty
sets to n0 vertices, singletons to n1 vertices, two element sets to n2 vertices, and three element sets
to n3 vertices. Then

| f (V)| ≥ |V(G)|
2

+
n2

2
+ n3 .

Furthermore,

| f (V)| ≥ |V(G)|
2

+
1
6

n? +
n2

2
+ n3 ,

where n? is the number of vertices that are assigned one color and have a colored neighbor.

Proof. Observe that a vertex, which is assigned a singleton, fulfills the demand of one
vertex and at most three thirds of the demands of its neighbors, thus summing up the
fractions it serves at the greatest demand, which is two in total. Similarly, a vertex assigned
set of two colors fulfills its demand plus three times two thirds of demands at most (serves
demand≤ 3). A vertex with three colors assigned can dominate four vertices. Furthermore,
let n1 = n(?)

1 + n? where n? is the number of vertices that are assigned one color and have
at least one neighbor that is colored.

As | f (V)| = n1 + 2n2 + 3n3 = n(?)
1 + n? + 2n2 + 3n3, and 2n1 + 3n2 + 4n3 ≥ 2n(?)

1 +
5
3 n? + 3n2 + 4n3 ≥ |V(G)|, we have the following:

2(| f (V)| − n? − 2n2 − 3n3) +
5
3

n? + 3n2 + 4n3 ≥ |V(G)| ,

and

| f (V)| ≥ |V(G)|
2

+
1
6

n? +
n2

2
+ n3 ,

as claimed.

For later reference, it is useful to note the following.

Corollary 1. Let G = P(n, k). If γr3(G) = n = |V(G)|
2 , then γrt(G) = γ̃rt(G), and any

minimal assignment is a singleton 3RD function.

Next, we consider induced subgraphs, more precisely, paths. An induced path is a
connected subgraph on m ≥ 2 vertices of G such that m− 2 vertices have a degree of two,
and two vertices have a degree of one.
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Lemma 2. Let f be a singleton 3RD function of a 3-regular graph G, and let P be an induced
path of length ` on vertices {v0, v1, . . . , v`} in G. Assume that one of the vertices v0 and v` is
uncolored and the other is assigned exactly one color, such as f (v`) = ∅ and | f (v0)| = 1. Then,
| f (P)| ≥

⌈
`+1

2

⌉
.

Proof. The edges of P are {vi, vi+1} for i = 0, 1, . . . , ` − 1. Thus, v0 and v` have two
neighbors outside P and all other vertices have exactly one neighbor outside P. Assume
that one of the vertices v0 and v` is uncolored and the other is assigned exactly one color.
Clearly, each of the uncolored vertices vi, i ∈ [1, ` − 1] must have two neighbors in P
that are colored with two (distinct) colors, and consequently, the total number of colored
vertices must be at least

⌈
`+1

2

⌉
.

Example 1. It is even easier to handle the cycles because every vertex of a cycle has exactly one
neighbor outside the cycle, and thus, needs at least two colors unless it is colored. Let C be a cycle
of length ` in a 3-regular graph. Then, any singleton 3RD function assigns colors to at least d `2e
vertices, and hence | f (C)| ≥ d |V(C)

2 e.

We use two different notations to outline the 3RD functions of generalized Petersen
graphs. For smaller graphs, we use the following:(

f (u0) f (u1) . . . f (un−1)
f (v0) f (v1) . . . f (vn−1)

)
.

The elements in rows are written in triples for easier reading. For example, a 3RD function
showing γr3(P(6, 1)) = γ̃r3(P(6, 1)) = 6 is the following:(

102 030
030 102

)
.

More often, we use the second notation that provides only the values on the outer
cycle. The columns correspond to the sets Ui, and we assume that the inner cycles (sets
Vi) are completed (with minimal number of colors) such that the whole assignment is a
3RD function. In Table 1 below, the first two and the last two columns provide the same
information, namely the values at U0 = Uk, and U1 = Uk+1. This will be useful to observe
when certain patterns give rise to optimal assignments—it will hold exactly when columns
0 and k will match, taking into account the shift of rows as indicated in Table 1.

Table 1. A 3RD-coloring of Ui for P(6k, k).

f (u0) f (u1) . . . f (ui) . . . f (uk−1) f (uk) f (uk+1) . . .

f (uk) f (uk+1) . . . f (uk+i) . . . f (u2k−1) f (u2k) f (u2k+1) . . .

f (u2k) f (u2k+1) . . . f (u2k+i) . . . f (u3k−1) f (u3k) f (u3k+1) . . .

f (u3k) f (u3k+1) . . . f (u3k+i) . . . f (u4k−1) f (u4k) f (u4k+1) . . .

f (u4k) f (u4k+1) . . . f (u4k+i) . . . f (u5k−1) f (u5k) f (u5k+1) . . .

f (u5k) f (u5k+1) . . . f (u5k+i) . . . f (u6k−1) f (u6k) = f (u0) f (u1) . . .

0 1 . . . i . . . k− 1 k k + 1 . . .

2.1. The Cases k = 1 (mod6) and k = 5 (mod6)

Consider the pattern in Table 2 that provides 3RDFs for P(42, 7) and P(78, 13).
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Table 2. An optimal 3RD-coloring of Ui for P(6k, k). The first column provides a 3RD function for
P(6, 1), the first 7 columns provide a 3RD function for P(42, 7), and the first 13 columns provide a
3RD function for P(78, 13).

1 0 2 0 3 0 1 0 2 0 3 0 1 0 . . .

0 2 0 3 0 1 0 2 0 3 0 1 0 2 . . .

2 0 3 0 1 0 2 0 3 0 1 0 2 0 . . .

0 3 0 1 0 2 0 3 0 1 0 2 0 3 . . .

3 0 1 0 2 0 3 0 1 0 2 0 3 0 . . .

0 1 0 2 0 3 0 1 0 2 0 3 0 1 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

First, consider closely the graph P(42, 7). Using the fact that the columns 0 and 7
correspond to the same set of vertices, U0 = U7, and that the column 7 equals column 0
shifted one row downwards (see Table 1), it is clear that the pattern is well defined on
the outer cycle of P(42, 7). It is trivial to check that the vertices on the inner cycles can be
colored by three additional colors each, so we can conclude that we have a 3RDF of P(42, 7)
of weight 42. Similarly, regarding P(78, 13), we have U0 = U13, and the same reasoning
applies. For a later reference, observe that the pattern in Table 2 repeats after six columns.

Using a symmetrical pattern, we find that there are 3RDFs of P(30, 5) and P(66, 11)
and of weights 30 and 66, respectively (see Table 3).

Table 3. Optimal 3RD colorings. of Ui for P(30, 5) and P(66, 11).

1 0 3 0 2 0 1 0 3 0 2 0 1 0 3 0 2 0

0 1 0 3 0 2 0 1 0 3 0 2 0 1 0 3 0 2

2 0 1 0 3 0 2 0 1 0 3 0 2 0 1 0 3 0

0 2 0 1 0 3 0 2 0 1 0 3 0 2 0 1 0 3

3 0 2 0 1 0 3 0 2 0 1 0 3 0 2 0 1 0

0 3 0 2 0 1 0 3 0 2 0 1 0 3 0 2 0 1

0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 11

The observed facts can be summarized in the next proposition.

Proposition 4. For k = 1(mod6) and k = 5(mod6) we have γr3(P(6k, k)) = 6k.

Proof. By previous arguments, the two patterns (Tables 2 and 3) both have a period of
6. Therefore, the assignments for k = 5, 7 can, by induction, be extended to the provide
assignments for families k = 1(mod6) and k = 5(mod6), as claimed.

Remark 1. The case k = 1(mod6) is also proved in [26]; see Proposition 3 above.

2.2. The Case k Even

First, we consider the lower bound for γ̃r3(P(6k, k)).

Lemma 3. Let k > 2 be an even number. Then, γ̃r3(P(6k, k)) ≥ 6k + 3.

Proof. Let k ≥ 4. Consider the k inner cycles together with their neighbors, i.e., the
subgraphs induced on vertices Vi ∪Ui, where Ui = {ui, ui+k, ui+2k, ui+3k, ui+4k, ui+5k} and
Vi = {vi, vi+k, vi+2k, vi+3k, vi+4k, vi+5k}. Choose i with | f (Vi ∪Ui)| = 6. (Such an i clearly
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exists as, otherwise, γr3(P(6k, k)) ≥ 7k > 6k + 3.) Consider Figure 2, and observe that
there are six paths on the outer cycle between vertices of Ui. These paths (three are depicted
on Figure 2) have length k + 1. Three of them, together with vertices of Vi ∪Ui, form three
disjoint cycles of length k + 3. These cycles are odd, so we need to color k

2 + 2 of the vertices.
For the vertices on the paths, the number of colored vertices is at least d k+1

2 e − 1 = k
2

because k is even. As | f (Vi ∪Ui)| = 6, exactly one endpoint of the path is colored, and the
other is uncolored. By Lemma 2, at least d k+1

2 e vertices need to be colored, but the endpoint
is already used on the odd cycle.) Finally, we also have k− 1 inner six cycles and need to
color at least three vertices on each of them. In total, we need to color at least the following
vertices:

3(
k
2
+ 2) + 3

k
2
+ (k− 1)3 ≥ 6k + 3

and hence, | f | ≥ 6k + 3, as claimed.

v0 u0

vk

uk

v2k

u2k

v3k
u3k

u4k

v4k
v5k

uk+1

uk+2

uk+3u2k−1

u3k+1

u3k+2

u3k+3

u4k−1
u5k

u5k+1

u5k+2

u5k+3

u6k−1

Figure 2. An inner cycle with neighbors on the outer cycle.

The lower bound is tight, as we can construct 3RD functions of weight 6k + 3. For
small cases k = 2, 4, 6, see Table 4. The examples are based on the pattern shown in Table 2
Another set of examples can be obtained similarly from pattern in Table 1. Recall that both
the patterns have a period of six.

Table 4. Optimal 3RD functions (a) of weight 15 for P(12, 2), (b) of weight 27 for P(24, 4), and (c) of
weight 39 for P(36, 6).

(a) (b) (c)

1 2 1 0 3 2 1 0 3 0 2 2

0 1 0 1 0 3 0 1 0 3 0 2

2 3 2 0 1 3 2 0 1 0 3 3

0 2 0 2 0 1 0 2 0 1 0 3

3 1 3 0 2 1 3 0 2 0 1 1

0 3 0 3 0 2 0 3 0 2 0 1

The only case not covered by Lemma 3 is k = 2. The graph P(12, 2) has only 24 vertices,
so it can be shown by a trivial algorithm that γr3(P(12, 2)) = 15. An alternative argument
that γr3(P(12, 2)) ≥ 15 is given in Section 2.4. Summarizing, we have the following result.
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Proposition 5. Let k be an even number. Then γ̃r3(P(6k, k)) = 6k + 3.

Proof. The examples in Table 4 are based on the two patterns with period 6. Hence, one
of the columns, wlog column 0, can be replaced by seven columns (columns 0, 1, . . . , 6
from Table 2) to obtain a 3RD function with 6 more columns and weight increased by 36.
By induction, we obtain constructions for all even k of weight 6k + 3. Recalling the lower
bound from Lemma 3, it follows that the constructions are the best possible.

We conclude the subsection with the bounds for γr3(P(6k, k)).

Proposition 6. Let k be an even number. Then, 6k < γr3(P(6k, k)) ≤ 6k + 3.

Proof. First, recall that γr3(G) ≤ γ̃r3(G) = 6k + 3. To prove the lower bound, observe
one of the cycles C of length k + 3, say V(C) = {v0, u0, u1, . . . , uk−1, uk, vk}. The cycle is
odd; hence, either there is a pair of adjacent colored vertices in V(C), or at least one of the
vertices of C has a neighbor that is assigned at least two colors. Hence, either n? > 0 or
n2 > 0 or n3 > 0. By Lemma 1, γr3(P(6k, k)) > 6k.

2.3. The Case k = 3(mod6)

First, we prove a property of any 3RD function f of P(n, k) with | f (V)| = n.

Lemma 4. Assume γr3(P(6k, k)) = 6k and let f be a 3RD function with minimal weight
| f (V)| = n. Then, exactly one half of the vertices on the outer cycle are colored. Wlog as-
sumes that these are vertices with even indices. Then, the following holds: (1) f (ui) = ∅, for all
odd i, (2) f (ui+6) = f (ui), i ∈ [0, 6k− 1], and (3) f (u0), f (u2), f (u4) are pairwise different.

In other words, the lemma says that the outer cycle vertices are colored following the
pattern a− 0− b− 0− c− 0− · · · − a− 0− b− 0− c− 0, where a, b, c are the three colors.

Proof. Recall that by Corollary 1, any minimal 3RDF must be a singleton 3RDF and hence
that γr3(P(6k, k)) = γ̃r3(P(6k, k)) = 6k. Consider an uncolored vertex on the outer cycle,
and observe that its three neighbors must be colored by three distinct colors. Wlog, for
example, ui, is the vertex with f (ui) = ∅. Then, the three neighbors of ui must be colored
by distinct colors, for example, f (vi) = c, f (ui−1) = a and f (ui+1) = b.

We show that we must have f (ui+3) = c. First, because f (vi) = c, we have f (vi+2k) ∪
f (vi+4k) = {a, b}, and, consequently f (ui+3k) = c. Furthermore, f (ui+3) 6= b because
f (ui+1) = b. If f (ui+3) = c, we are done. Otherwise, f (ui+3) = a and by the same
reasoning as above, we have to have f (vi+2) = c and in turn f (ui+2+3k) = c. Now,
the vertex ui+1+3k has two neighbors colored by the same color, and hence, f must have
weight > 6k. This is a contradiction, so f (ui+3) = c.

By induction, we have f (ui+5) = a, f (ui+7) = b, and so on, which implies the
statements of the lemma.

The last lemma can be used to obtain a lower bound.

Lemma 5. If k = 3(mod6) then γ̃r3(P(6k, k)) ≥ γr3(P(6k, k)) > 6k.

Proof. Let k = 6`+ 3 and assume that γr3(P(6k, k)) = 6k = 36`+ 18. Consider an inner
cycle, say U0. As γr3(P(6k, k)) = 6k, any inner cycle is colored by three distinct colors.
If we assume wlog such that f (u0) = a, then we know that we must have f (v3k) = a
(as observed in the proof of Lemma 4). It follows that f (u2k) 6= a because f (v2k) can-
not have two neighbors colored by the same color, a. On the other hand, by Lemma 4
f (u2k) = f (u12`+6) = f (u0) = a. This is a contradiction.

The next table provides singleton 3RD function of weight 60 for P(54, 9).
Formally, Table 5 and an inductive argument imply the following.



Symmetry 2021, 13, 1860 9 of 11

Table 5. A singleton 3RD function of Ui for P(54, 9).

1 0 3 0 2 0 1 2 2 0 1

0 1 0 3 0 2 0 1 3 2 0

2 0 1 0 3 0 2 3 3 0 2

0 2 0 1 0 3 0 2 1 3 0

3 0 2 0 1 0 3 1 1 0 3

0 3 0 2 0 1 0 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10

Lemma 6. If k > 3, k = 3(mod6) then γ̃r3(P(6k, k)) ≤ 6k + 6.

For case k = 3, see Proposition 9. Summarizing, we have the following result for
k = 3 (mod6).

Proposition 7. If k = 3(mod6), then 6k < γr3(P(6k, k)) ≤ γ̃r3(P(6k, k)) ≤ 6k + 6.

2.4. Two Examples

In this subsection, we consider two small examples that are not covered by the general
arguments above.

Proposition 8. γ̃r3(P(12, 2)) = 15.

Proof. First, we prove that at least 15 vertices must be colored. Observe that at least
6 vertices must be colored on the outer cycle because it has 12 vertices, and the two
inner cycles C1 and C2 on six vertices must have at least 3 colored vertices. Furthermore,
the vertices of U = {u0, u1, . . . , u11} with odd indices are adjacent to one, and the vertices
with even indices are adjacent to the other six cycle. Now consider several cases:

(1) | f (U)| = 6. Clearly, all colored vertices of U have either odd or even indices. How-
ever, then one of the six cycles has no colored vertex in the neighborhood, and we
need six colors for this six cycle. Thus, we need 6 + 6 + 3 = 15 colors.

(2) | f (U)| = 7. Taking into account that all vertices of U must have at least two col-
ored neighbors within U, we observe that the set of uncolored vertices must be an
independent set. On a 12 cycle, there are (up to isomorphism) three possibilities
for an independent set of five vertices; their indices may be either (a) 0, 2, 4, 6, 8,
or (b) 0, 2, 4, 6, 9, or (c) 0, 2, 4, 7, 9. In case (a), the inner cycle induced on vertices
C2 = {v0, v2, v4, v6, v8, v10} has only one colored neighbor, v10. Hence, | f (C2)| ≥ 5.
In case (b), the inner cycle C2 has two colored neighbors, u8 and u10. Again, we must
have | f (C2)| ≥ 5, because v8 and v10 are neighbors and one of them has to be colored.
In case (c), the inner cycle C2 has three colored neighbors, u6, u8 and u10. This implies
that | f (C2)| ≥ 4. Furthermore, the inner cycle C1 has four colored neighbors, u1, u3,
u5 and u11. Observe that it is not possible to complete the coloring of C1 by coloring
only three vertices, so | f (C1)| ≥ 4. In all cases, at least 15 vertices need to be assigned
a color.

(3) | f (U)| = 8. In this case, it can be seen that we need to color at least four vertices of
one six cycle (C1 or C2) to obtain a S3RDF. We omit the details.

(4) | f (U)| ≥ 9. It is clear that we need at least three vertices on C1 and on C2.

Summarizing, we have the lower bound. To complete the proof, note that a single-
ton 3RDF can be constructed easily, for example, by applying the reasoning in case (1)
above.

Proposition 9. 21 ≤ γ̃r3(P(18, 3)) ≤ 23.
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Proof. Consider a 3RDF of weight 23 of P(18, 3):
(

01p 102 01p 301 02p 103
201 030 303 p20 3p2 020

)
where p can be any color. Hence, γ̃r3(P(18, 3)) ≤ 23.

Next, we show that 21 ≤ γ̃r3(P(18, 3)). Let f be a 3RDF of P(18, 3) such that | f | < 21.
Then, | f (Ui ∪ Vi)| = 6 for at least one i ∈ {1, 2, 3}, and we can assume that | f (Vi)| = 3.
Wlog., let | f (U1 ∪ V1)| = 6, f (v1) = a, f (v7) = b, and f (v13) = c. Then, f (u4) = c,
f (u10) = a, f (u16) = b. It follows that { f (u0), f (u2)} = {b, c}, { f (u6), f (u8)} = {a, c},
and { f (u12), f (u14)} = {a, b}. There are eight possibilities:

(1) f (u2) = b, f (u8) = c, f (u14) = a. Then, f (u0) = c, f (u6) = a, f (u12) = b. Now
consider f (U2 ∪V2). The vertex v11 (or u11) should be assigned color c because u11 has, so
far, no neighbor with color c. On the other hand, v11 has a neighbor, v8, that already has a
neighbor with color c, namely, u8. This is similarly the case for v5 and v17. Considering
all possibilities to complete the coloring of U2 ∪V2, we conclude that we need nine colors.
Hence, we need to color at least 21 vertices, contradicting the assumption. Analogous
reasoning applies if we consider U3 ∪V3.

(2–8) In each case, we arrive at the conclusion that at least 21 vertices need to be
colored. We omit the details.

3. Conclusions

We have demonstrated exact values of 3-rainbow domination number for some infinite
families of Petersen graphs P(6k, k), and bounds with small gaps for others (Theorem 1).
Moreover, we study a special case when only colorings that assign sets with, at most,
one element are considered. In this case, we provide exact values for all but one infinite
subfamily (Theorem 2). The largest gaps remain in the case n = 6k, where k = 3 (mod6).
The example P(18, 3) (see Proposition 9) indicates that we may have a stronger lower
bound, at least for singleton 3RDF. On the other hand, our construction of a S3RDF for
P(18, 3) does not seem to generalize easily. Therefore, we propose the following conjecture.

Conjecture 1. If k = 3 (mod6), then 6k + 3 ≤ γ̃r3(P(6k, k)) ≤ 6k + 6.

Due to well-known symmetries of generalized Petersen graphs, it is straightforward
that the results of this paper directly apply to the family P(6k, 5k) as P(6k, 5k) ≈ P(6k, k)
(where ≈ denotes graph isomorphism). The remaining cases among graphs with n = 6k
are Petersen graphs P(6k, 2k) and P(6k, 4k), where the inner cycles are triangles. Clearly,
in both cases γr3 > n, but it may be an interesting task for future research to obtain
exact values or at least close bounds for these families.. Note that the case P(6k, 3k) is not
interesting, as in this case, the graphs are not 3-regular, as all inner vertices are of degree
two, and hence, must be colored. Then, it follows trivially that γr3(P(6k, 3k)) = 9k.
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