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Abstract: Symmetry forms the foundation of combinatorial theories and algorithms of enumeration
such as Möbius inversion, Euler totient functions, and the celebrated Pólya’s theory of enumeration
under the symmetric group action. As machine learning and artificial intelligence techniques
play increasingly important roles in the machine perception of music to image processing that
are central to many disciplines, combinatorics, graph theory, and symmetry act as powerful bridges
to the developments of algorithms for such varied applications. In this review, we bring together
the confluence of music theory and spectroscopy as two primary disciplines to outline several
interconnections of combinatorial and symmetry techniques in the development of algorithms for
machine generation of musical patterns of the east and west and a variety of spectroscopic signatures
of molecules. Combinatorial techniques in conjunction with group theory can be harnessed to
generate the musical scales, intensity patterns in ESR spectra, multiple quantum NMR spectra, nuclear
spin statistics of both fermions and bosons, colorings of hyperplanes of hypercubes, enumeration
of chiral isomers, and vibrational modes of complex systems including supergiant fullerenes, as
exemplified by our work on the golden fullerene C150,000. Combinatorial techniques are shown to
yield algorithms for the enumeration and construction of musical chords and scales called ragas
in music theory, as we exemplify by the machine construction of ragas and machine perception
of musical patterns. We also outline the applications of Hadamard matrices and magic squares in
the development of algorithms for the generation of balanced-pitch chords. Machine perception of
musical, spectroscopic, and symmetry patterns are considered.

Keywords: symmetry and combinatorics; music theory; musical scales; spectroscopy; giant fullerenes;
artificial intelligence; hypercubes; chirality

“If music be the food of love, play on;
Give me excess of it;” William Shakespeare, Twelfth Night, or What you Will: Act 1,

Scene 1, 1–3.
“Music is a secret exercise in arithmetic of the soul, unaware of its act of counting.”

Gottfried Leibniz
“If music be the food of combinatorics, give me excess of it.” Current Author

1. Introduction

Ever since the time of Pythagoras, scientists, philosophers, and mathematicians have
been intrigued by the intimate connection between music and mathematics [1–27]. This
connection is becoming even more relevant today with a rising interest in artificial intel-
ligence, especially as it pertains to pattern recognition, similarity measures, sound and
image perceptions, big data, machine learning, neural networks, and so on [28–43]. The
Greek mathematician and philosopher Pythagoras was one of the ancient explorers of the
relationship between music and mathematics with the formulation of the diatonic scale
system. Although originally these musical notes corresponded to the major diatonic scale
comprising the white keys of a piano, the renaissance period witnessed an important meta-
morphosis made possible by the groundbreaking works of Gioseffo Zarlino and Heinrich
Glarean that culminated into the foundations of modern western music theory [44–46]
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of 12-tone system. Zarlino of the renaissance period is credited to have recognized the
12 equal divisions within an octave as opposed to 8, resulting in the metamorphosis from
the Pythagorean (6th Century BC: white keys of the piano) to the Zarlino (16th Century CE:
12-tone) scales [44,45]. Heinrich Glarean’s [44] classic 1547 work Dodekachordon (12-stringed
instrument) proposed the existence of 12 modes and not the 8 that was assumed earlier.
Consequently, the Aeolian modes (9,10) and Ionian modes (11,12) emerged, where the
Aeolian mode corresponds to the natural minor, also known as Natabhairavi in south
Indian music and Asaveri Thaat in north Indian music systems. Glarean’s Dodekachordon
was inspired by the connection between the faces of a dodecahedron (See Figure 1) and
musical notes through the introduction of five additional transposed notes (five black keys
within an octave of a piano), including the Bb note. As seen in Figure 1, the dualist of
the dodecahedron is the icosahedron, when 12 pentagonal faces of the dodecahedron are
mapped into the vertices of the icosahedron. They both belong to the icosahedral point
group, Ih, containing 120 symmetry operations. The 12 vertices of the icosahedron form
3 mutually orthogonal golden rectangular planes, as shown in Figure 1 (Bottom Right).
The golden ratio and its inverse that appear in the character values of the T1,2(g,u) rep-
resentations of the Ih group provide further insights into the symmetry properties of the
12-tone chromatic scale. Consequently, we have the modern 12-tone chromatic scale system
that includes both black and white keys on the piano within an octave. The relationship
between an octave and the periodic table of elements in chemistry is well recognized by
the formulation of the “Law of Octaves” by Newlands in 1865. The connection between
combinatorics and group theory to the periodic table of elements continues to be a topic of
several recent studies [47–56].

A number of concepts of combinatorics and symmetry find applications in music
theory. The Greek etymology of symmetry suggests that the word originated from the
Greek word Συµµετρία (symmetria), which means balance, harmony, proportion, cycle,
rhythm, and so on. The octave itself refers to a cycle of 8 where the frequencies of the first
and 8th notes are double of each other. Consequently, the integer modulo group Zn = {0, 1,
2, . . . , n − 1} where n = 7, is a symmetry representation of the major notes (white keys) in
an octave where if 0 is mapped to C, then n − 1 becomes B natural, and other notes are
mapped sequentially in increasing order of pitch. The advent of the 12-tone chromatic scale
is an attempt to find symmetry between melody and harmony, where harmony originates
from simultaneous notes played in a rational frequency relation, while melody originates
from the transposition of notes (or through invoking black keys in relation to the white
keys). We would not have several scales evoking emotion, romance, or pathos, such as the
harmonic minor, Dorian scale, Hungarian minor, natural minor, etc., without the 12-tone
chromatic scale.

Combinatorics is an arm of discrete mathematics that deals with the enumeration,
construction, and classification of configurations with a specified set of constraints. The
current author [24] has previously explored the connection between combinatorics and
south Indian music theory through the enumeration and construction of non-kinky musical
scales arising from the 12-tone chromatic scale with certain constraints that eliminate
the occurrence of notes with the same frequency but different names within the 12-tone
polyphonic music system. The concept of various types of symmetries of musical scales,
including chiral scales, is explored in the present article. Such combinatorial techniques
facilitate the enumeration and construction of big data of musical patterns, which can
further be explored with machine learning, neural networks, and artificial intelligence.
Combinatorics also finds applications in the formulations and solutions of problems in
western music theory, such as Babbitt’s partition problems within the 12-tone musical
compositions [12–18], one of which asks for an algorithm to enumerate all mxm matrices
with entries drawn from the set {1, 2, . . . , n} such that all rows and columns have the sum
n. There are other variations to Babbitt’s partitions. These problems of musical theory bear
a direct relation to combinatorial Latin squares, magic squares, Hadamard matrices, and
balanced block designs, which we discuss in this review. One of the oldest combinatorial
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problems pertinent to balanced designs dates back to 587 CE, as described in the treatise of
Brhat Samhita by Varahamihira; the problem seeks to construct a combinatorial symmetric
design to create a perfume by mixing four substances selected from sixteen different
fragrant chemicals using a magic square. Perhaps this is an early demonstration of the use
of Hadamard transforms in analytical chemistry. Moreover, as illustrated in this review, the
Chautisa yantra on the wall of the 12th Century Parshvanath temple in Khajuraho, India,
is a quintessential element of a combinatorial balanced design.

Figure 1. (Top Left) The 12-tone chromatic wheel, which exhibits perfect radial symmetric proportions in frequency
ratios. The pie chart shows the relative proportions of the 12-notes in the dodecahedral scale. (Top Right) The 12-faced
dodecahedron comprised of 12-pentagons where the pentagonal faces correspond to the 12-tone chromatic scale.: Repro-
duced from Wikimedia Commons, the free media repository, by User: Cyp, Public Domain, https://en.wikipedia.org/
wiki/Regular_dodecahedron#/media/File:Dodecahedron.jpg, accssed on 15 July 2021 (Bottom Left) An icosahedron with
12 vertices, the dual of the dodecahedron obtained by mapping the 12 faces of the dodecahedron into 12 vertices of the
icosahedron, which represent the 12 notes within an octave. Both solids have the icosahedral point group symmetry (Ih).
The dodecahedral and icosahedral representations are inspired by Heinrich Glarean’s classic 1547 work [44] Dodekachordon
(12-stringed instrument). The icosahedral symmetry holds a special relation to the golden proportion, as the character
values of T1g, T1u, T2g, and T2u representations under the C5 rotations correspond to the golden ratio: ϕ = (√5 + 1)/2
and its inverse ϕ−1 = (√5 − 1)/2; ϕ is also the edge length of an icosahedron if the dodecahedron has a unit edge
length. (Bottom Right) The vertices of the 12-vertex icosahedron constitute three golden rectangular planes: (BR: Repro-
duced from Fropuff, M.—Generated in Mathematica and vectorized in CorelDraw by w:User:Mysid., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=1335235, accessed on 15 July 2021).

https://en.wikipedia.org/wiki/Regular_dodecahedron#/media/File:Dodecahedron.jpg
https://en.wikipedia.org/wiki/Regular_dodecahedron#/media/File:Dodecahedron.jpg
https://commons.wikimedia.org/w/index.php?curid=1335235
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Although spectroscopy is a branch of science that explores the interaction of molecules
with electromagnetic radiation, the various spectroscopic signatures of a given molecule
bear a direct relationship to the symmetry of the molecule, and consequently, to group
theory, representation theory of groups, nonrigid molecular symmetries, combinatorics,
and recently, artificial intelligence, as it pertains to molecules [57–78]. Several spectroscopic
concepts such as frequencies, intensities, blue shift, red shift, signatures, fast Fourier
transform, Hadamard transform [79–81], harmonics, quantization of energy levels, and
so on have applications to music theory, as we show in this review. We explore the
combinatorial connections to spectroscopic patterns of molecules such as the Electron Spin
Resonance (ESR) spectral patterns, multiple quantum Nuclear Magnetic Resonance (MQ-
NMR) spectroscopic patterns, and vibrational spectra with applications to giant fullerenes
up to C150,000 golden-dome fullerene. The review article also attempts to integrate these
spectroscopic concepts into music theory through combinatorics and related algebraic
concepts, including group theory, combinatorics, and graph theory. All of these interplays
of concepts facilitate explorations on the role of artificial intelligence in music theory and
music similarity measures.

Pattern recognition plays a vital role in music, as a trained music listener often tries to
identify certain patterns or a specific sequence of notes/phrases that occur in a musical
composition giving rise to the recognition of the scale or raga. There are recognizable pat-
terns or characteristic features in a musical rendering of a composition which can then form
a basis of pattern recognition or machine learning by embedding phrases. This concept has
been demonstrated in western music systems by a number of authors, including Longuet-
Higgins [28–33], who is eminently credited with the formulation of the symmetry groups
of nonrigid molecules [81] as permutation-inversion groups and the symmetry theory of
Jahn-Teller distortion in molecules [82]. A number of authors have explored the connection
between India’s two celebrated schools of music, well known as the Hindustani and Car-
natic music schools. Machine learning through embedding techniques has been employed
to identify similarity measures [35–43] in musical compositions of the east. Such measures,
including the machine perception of continuous glides from one note to the other, called
the meend or jaaru, and other vibrato patterns, called the gamakas or andolams, in eastern
music systems can be made possible through machine learning of compositions. Similarity
measures play a critical role in many other fields such as drug discovery [83–86], quantum
similarity measures [55,85], molecular similarity measures [86], electronic holographic
measures [87], quantitative shape similarity measures [88,89], topological measures [90,91],
predictive toxicology [91], ornithology [92], neuroscience [93–95], and so on.

The central objective of this review is to bring together the various disciplines men-
tioned above to point out the similarities and how such cross-fertilizations can be symbiotic
in promoting interdisciplinary research that synthesizes concepts from combinatorics,
group theory, spectroscopy, music theory, and artificial intelligence. Such interdisciplinary
developments in the future are extremely important and necessary in order to develop
machine learning and artificial intelligence techniques for the machine perception of pat-
terns in various disciplines. The review is organized by first outlining the connections
of symmetry, combinatorics, and music theory and, subsequently, their roles in different
spectroscopies. We also outline combinatorial techniques such as the Möbius inversion
technique, inclusion–exclusion, Sheehan’s version of Pólya’s theorem generalized to all irre-
ducible representations, Hadamard matrices, Latin squares, magic squares, etc., elucidating
their varied roles in different disciplines.

2. Combinatorics, Symmetry, Musical Scales and Patterns

We start with the basic definitions of the notes comprising the 12-tone chromatic
scale in different systems of music. Table 1 shows the naming conventions of the 12 notes
within an octave in the western music system, mathematical, north Indian, and south
Indian music schools. We note that some of the music systems are polyphonic; that is, the
note with the same frequency is assigned multiple names. The advantage is that certain
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combinations of notes close in frequency become allowed under the polyphonic convention
while they would be forbidden in a monophonic system. As shown in Table 1, each of the
combinations, R2 and G1, R3 and G2, D2 and N1, D3 and N2, is equivalent in the 12-tone
chromatic scale. By assigning different names for the same frequency notes, combinations
such as R1 and G1 and D1 and N1 in a scale become allowed, while in a monophonic
system, these combinations are forbidden. Consequently, a polyphonic system provides
for a greater number of combinations of scales compared to the monophonic music system.

Table 1. Notation of notes in south Indian (Carnatic), mathematical, western, and Hindustani (north
Indian) music systems a.

South Indian Math Western North Indian

Sa S C Sa

Ra (shudha) R1 D (flat) Komal Re
Ri (chatusruthi) R2 D (natural) Shudh Re
Ru (chatshruthi) R3 D (sharp) Komal Ga
Ga (shudha) G1 E (double flat) Shudh Re
Gi (sadharana) G2 E (flat) Komal Ga
Gu (anthara) G3 E (natural) Shudh Ga
Ma (shudha) M1 F (natural) Shudh Ma
Mi (prathi) M2 F (sharp) Tivir Ma

P (panchamam) P G Pa

Dha (shudha) D1 A (flat) Komal Dha
Dhi (chatusruthi) D2 A (natural) Shudh Dha
Dhu (shatsruthi) D3 A (sharp) Komal Ni
Na (shudha) N1 B (double flat) Shudh Dha
Ni (kaisiki) N2 B (flat) Komal Ni
Nu (kakili) N3 B (natural) Shudh Ni

Sa (higher octave) Ŝ C (upper octave) Sa (higher octave)
a The bold-face static notes Sa, Pa, Sa (higher) are kept in the pitch ratio of 1: 3

2 :2 in every music system.

Figure 1 shows the 12-tone chromatic wheel constituted by the frequencies of the
12 notes and the 12 pentagonal faces of a dodecahedron shown adjacent to the wheel. The
twelve equal pieces of the pie chart correspond to the relative proportion of the frequencies
of the adjacent notes in the scale as derived from the expression:

FN = F0 × 2(
N
12 ), (1)

where F0 is the base frequency determined by the tuning frequency. Although the symmetry
relation among the notes dictates a relative ratio, and hence F0 can, in principle, be set
to any frequency, as done in the two major schools of Indian music system either with a
tanpura or a shruti box, most modern pianos are tuned by setting the frequency of the
A note above C of the middle octave, denoted as A4 set to 440 Hz. Once this is set, the
frequencies of all notes are determined by expression (1) in an absolute manner. As the
symmetric relation among the notes is determined by a relative proportion including the
harmony of notes, we show in Table 2 that with A4 set to 440 Hz, the next C is at ~523 Hz.
Hence the ratio of the two frequencies is 1.189 or more exactly 1.189207 as per Equation (1).
Consequently, if the frequency of the static note C is set to 1, then all frequency ratios (pitch)
in the 12-tone chromatic scale are obtained by Equation (1), and they are shown in both
Table 2 and Figure 1. The ratios of frequencies of all successive notes in the 12-tone scale
are all the same and equal to 2(1/12) = 1.059463. Consequently, while the frequency of a
note is absolute once the tuning is set, the pitch is relative. We use this concept of frequency
ratios in describing the various music scales and in determining both melody and harmony
symmetric relations in the various music systems.
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Table 2. Absolute and relative frequencies (pitch) of two less-known scales in the western system but more common in the
Arabic, Byzantine, Hungarian, Spanish, and Indian music systems. The first more complex scale is the Hungarian minor,
also called Simhendramadhyamam. The second scale shown below is the most common scale in the Indian music system;
the double harmonic major or the Bhairav Thaat (Mayamalavgowla) or the gypsy minor.

Simhendramadhyamam (Hungarian Minor); the scale obtained
by replacing F of the Harmonic minor by F#.

Mayamalavgowla (Bhairav), Arabic, double harmonic major,
Byzantine, Gypsy Minor

Note f (freq) a Pitch: f/S Note f (Freq) a Pitch (f/S)
S 1.189207 1 S 1.189207 1

R2 1.334839 1.12246 R1 1.259921 1.05946
G2 1.414213 1.189207 G3 1.498307 1.25992
M2 1.681792 1.414213 M1 1.587401 1.33484
P 1.781797 1.4983 P 1.781797 1.4983

D1 1.887748 1.58740 D1 1.887748 1.58740
N3 2.244924 1.88774 N3 2.244924 1.88774
Ŝ 2.378414 2.0 Ŝ 2.378414 2
Ŝ 2.378414 2.0 Ŝ 2.378414 2

N3 2.244924 1.88774 N3 2.244924 1.88774
D1 1.887748 1.58740 D1 1.887748 1.58740
P 1.781797 1.4983 P 1.781797 1.4983

M2 1.681792 1.414213 M1 1.587401 1.33484
G2 1.414213 1.189207 G3 1.498307 1.25992
R2 1.334839 1.12246 R1 1.259921 1.05946
S 1.189207 1 S 1.189207 1

a All frequencies shown are absolute and need to be multiplied by 440 Hz, the standard frequency of the mid-A note (D2) below the C or S
shown in this table. All pitches are relative to the pitch of S (C), and successive pitches in the 12-tone chromatic scale are in the ratio of
(2)1/12 = 1.05946.

Table 2 shows two less common musical scales in the western musical system. The
second of the two scales, called the harmonic double major or the Bhairav Thaat or Maya-
malavgowla, is the most basic scale employed in the first music lesson in the music systems
of India. The scale is also well known in the Arabic or Byzantine musical systems. The use
of F# (M2) in the Hungarian minor scale, which bears a √2 frequency relation to the static
C (S), together with the notes G2 and D1 in relation to the other notes in the scale, evokes
melodies of passionate emotions, while at the same time, lending a symmetric harmony;
the relative spacing of the notes provides for a combinatorial balance that evokes pathos.
Although the scale is common in the Hungarian gypsy and Spanish musical systems, it is
less common in classical western music. When F# is changed to F in the Hungarian minor
scale, it becomes the celebrated harmonic minor scale which is common in the western and
Spanish music systems, and it is also extensively employed in Bollywood and other music
systems of Indian cinema. To illustrate, the relative frequency graphs of three scales are
displayed in Figure 2, while the radial symmetry of four scales is demonstrated in Figure 3.
Note that the third scale in Figures 2 and 3 is the Dorian scale, which is extensively used,
not only in all Indian schools of music but also in ancient Greek, medieval, and modern
jazz. Moreover, a number of pop music compositions such as “Eleanor Rigby” by the
Beatles and “The Night The Lights Went Out In Georgia” by Vicki Lawrence are set to the
Dorian scale, although in “Eleanor Rigby”, there is a progression into the natural minor.
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When the Dorian mode is divided into tetrachords, it forms a symmetrical tetrachord, as
seen in Figure 2. For this reason, the Dorian mode gives rise to numerous offspring scales
(janya ragas) in both south Indian (Kharaharapriya) and in the north Indian music system,
where the Dorian mode becomes the Kaafi Thaat. Evidently, the symmetrical spacing of
notes provides for both optimal melody, harmony, and gamakas in all dynamical notes of
Kharaharapriya, and consequently, several offspring scales and compositions arise from
the scale.

Figure 2. The relative frequency graphs of three scales arising from the 12-tone chromatic scale.
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Figure 3. The radial symmetries exhibited by four different complete scales.

Although harmony is created when notes with certain rational frequency ratios are
played simultaneously so as to avoid beats, the irrational number π presents an interesting
case study for music compositions. First, the circular symmetry of π itself arises from the
ratio of the circumference of a circle to its diameter. Consequently, the digits of π, which do
not form any recognizable pattern or sequence, have been of interest in exploring the role
of circular or spherical symmetry of music. As outlined in the review article of Maruani
et al. [8], the digits of π have been used in creating western music compositions. Here we
exemplify yet another computer-generated music composition derived from the digits of π.
Table 3 shows the first 2048 digits of π, which were converted to integer modulo 7 in order
to create a musical composition. The present author created a composition from the digits
of π entitled “The soul of π” by mapping 0 to N3 (B Natural) and the remaining integers
1 through 6 sequentially from S (C) to D1 (A flat) and thus setting it to the Hungarian
minor scale (see the piano keys at the top of Table 4). All 2048 digits of π were fed into
a computer and converted to integer modulo 7 arithmetic, Z7 = {0,1,2,3,4,5,6} in order to
create the composition shown in Table 4. As we employ integer mod 7 arithmetic, the
generated musical composition does not depend on the representations of π in various
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number systems. Although the notes in Table 4 that are set to the Hungarian minor scale are
derived from the digits of π and are grouped into columns of octets, they can be partitioned
into other groups readily. For example, there are more complex rhythmic cycles in the
south Indian music system, such as misra or sankeerna chapu, which mean a partition of
integer 7 and 9, respectively. Once the rhythmic cycle pattern is chosen, this information
can be fed to the computer to generate completely different groups of notes of π for the
chosen rhythmic cycle. A principal reason the notes are shown in groups of octets is that
it is the most common rhythmic cycle in many musical systems, set in cycles of lengths
8 and 16. Such rhythmic cycles again take the cyclic group patterns either in 8 beats/s
or 16 beats/s. Moreover, different speeds such as vilambit (slow; north Indian system),
Madhya (medium), drut (fast), or adi-drut (very fast) can be readily created by splitting or
coalescing the columns in Table 4 to fit into one of the tempos. The symmetric and melodic
nature of the Hungarian minor scale readily lends itself to harmony by choosing notes in
rational symmetric proportions for a perfect harmony without creating beats. The digits of
π can be readily set to other melodic scales such as the harmonic minor, Dorian, or natural
minor by replacing some of the notes in the composition in Table 4.

Table 3. The first 2048 digits of Pi (π) used to create the Hungarian minor composition.

3.141592653589793238462643383279502884197169399375105820974944592

3078164062862089986280348253421170679821480865132823066470938446

0955058223172535940812848111745028410270193852110555964462294895

4930381964428810975665933446128475648233786783165271201909145648

5669234603486104543266482133936072602491412737245870066063155881

7488152092096282925409171536436789259036001133053054882046652138

4146951941511609433057270365759591953092186117381932611793105118

5480744623799627495673518857527248912279381830119491298336733624

4065664308602139494639522473719070217986094370277053921717629317

6752384674818467669405132000568127145263560827785771342757789609

1736371787214684409012249534301465495853710507922796892589235420

1995611212902196086403441815981362977477130996051870721134999999

8372978049951059731732816096318595024459455346908302642522308253

3446850352619311881710100031378387528865875332083814206171776691

4730359825349042875546873115956286388235378759375195778185778053

2171226806613001927876611195909216420198938095257201065485863278

8659361533818279682303019520353018529689957736225994138912497217

7528347913151557485724245415069595082953311686172785588907509838

1754637464939319255060400927701671139009848824012858361603563707

6601047101819429555961989467678374494482553797747268471040475346

4620804668425906949129331367702898915210475216205696602405803815

0193511253382430035587640247496473263914199272604269922796782354

7816360093417216412199245863150302861829745557067498385054945885

8692699569092721079750930295532116534498720275596023648066549911

9881834797753566369807426542527862551818417574672890977772793800

0816470600161452491921732172147723501414419735685481613611573525

5213347574184946843852332390739414333454776241686251898356948556



Symmetry 2021, 13, 1850 10 of 44

Table 3. Cont.

2099219222184272550254256887671790494601653466804988627232791786

0857843838279679766814541009538837863609506800642251252051173929

8489608412848862694560424196528502221066118630674427862203919494

5047123713786960956364371917287467764657573962413890865832645995

8133904780275900994657640789512694683983525957098258226205224894

Table 4. “The Soul of π”—A Composition divided into groups of octets set in the Hungarian minor scale * based on the
digits of π.

G2 S M2 S P R2 R2 D1 P G2 P S R2 N3 R2 G2 R2 G2 S M2 D1 R2 D1 M2 G2 G2 S G2 R2 N3 R2 P

N3 R2 S S M2 S R2 N3 S D1 R2 G2 R2 R2 G2 N3 P S N3 P S R2 N3 R2 N3 M2 R2 M2 M2 P R2 R2

G2 N3 N3 S S D1 M2 N3 D1 R2 S D1 R2 N3 S R2 R2 S D1 R2 S N3 G2 M2 S R2 P G2 M2 R2 S S

N3 N3 D1 N3 R2 S R2 S M2 S N3 S D1 P S G2 R2 S R2 G2 N3 D1 D1 M2 N3 N3 R2 G2 S M2 M2 D1

N3 R2 P P N3 P S R2 R2 G2 S N3 R2 P G2 P R2 M2 N3 S S R2 S M2 S S S S N3 M2 P N3

R2 S M2 S N3 R2 N3 N3 S R2 G2 S P R2 S S N3 P P P R2 D1 M2 M2 D1 R2 R2 R2 M2 S R2 P

M2 R2 G2 N3 G2 S S R2 D1 M2 M2 R2 S S S N3 R2 N3 P D1 D1 P R2 G2 G2 M2 M2 D1 S R2 S M2

N3 P D1 M2 S R2 G2 G2 N3 S D1 N3 S G2 S D1 P R2 N3 S R2 N3 S R2 N3 R2 S M2 P D1 M2 S

P D1 D1 R2 R2 G2 M2 D1 N3 G2 M2 S D1 S N3 M2 P M2 G2 R2 D1 D1 M2 S R2 S G2 G2 R2 G2 D1 N3

N3 R2 D1 N3 R2 M2 R2 S M2 S R2 N3 G2 N3 R2 M2 P S N3 N3 N3 D1 D1 N3 D1 G2 S P P S S S

N3 M2 S S S P R2 N3 R2 R2 N3 R2 D1 R2 S R2 R2 R2 P M2 N3 R2 S N3 S P G2 D1 M2 G2 D1 N3

S R2 R2 P R2 N3 G2 D1 N3 N3 S S G2 G2 N3 P G2 N3 P M2 S S R2 N3 M2 D1 D1 P R2 S G2 S

M2 S M2 D1 R2 P S R2 M2 S P S S D1 N3 R2 M2 G2 G2 N3 P N3 R2 N3 N3 G2 D1 P N3 P R2 P

R2 S R2 P G2 N3 R2 R2 S S D1 S S N3 G2 S S R2 G2 R2 D1 S S N3 R2 G2 S N3 P S S S

P M2 S N3 N3 M2 M2 D1 R2 G2 N3 R2 R2 D1 R2 N3 M2 R2 P D1 N3 G2 P S S S P N3 P R2 N3 R2

M2 S R2 S R2 R2 N3 R2 G2 S S S G2 N3 S S R2 M2 R2 S R2 R2 S G2 G2 D1 N3 G2 G2 D1 R2 M2

M2 N3 D1 P D1 D1 M2 G2 N3 S D1 N3 R2 S G2 R2 M2 R2 M2 D1 G2 R2 P R2 R2 M2 N3 G2 N3 S R2 N3

N3 N3 R2 S N3 R2 S D1 N3 R2 M2 G2 N3 N3 R2 N3 N3 N3 P G2 R2 R2 S N3 S N3 D1 R2 R2 G2 S N3

D1 N3 P R2 G2 S M2 D1 N3 M2 S S S M2 D1 N3 D1 D1 R2 M2 N3 P S G2 R2 N3 N3 N3 P D1 S S

R2 N3 S M2 P R2 D1 G2 P D1 N3 S R2 N3 N3 S P N3 N3 S G2 M2 R2 N3 P N3 N3 S R2 D1 N3 R2

S N3 G2 D1 G2 N3 S N3 S N3 R2 S M2 D1 S M2 M2 N3 R2 N3 S R2 R2 M2 R2 P G2 M2 G2 N3 S M2

D1 P M2 R2 P S P G2 N3 S N3 P N3 N3 R2 R2 R2 N3 R2 D1 S R2 R2 P S R2 R2 G2 P M2 R2 N3

S R2 R2 P D1 S S R2 S R2 R2 N3 R2 S R2 D1 N3 S D1 M2 N3 G2 M2 M2 S S S P R2 S S G2

D1 R2 R2 N3 N3 M2 N3 N3 S G2 N3 R2 R2 D1 N3 P S S N3 N3 N3 R2 S S G2 M2 R2 R2 R2 R2 R2 R2

S G2 N3 R2 R2 N3 S N3 M2 R2 R2 P S N3 P R2 N3 G2 S N3 G2 R2 S S D1 N3 R2 D1 G2 S S P

R2 P N3 R2 M2 M2 P R2 M2 P P G2 M2 D1 R2 N3 S G2 N3 R2 D1 M2 R2 P R2 R2 G2 N3 S R2 P G2
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Table 4. Cont.

G2 M2 M2 D1 S P N3 G2 P R2 D1 S R2 G2 S S S S S N3 S N3 S N3 N3 N3 G2 S G2 N3 S G2

S N3 P R2 S S D1 P S N3 P G2 G2 R2 N3 S G2 S S M2 R2 N3 D1 S N3 S N3 N3 D1 D1 R2 S

M2 N3 G2 N3 G2 P R2 S R2 P G2 M2 R2 N3 M2 R2 S N3 P P M2 D1 S N3 G2 S S P R2 P D1 R2

S D1 G2 S S R2 G2 P G2 N3 S N3 P R2 G2 N3 P S R2 P N3 N3 S S S P N3 N3 S N3 P G2

R2 S N3 S R2 R2 D1 S N3 D1 D1 S G2 N3 N3 S R2 R2 N3 S N3 D1 D1 S S S R2 P R2 N3 R2 R2

S D1 M2 R2 N3 S R2 S R2 G2 S N3 R2 P R2 P N3 R2 N3 S N3 D1 P M2 S P S D1 G2 R2 N3 S

S D1 P R2 G2 D1 S P G2 G2 S S S R2 N3 R2 D1 S R2 G2 N3 G2 N3 S R2 P R2 N3 G2 P G2 N3

S S P R2 R2 D1 S R2 R2 P N3 N3 G2 D1 R2 R2 P R2 R2 M2 S G2 S R2 S R2 M2 R2 N3 R2 S N3

N3 P R2 S G2 M2 N3 R2 S G2 S P S P P N3 M2 S P N3 R2 M2 R2 M2 P M2 S P N3 D1 R2 P

R2 P N3 S R2 R2 P G2 G2 S S D1 S D1 S N3 R2 N3 S P P S S R2 N3 N3 P N3 R2 S G2 S

S N3 P M2 D1 G2 N3 M2 D1 M2 R2 G2 R2 G2 S R2 R2 P P N3 D1 N3 M2 N3 N3 R2 R2 N3 N3 N3 S D1

N3 S S G2 R2 N3 N3 R2 S M2 S S R2 M2 N3 S R2 S P S G2 D1 S D1 N3 G2 P D1 G2 N3 N3 N3

D1 D1 N3 S N3 M2 N3 S N3 S S S R2 M2 R2 R2 P P P R2 D1 S R2 S R2 M2 D1 N3 D1 N3 S G2

N3 M2 M2 R2 M2 M2 S R2 P P G2 N3 R2 N3 N3 M2 N3 R2 D1 S M2 N3 S N3 M2 N3 M2 N3 P G2 M2 D1

M2 D1 R2 N3 S N3 M2 D1 D1 S M2 R2 P R2 N3 D1 R2 M2 R2 S R2 R2 G2 G2 S G2 D1 N3 N3 N3 R2 S

R2 S R2 S P R2 S N3 M2 N3 P R2 S D1 R2 N3 P D1 R2 D1 D1 N3 R2 M2 N3 P S N3 G2 S S P

N3 S R2 G2 P S S R2 P G2 G2 S R2 M2 G2 N3 N3 G2 P P S N3 D1 M2 N3 R2 M2 N3 M2 R2 D1 M2

N3 G2 R2 D1 G2 R2 S M2 S R2 R2 R2 N3 R2 D1 N3 M2 R2 D1 R2 R2 R2 R2 N3 R2 D1 N3 S R2 G2 P M2

N3 S S D1 G2 D1 N3 N3 R2 G2 M2 S N3 R2 S D1 M2 S R2 S R2 R2 R2 M2 P S D1 G2 S P N3 G2

N3 R2 S D1 S S R2 R2 N3 M2 P P P N3 N3 D1 N3 M2 R2 S G2 S P N3 P M2 R2 M2 P S S P

S D1 R2 R2 D1 R2 R2 P D1 R2 N3 R2 R2 N3 R2 S N3 N3 R2 N3 P N3 R2 G2 N3 R2 R2 P P G2 R2 S

S D1 P G2 M2 M2 R2 S N3 R2 N3 R2 N3 P P R2 D1 N3 R2 G2 D1 M2 S N3 D1 D1 P M2 R2 R2 S S

R2 S S S S G2 M2 N3 R2 N3 N3 P G2 P D1 D1 G2 D1 R2 S N3 N3 M2 R2 D1 P M2 R2 P R2 N3 S

D1 R2 P P S S S S M2 S N3 P N3 M2 D1 N3 R2 S R2 N3 R2 N3 N3 N3 N3 R2 N3 R2 G2 S N3 N3

N3 S S D1 M2 N3 N3 D1 N3 N3 S D1 S M2 P R2 M2 R2 S R2 R2 S N3 G2 R2 S N3 R2 S M2 N3 N3

R2 G2 P N3 S M2 S M2 M2 S R2 N3 G2 P D1 S P M2 S S D1 S G2 D1 S S P N3 G2 P R2 P

P R2 S G2 G2 M2 N3 P N3 M2 S S M2 R2 M2 D1 S M2 G2 S P R2 G2 G2 R2 G2 R2 N3 N3 G2 R2 M2

S M2 G2 G2 G2 M2 P M2 N3 N3 D1 R2 M2 S D1 S D1 R2 P S S R2 S G2 P D1 R2 M2 S P P D1

R2 N3 R2 R2 R2 S R2 R2 R2 R2 S S M2 R2 N3 R2 P P N3 R2 P M2 R2 P D1 S S N3 D1 N3 S N3

R2 N3 M2 R2 M2 D1 N3 S D1 P G2 M2 D1 D1 S N3 M2 R2 S S D1 R2 N3 R2 G2 R2 N3 R2 S N3 S D1

N3 S P N3 S M2 G2 S G2 S R2 N3 R2 D1 N3 R2 N3 D1 D1 S S M2 P M2 S N3 N3 R2 P G2 S S

G2 N3 S D1 G2 D1 N3 R2 P N3 D1 S N3 N3 D1 M2 R2 R2 P S R2 P R2 N3 P S S N3 G2 R2 R2 R2

S M2 S R2 D1 N3 S M2 S R2 S M2 S S D1 R2 D1 R2 M2 P D1 N3 M2 R2 M2 S R2 D1 P R2 S P

N3 R2 R2 R2 S N3 D1 D1 S S S D1 G2 N3 D1 N3 M2 M2 R2 N3 S D1 R2 R2 N3 G2 R2 S R2 M2 R2 M2

P N3 M2 N3 S R2 G2 N3 S G2 N3 S D1 R2 D1 N3 R2 P D1 G2 D1 M2 G2 N3 S R2 S N3 R2 S N3 M2

D1 N3 N3 D1 M2 D1 P N3 P N3 G2 R2 D1 R2 M2 S G2 S R2 N3 S D1 P S G2 R2 D1 M2 P R2 R2 P

S S G2 G2 R2 N3 M2 N3 S N3 R2 N3 P R2 N3 N3 R2 R2 M2 D1 P N3 D1 M2 N3 N3 S R2 P S R2 D1

R2 M2 D1 S G2 R2 S G2 P R2 P R2 P N3 N3 R2 S R2 P S R2 R2 D1 R2 N3 P R2 R2 M2 S R2 M2

* The Hungarian minor is also called simhendramadhyamam in the north and south Indian music systems, and an 8-beat rhythmic cycle
and its double are also known as the aadhi thaalam and theen thaal (16 beats/cycle) in the south and north Indian systems of music,
respectively. The composition can be readily converted to other complex rhythmic cycles such as misra or sankeerna chapu through other
partitions by computer codes. Although the composition shows a single octave, it can be readily converted into multiple octaves depending
on the positions of the notes, and it can be played at different speeds by coalescing or dividing the columns.
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3. Combinatorial Techniques
3.1. The Principle of Inclusion & Exclusion with Applications to the Enumeration of Music Scales

The principle of inclusion and exclusion [96,97] is a combinatorial technique that seeks
to enumerate configurations with constraints or enumerations of configurations when
certain combinations are forbidden. This becomes especially relevant in music theory
in the context of the enumeration of musical scales, as shown by the author [24]. There
are several combinatorial problems such as the problem of derangement, the problem of
ménage, the hat-check problem, problème des rencontres, and so on that require the inclusion–
exclusion technique. We briefly outline the technique, also known as the sieve formula,
with applications to the enumeration of ragas of the south Indian school of music.

Suppose {P1, P2, P3, . . . Pn} is a set of constraints arising from the grammar of music
theory. A generating function F for the enumeration with the constraints such that none of
P1, P2, P3, . . . Pn is satisfied can be obtained from the sieve formula shown below:

F = f(0) − f(1) + f(2) − f(3) + . . . . . . + (−1)if(i) + . . . .(−1)nf(n), (2)

where f(i) denotes the generating function or a number that satisfies exactly i of the
properties chosen from the set {P1, P2, P3, . . . Pn}. The set of constraints {P1, P2, P3, . . . Pn}
varies with the application, and for music scale enumeration, constraints would be simply
the forbidden combinations. For example, P1 is the combination of the notes R2 and G1,
which are equivalent and hence forbidden. Likewise, P2 would be the combination R3 and
G2, P3 corresponds to R3 and G1, P4: D2 and N1, P5: D3 and N2, and P6: D3 and N1. Some
of these combinations, such as P3 and P6, are equivalent by symmetry, and thus they are
not allowed to avoid duplicate counting in the polyphonic system of music.

We obtain the values for f(0), f(1), f(2) . . . for the enumeration of symmetrical heptatonic-
heptatonic or complete symmetrical scales, also called the melakarta or creator ragas, as follows:

f(0) =
(

3
1

)(
3
1

)(
2
1

)(
3
1

)(
3
1

)
= 162 (3)

f(1) =
(

2
1

)(
3
1

)(
3
1

)
× 6 = 108 (4)

f(2) =
(

2
1

)
× 9 = 18 (5)

f(3) = f(4) = f(5) = f(6) = 0 (6)

Consequently, we have the result:

F = f(0) − f(1) + f(2) = 162 − 108 + 18 = 72. (7)

Table 5 shows all of the 72 symmetrical heptatonic-heptatonic scales comprising notes
chosen from the 12-tone chromatic scale divided into groups of 6, called a chakra, as done in
the south Indian music system. Table 5 exhaustively covers all of the possible symmetrical
heptatonic scales. The common scales of the western classical music system are already
included in Table 5; for example, scale no 8 is the Phrygian mode (Hindustani: Bhairavi
Thaat), 9 is the Neapolitan minor, the 10th is Cappadocian or the second mode of the jazz
minor, the 11th is the Neapolitan major, the 14th is the Phrygian dominant, the 15th is the
double harmonic major, 20 is the natural minor, 21 is the harmonic minor, 22 is the Dorian
mode, 23 is the melodic minor, 26 is the Aeolian dominant, 27 is the harmonic major, 28 is
the mixolydian mode, and 29 is the major scale or the Ionian mode (all white keys of the
piano), and so on. The less common scales with F#, such as the Hungarian minor, can be
readily seen in Table 5 as scale no 57, the 58th is the Ukrainian Dorian scale, the 64th is the
acoustic scale, 65 is the Lydian mode, etc.
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Table 5. Seventy-two Full Octave Symmetric Scales in a 12-tone chromatic scale enumerated using the sieve formula
constitute the melakartas of south Indian music school a.

No. Ascent Descent No Ascent Descent

1 S R1 G1 M1 P D1 N1 Ŝ Ŝ N1 D1 P M1 G1 R1 S 37 S R1 G1 M2 P D1 N1 Ŝ Ŝ N1 D1 P M2 G1 R1 S
2 S R1 G1 M1 P D1 N2 Ŝ Ŝ N2 D1 P M1 G1 R1 S 38 S R1 G1 M2 P D1 N2 Ŝ Ŝ N2 D1 P M2 G1 R1 S
3 S R1 G1 M1 P D1 N3 Ŝ Ŝ N3 D1 P M1 G1 R1 S 39 S R1 G1 M2 P D1 N3 Ŝ Ŝ N3 D1 P M2 G1 R1 S
4 S R1 G1 M1 P D2 N2 Ŝ Ŝ N2 D2 P M1 G1 R1 S 40 S R1 G1 M2 P D2 N2 Ŝ Ŝ N2 D2 P M2 G1 R1 S
5 S R1 G1 M1 P D2 N3 Ŝ Ŝ N3 D2 P M1 G1 R1 S 41 S R1 G1 M2 P D2 N3 Ŝ Ŝ N3 D2 P M2 G1 R1 S
6 S R1 G1 M1 P D3 N3 Ŝ Ŝ N3 D3 P M1 G1 R1 S 42 S R1 G1 M2 P D3 N3 Ŝ Ŝ N3 D3 P M2 G1 R1 S

7 S R1 G2 M1 P D1 N1 Ŝ Ŝ N1 D1 P M1 G2 R1 S 43 S R1 G2 M2 P D1 N1 Ŝ Ŝ N1 D1 P M2 G2 R1 S
8 S R1 G2 M1 P D1 N2 Ŝ Ŝ N2 D1 P M1 G2 R1 S 44 S R1 G2 M2 P D1 N2 Ŝ Ŝ N2 D1 P M2 G2 R1 S
9 S R1 G2 M1 P D1 N3 Ŝ Ŝ N3 D1 P M1 G2 R1 S 45 S R1 G2 M2 P D1 N3 Ŝ Ŝ N3 D1 P M2 G2 R1 S
10 S R1 G2 M1 P D2 N2 Ŝ Ŝ N2 D2 P M1 G2 R1 S 46 S R1 G2 M2 P D2 N2 Ŝ Ŝ N2 D2 P M2 G2 R1 S
11 S R1 G2 M1 P D2 N3 Ŝ Ŝ N3 D2 P M1 G2 R1 S 47 S R1 G2 M2 P D2 N3 Ŝ Ŝ N3 D2 P M2 G2 R1 S
12 S R1 G2 M1 P D3 N3 Ŝ Ŝ N3 D3 P M1 G2 R1 S 48 S R1 G2 M2 P D3 N3 Ŝ Ŝ N3 D3 P M2 G2 R1 S

13 S R1 G3 M1 P D1 N1 Ŝ Ŝ N1 D1 P M1 G3 R1 S 49 S R1 G3 M2 P D1 N1 Ŝ Ŝ N1 D1 P M2 G3 R1 S
14 S R1 G3 M1 P D1 N2 Ŝ Ŝ N2 D1 P M1 G3 R1 S 50 S R1 G3 M2 P D1 N2 Ŝ Ŝ N2 D1 P M2 G3 R1 S
15 S R1 G3 M1 P D1 N3 Ŝ Ŝ N3 D1 P M1 G3 R1 S 51 S R1 G3 M2 P D1 N3 Ŝ Ŝ N3 D1 P M2 G3 R1 S
16 S R1 G3 M1 P D2 N2 Ŝ Ŝ N2 D2 P M1 G3 R1 S 52 S R1 G3 M2 P D2 N2 Ŝ Ŝ N2 D2 P M2 G3 R1 S
17 S R1 G3 M1 P D2 N3 Ŝ Ŝ N3 D2 P M1 G3 R1 S 53 S R1 G3 M2 P D2 N3 Ŝ Ŝ N3 D2 P M2 G3 R1 S
18 S R1 G3 M1 P D3 N3 Ŝ Ŝ N3 D3 P M1 G3 R1 S 54 S R1 G3 M2 P D3 N3 Ŝ Ŝ N3 D3 P M2 G3 R1 S

19 S R2 G2 M1 P D1 N1 Ŝ Ŝ N1 D1 P M1 G2 R2 S 55 S R2 G2 M2 P D1 N1 Ŝ Ŝ N1 D1 P M2 G2 R2 S
20 S R2 G2 M1 P D1 N2 Ŝ Ŝ N2 D1 P M1 G2 R2 S 56 S R2 G2 M2 P D1 N2 Ŝ Ŝ N2 D1 P M2 G2 R2 S
21 S R2 G2 M1 P D1 N3 Ŝ Ŝ N3 D1 P M1 G2 R2 S 57 S R2 G2 M2 P D1 N3 Ŝ Ŝ N3 D1 P M2 G2 R2 S
22 S R2 G2 M1 P D2 N2 Ŝ Ŝ N2 D2 P M1 G2 R2 S 58 S R2 G2 M2 P D2 N2 Ŝ Ŝ N2 D2 P M2 G2 R2 S
23 S R2 G2 M1 P D2 N3 Ŝ Ŝ N3 D2 P M1 G2 R2 S 59 S R2 G2 M2 P D2 N3 Ŝ Ŝ N3 D2 P M2 G2 R2 S
24 S R2 G2 M1 P D3 N3 Ŝ Ŝ N3 D3 P M1 G2 R2 S 60 S R2 G2 M2 P D3 N3 Ŝ Ŝ N3 D3 P M2 G2 R2 S

25 S R2 G3 M1 P D1 N1 Ŝ Ŝ N1 D1 P M1 G3 R2 S 61 S R2 G3 M2 P D1 N1 Ŝ Ŝ N1 D1 P M2 G3 R2 S
26 S R2 G3 M1 P D1 N2 Ŝ Ŝ N2 D1 P M1 G3 R2 S 62 S R2 G3 M2 P D1 N2 Ŝ Ŝ N2 D1 P M2 G3 R2 S
27 S R2 G3 M1 P D1 N3 Ŝ Ŝ N3 D1 P M1 G3 R2 S 63 S R2 G3 M2 P D1 N3 Ŝ Ŝ N3 D1 P M2 G3 R2 S
28 S R2 G3 M1 P D2 N2 Ŝ Ŝ N2 D2 P M1 G3 R2 S 64 S R2 G3 M2 P D2 N2 Ŝ Ŝ N2 D2 P M2 G3 R2 S
29 S R2 G3 M1 P D2 N3 Ŝ Ŝ N3 D2 P M1 G3 R2 S 65 S R2 G3 M2 P D2 N3 Ŝ Ŝ N3 D2 P M2 G3 R2 S
30 S R2 G3 M1 P D3 N3 Ŝ Ŝ N3 D3 P M1 G3 R2 S 66 S R2 G3 M2 P D3 N3 Ŝ Ŝ N3 D3 P M2 G3 R2 S

31 S R3 G3 M1 P D1 N1 Ŝ Ŝ N1 D1 P M1 G3 R3 S 67 S R3 G3 M2 P D1 N1 Ŝ Ŝ N1 D1 P M2 G3 R3 S
32 S R3 G3 M1 P D1 N2 Ŝ Ŝ N2 D1 P M1 G3 R3 S 68 S R3 G3 M2 P D1 N2 Ŝ Ŝ N2 D1 P M2 G3 R3 S
33 S R3 G3 M1 P D1 N3 Ŝ Ŝ N3 D1 P M1 G3 R3 S 69 S R3 G3 M2 P D1 N3 Ŝ Ŝ N3 D1 P M2 G3 R3 S
34 S R3 G3 M1 P D2 N2 Ŝ Ŝ N2 D2 P M1 G3 R3 S 70 S R3 G3 M2 P D2 N2 Ŝ Ŝ N2 D2 P M2 G3 R3 S
35 S R3 G3 M1 P D2 N3 Ŝ Ŝ N3 D2 P M1 G3 R3 S 71 S R3 G3 M2 P D2 N3 Ŝ Ŝ N3 D2 P M2 G3 R3 S
36 S R3 G3 M1 P D3 N3 Ŝ Ŝ N3 D3 P M1 G3 R3 S 72 S R3 G3 M2 P D3 N3 Ŝ Ŝ N3 D3 P M2 G3 R3 S

a Scales are divided into groups of six called chakras as per the highlighted scheme.

The above enumeration scheme can be generalized to scales of other lengths such as
the pentatonic, hexatonic, and those that are symmetrical as well as asymmetrical. Such
a general enumeration follows Pólya’s terminology of a pattern inventory. Each such
non-kinky (non vakra) scale is characterized by a sequence of notes with an increasing
frequency culminating into the next octave C, and then a sequence of notes with a decreas-
ing frequency called the descent ending in the starting C. The enumerations of different
types of such scales could be of the types pentatonic-pentatonic, pentatonic-hexatonic,
pentatonic-heptatonic, and inversions of those, etc. Such an exhaustive combinatorial
enumeration was carried out by the author [24] using combinatorial generating functions.
This is accomplished by constructing two independent generating functions for the ascent
and descent and multiplying them to construct a complete pattern inventory of ragas of
any length. While we demonstrated the enumeration scheme for the complete heptatonic-
heptatonic symmetrical scales, a more general combinatorial technique was developed for
other scales. To illustrate, a hexatonic pattern such as S G M P D N Ŝ can be mathematically
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denoted as R since the sequence is missing R relative to the complete scale. Consequently,
the six hexatonic Pólya patterns are characterized by R, G, M, P, D, and N. Note that S
(C) cannot be missing from a raga, as it forms the base (C). The combinatorial principle
of inclusion–exclusion outlined earlier was iterated to arrive at the hexatonic generating
function as:

Ha = (12R + 36G + 36M + 72P + 12D + 36N) (8)

In the above combinatorial enumeration scheme, the equivalent combinations have
been eliminated by the principle of inclusion–exclusion, and hence all allowed combi-
nations have been included. We can also obtain the total number of hexatonic ascents
by substituting R = G = M = P = D = N = 1 in the above expression, thus generating
204 hexatonic ascents, which corresponds to the number of symmetric hexatonic-hexatonic
scales. Likewise, the pentatonic scales are constructed by identifying two missing notes
relative to the complete scales, and thus in mathematical notation, they are enumerated by
the binomial terms shown below:

Pa = (12RG + 6RM + 12RP + 2RD + 6RN + 18GM + 36GP + 6GD + 18GN + 36MP + 6MD + 18MN + 12PD +
36PN + 12DN)

(9)

Analogous to the hexatonic enumeration, by replacing all binomials by 1 in the above
expression, we obtain the total number of pentatonic symmetric scales as 236. Although
tetratonic (tetrachord) scales are rare, we enumerate these for completeness. They can find
application in the computer-aided synthesis of musical tetrachords, for which the tetratonic
GF is given by:

Pa = (6RGM + 12RGP + 2RGD + 6RGN + 6RMP + RMD + 3RMN + 2RPD + 6RPN + 2RDN + 18GMPD +
3GMD + 9GMN + 6GPD + 18GPN + 6GDN+ 6MPD + 18MPN + 6MDN + 6PDN)

(10)

In the above enumeration scheme, only nonequivalent combinations are considered.
Consequently, the total number of tetrachords is generated by replacing all trinomials in Ta

by 1, which is seen to be 142.
The trichords or sequences of three notes, one of which is S (C), are enumerated by

the expression for Tra:

Tra = (6RG + 6RM + 3RP + 9RD + 3RN + 2GM + GP + 3GD + GN
+ 2MP + 6MD + 2MN + 3PD + PN + 6DN),

(11)

where in the above expression in place complementary notation, the notes themselves
are used for the binomials, and hence DN corresponds to the sequence DNS. Hence the
total number of trichords is the sum of all coefficients in TRa, or 54. It can be readily seen
that the number of dichords (a sequence of 2 notes), one of which is S (C), is 11 since this
corresponds to the number of distinct notes in Table 1.

All of the above expressions can be combined into a pattern inventory of ragas that
we refer to as a raga ascent inventory, RIa, given as a polynomial in x, where xn denotes the
term for the n-tonic ascent.

RIa = 1 + x + 11x2 + 54x3 +142x4 + 236x5 + 204x6 + 72x7, (12)

where the first term is a trivial null set, the second term corresponds to a single note or just
S, the x2 term represents the number of dichords, x3: the number of trichords, x4: number
of tetrachords, etc. For a raga to be stable, its scale must have at least a tetrachord, and thus
terms with powers more than or equal to four are relevant for the scales of ragas.

The complete musical scale inventory for the descent is given by the generating
function RId:

RId = 1 + y + 11y2 + 54y3 + 142y4 + 236y5 + 204y6 + 72y7 (13)
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where the indeterminate y was introduced to distinguish the descent from the ascent and to
allow for the possibility of chiral musical scales (or bhashanka ragas). The total generating
function for all of the non-kinky musical scales is given by the product of the ascent and
descent inventories:

RIa × RId =
(

1 + x + 11x2 + 54 x3 + 142 x 4 + 236 x5 + 204 x6 + 72 x7
)
×
(

1 + 11y2 + 54y3 + 142y4 + 236y5 + 204y6 + 72y7
)

, (14)

The coefficient of xmyn in the generating function RIa × RId enumerates the number
of musical scales with m-tonic notes in the ascent and n-tonic notes in the descent. To
illustrate, the number of hexatonic-heptatonic scales is given by the coefficient of x6y7

which is 14,688. The number of symmetrical tetrachords is the coefficient of x4 or 142,
and, likewise, the total number of all tetratonic scales, including the chiral scales, is the
coefficient of x4y4 or 20,164. All of the symmetrical scales are enumerated by the terms x4,
x5, x6 and x7 for the tetratonic, pentatonic, hexatonic, and heptatonic scales, respectively.
Table 6 shows the first and last 144 pentatonic scales missing R (or D in western) both in
the ascent and descent. Consequently, computer-assisted combinatorial techniques offer
considerable promise in many fields, including music.

Table 6. Combinatorics of Pentatonic Scales Missing R (Re, D); only the first and last 36 combinations are shown a.

No. Ascent Descent No. Ascent Descent

1 S G1 M1 D1 N1 Ŝ Ŝ N1 D1 M1 G1 S 1261 S G3 M2 D3 N3 Ŝ Ŝ N1 D1 M1 G1 S
2 S G1 M1 D1 N1 Ŝ Ŝ N1 D1 M1 G2 S 1262 S G3 M2 D3 N3 Ŝ Ŝ N1 D1 M1 G2 S
3 S G1 M1 D1 N1 Ŝ Ŝ N1 D1 M1 G3 S 1263 S G3 M2 D3 N3 Ŝ Ŝ N1 D1 M1 G3 S
4 S G1 M1 D1 N1 Ŝ Ŝ N2 D1 M1 G1 S 1264 S G3 M2 D3 N3 Ŝ Ŝ N2 D1 M1 G1 S
5 S G1 M1 D1 N1 Ŝ Ŝ N2 D1 M1 G2 S 1265 S G3 M2 D3 N3 Ŝ Ŝ N2 D1 M1 G2 S
6 S G1 M1 D1 N1 Ŝ Ŝ N2 D1 M1 G3 S 1266 S G3 M2 D3 N3 Ŝ Ŝ N2 D1 M1 G3 S
7 S G1 M1 D1 N1 Ŝ Ŝ N2 D2 M1 G1 S 1267 S G3 M2 D3 N3 Ŝ Ŝ N2 D2 M1 G1 S
8 S G1 M1 D1 N1 Ŝ Ŝ N2 D2 M1 G2 S 1268 S G3 M2 D3 N3 Ŝ Ŝ N2 D2 M1 G2 S
9 S G1 M1 D1 N1 Ŝ Ŝ N2 D2 M1 G3 S 1269 S G3 M2 D3 N3 Ŝ Ŝ N2 D2 M1 G3 S

10 S G1 M1 D1 N1 Ŝ Ŝ N3 D1 M1 G1 S 1270 S G3 M2 D3 N3 Ŝ Ŝ N3 D1 M1 G1 S
11 S G1 M1 D1 N1 Ŝ Ŝ N3 D1 M1 G2 S 1271 S G3 M2 D3 N3 Ŝ Ŝ N3 D1 M1 G2 S
12 S G1 M1 D1 N1 Ŝ Ŝ N3 D1 M1 G3 S 1272 S G3 M2 D3 N3 Ŝ Ŝ N3 D1 M1 G3 S
13 S G1 M1 D1 N1 Ŝ Ŝ N3 D2 M1 G1 S 1273 S G3 M2 D3 N3 Ŝ Ŝ N3 D2 M1 G1 S
14 S G1 M1 D1 N1 Ŝ Ŝ N3 D2 M1 G2 S 1274 S G3 M2 D3 N3 Ŝ Ŝ N3 D2 M1 G2 S
15 S G1 M1 D1 N1 Ŝ Ŝ N3 D2 M1 G3 S 1275 S G3 M2 D3 N3 Ŝ Ŝ N3 D2 M1 G3 S
16 S G1 M1 D1 N1 Ŝ Ŝ N3 D3 M1 G1 S 1276 S G3 M2 D3 N3 Ŝ Ŝ N3 D3 M1 G1 S
17 S G1 M1 D1 N1 Ŝ Ŝ N3 D3 M1 G2 S 1277 S G3 M2 D3 N3 Ŝ Ŝ N3 D3 M1 G2 S
18 S G1 M1 D1 N1 Ŝ Ŝ N3 D3 M1 G3 S 1278 S G3 M2 D3 N3 Ŝ Ŝ N3 D3 M1 G3 S
19 S G1 M1 D1 N1 Ŝ Ŝ N1 D1 M2 G1 S 1279 S G3 M2 D3 N3 Ŝ Ŝ N1 D1 M2 G1 S
20 S G1 M1 D1 N1 Ŝ Ŝ N1 D1 M2 G2 S 1280 S G3 M2 D3 N3 Ŝ Ŝ N1 D1 M2 G2 S
21 S G1 M1 D1 N1 Ŝ Ŝ N1 D1 M2 G3 S 1281 S G3 M2 D3 N3 Ŝ Ŝ N1 D1 M2 G3 S
22 S G1 M1 D1 N1 Ŝ Ŝ N2 D1 M2 G1 S 1282 S G3 M2 D3 N3 Ŝ Ŝ N2 D1 M2 G1 S
23 S G1 M1 D1 N1 Ŝ Ŝ N2 D1 M2 G2 S 1283 S G3 M2 D3 N3 Ŝ Ŝ N2 D1 M2 G2 S
24 S G1 M1 D1 N1 Ŝ Ŝ N2 D1 M2 G3 S 1284 S G3 M2 D3 N3 Ŝ Ŝ N2 D1 M2 G3 S
25 S G1 M1 D1 N1 Ŝ Ŝ N2 D2 M2 G1 S 1285 S G3 M2 D3 N3 Ŝ Ŝ N2 D2 M2 G1 S
26 S G1 M1 D1 N1 Ŝ Ŝ N2 D2 M2 G2 S 1286 S G3 M2 D3 N3 Ŝ Ŝ N2 D2 M2 G2 S
27 S G1 M1 D1 N1 Ŝ Ŝ N2 D2 M2 G3 S 1287 S G3 M2 D3 N3 Ŝ Ŝ N2 D2 M2 G3 S
28 S G1 M1 D1 N1 Ŝ Ŝ N3 D1 M2 G1 S 1288 S G3 M2 D3 N3 Ŝ Ŝ N3 D1 M2 G1 S
29 S G1 M1 D1 N1 Ŝ Ŝ N3 D1 M2 G2 S 1289 S G3 M2 D3 N3 Ŝ Ŝ N3 D1 M2 G2 S
30 S G1 M1 D1 N1 Ŝ Ŝ N3 D1 M2 G3 S 1290 S G3 M2 D3 N3 Ŝ Ŝ N3 D1 M2 G3 S
31 S G1 M1 D1 N1 Ŝ Ŝ N3 D2 M2 G1 S 1291 S G3 M2 D3 N3 Ŝ Ŝ N3 D2 M2 G1 S
32 S G1 M1 D1 N1 Ŝ Ŝ N3 D2 M2 G2 S 1292 S G3 M2 D3 N3 Ŝ Ŝ N3 D2 M2 G2 S
33 S G1 M1 D1 N1 Ŝ Ŝ N3 D2 M2 G3 S 1293 S G3 M2 D3 N3 Ŝ Ŝ N3 D2 M2 G3 S
34 S G1 M1 D1 N1 Ŝ Ŝ N3 D3 M2 G1 S 1294 S G3 M2 D3 N3 Ŝ Ŝ N3 D3 M2 G1 S
35 S G1 M1 D1 N1 Ŝ Ŝ N3 D3 M2 G2 S 1295 S G3 M2 D3 N3 Ŝ Ŝ N3 D3 M2 G2 S
36 S G1 M1 D1 N1 Ŝ Ŝ N3 D3 M2 G3 S 1296 S G3 M2 D3 N3 Ŝ Ŝ N3 D3 M2 G3 S

a Yellow highlight represents the ascent, while the cyan highlight represents the descent. The common pentatonic scale of the Asian music system,
also known as Bhoopali in the north Indian music and Mohanam in the south Indian music system, is covered by the term MN in Equation (9).
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3.2. Möbius Inversion and Enumerations

Möbius Inversion can be envisaged as a generalization of the inclusion–exclusion
principle, where instead of an alternating series, a variable function is introduced. The
inversion technique offers a powerful tool for big datasets by way of providing a gen-
erating function to obtain the combinatorial enumerations of larger data sets from the
corresponding generating functions of a related smaller set. Although originally it was
introduced by Möbius in the context of number theory, it offers one of the most powerful
transforms using the divisors of the cardinality of a set. It finds extensive applications in
big data partially-ordered sets (posets). In combinatorial and number theory areas, Möbius
Inversion [98–100] provides powerful generating functions for a number of problems,
such as the problem of colorings of larger sets using the generating functions of smaller
sets, Euler totient function, and the Reiman-zeta function, etc. Although originally, the
Möbius inversion was outlined by Weisner and Hall independently for partially ordered
sets, Rota [98] is attributed as the mathematician who popularized the technique for com-
binatorial enumerations [99,100]. We accentuate the importance of the technique in the
context of big data, machine learning, and artificial intelligence because the technique
provides the combinatorics of large posets in terms of the generating functions for the
smaller uses using the divisors of the cardinality of the larger set.

The Möbius inversion was used extensively by the present author [101–104] in chemi-
cal and spectroscopic enumerations and for the enumeration of equivalence classes for the
colorings of the various hyperplanes of an n-dimensional hypercube (nD-cube). Moreover,
the colorings of the vertices of the nD-cube have applications in the genetic regulatory
network [105], which is another example of a big data set. Let F(x) and Q(x) be two sets
of generating functions where we assume that the set of F(x) functions are known. For an
integer p, let the divisors of p be denoted by an integer variable d. The Möbius transform
provides a technique to compute the generating function Q for p denoted by Qp in terms of
the known functions Fd associated with ds, the divisors of p. Mathematically, the Möbius
transform is cast into the following form:

Qp(x) =
1
p ∑

d/p
µ(p/d)Fd(x) (15)

where the sum is over all divisors d of p, and µ(p/d) is the Möbius function defined as
follows:

µ(m) = 1 if one of m’s prime factors is not a perfect square and m contains even number of
prime factors,

µ(m) =−1 if m satisfies the same perfect-square condition as before but m contains odd number
of prime factors,

µ(m) = 0 if m has a perfect square as one of its factors.
To illustrate the first 10 Möbius functions are shown below:

µ(m) = 1, −1, −1, 0, −1, 1, −1, 0, 0, 1, for m = 1 to 10. (16)

Consider the 7D-hypercube as an example, which finds several chemical applications,
including the representations for the graphs associated with the water heptamer. The
7D-cube contains seven types of hyperplanes denoted by (7-q)-hyperplanes where q varies
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from 1 to 7. A 7 × 7 configuration matrix in Coxeter’s notation describes the hyperplanes
of the 7D-cube as shown below:

128 7 21 35 35 21 7
2 448 6 15 20 15 6
4 4 672 5 10 10 5
8 12 6 560 4 6 6

16 32 24 8 280 3 3
32 80 80 40 10 84 2
64 192 240 160 60 12 14


(17)

Moreover, the diagonal elements of such a matrix provide for the number of (n-q)-
hyperplanes for an nD-hypercube and are given by:

Nq =

(
n
q

)
2q (18)

Consequently, as seen from the above matrix, the diagonal elements in the inverted
order, that is, q = 7 being the first and q = 1 being the last diagonal element, enumerate the
number of hyperplanes. Hence the first row of the above matrix represents the vertices of
the 7D-cube, the second row represents the edges, the third row is for square faces, and the
last row represents the hexeracts. It can be readily seen that there are 14 hexeracts while
there are 672 faces. Likewise, the off-diagonal elements of the matrix shown above, Cij
represents the number of times the hyperplane j occurs in the hyperplane i. To illustrate,
C41 = 8 implies that each cubic cell of the 7D-cube contains 8 vertices. The cardinality of
the set of hexeracts is only 14 compared to 672 faces or 448 edges or 128 vertices in the
7D-cube. Figure 4 shows the connectivity graph for the 128 vertices of the 7D-cube. The
automorphism group of the graph in Figure 4 is the wreath product S7[S2] which contains
645,120 permutations.

Figure 4. Graph of a 7D-hypercube with 128 vertices, where each vertex is a representation of a Boolean
string of 7-digits. The edge-preserving automorphism group of this graph is the 7th-dimensional
hyperoctahedral group or the wreath product S7[S2], comprising 645,120 permutations. (Reproduced
from T. Ruen, https://commons.wikimedia.org/wiki/File:5-cube_t024.svg free public domain work
available to anyone to use for any purpose, accessed on 15 July 2021). For applications to multifunction
moonlighting of intrinsically disordered proteins and non-rigid molecule symmetries, see [106].

https://commons.wikimedia.org/wiki/File:5-cube_t024.svg
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Consider the problem of enumerating the equivalence classes for the colorings of
various hyperplanes of a 7D-cube under the action of the automorphism group with
645,120 operations for all 110 irreducible representations of the 7D-cube. This problem is
quite intensive in that it requires the matrix types of 110 conjugacy classes and the character
table of the wreath product group S7[S2], which is beyond the scope of the review. Thus we
shall simply demonstrate a small piece of the problem that involves the Möbius transform.
Suppose we know the polynomials of the cycle types of a given conjugacy class for the
hexeracts of the hypercube given by Fds. Then we shall illustrate how Möbius inversion
yields the generators for all cycle types of six other hyperplanes of the 7D-cube.

The Möbius transform provides a powerful tool for obtaining the polynomial gen-
erating functions for a larger set, such as the faces or edges of the 7D-cube in terms of
the polynomials for the much smaller set of hexeracts with cardinality 14. Given that the
maximum period for a chosen conjugacy class of the group for the illustrative purpose is 8,
the possible F polynomials for all the hyperplanes that need to be considered are F8, F4,
F2, and F1 since divisors of 8 are 1, 2, 4, and 8. Consequently, we show the Fd polynomials
obtained from the matrix of the conjugacy class under consideration as:

F1(x) = F2(x) = F4(x) = (1 + 2x)3 (19)

From the Fd polynomials thus determined, we obtain the Qp polynomials using the
Möbius transform as follows:

Q1 = F1 = 1 + 6x + 12x2 + 8x3 (20)

Q2 =
1
2

{µ(2)F1 + µ(1)F2} =
1
2

{F2 − F1} =
1
2

{(1 + 2x)3- (1 + 2x)3}= 0 (21)

Q4 = 1/4 {µ(1)F4 + µ(2)F2 + µ(4)F1} = 1/4 {F4 − F2} = 0 (22)

Q8 = 1/8 {µ(1)F8 +µ(2)F4 + µ(4)F2+ µ(8)F1} = 1/8 {F8 − F4}
= x + 9x2 + 34x3 + 70x4 + 84x5 + 56x6 + 16x7 (23)

The coefficients of xqs are tabulated below for all possible Qp polynomials, thus
generating the cycle types for various (7-q)-hyperplanes as shown below:

Application of Möbius Inversion to the cycle type polynomials of 7D-hypercube.

Qp x x2 x3 x4 x5 x6 x7

Q1 6 12 8

Q2

Q4

Q8 1 9 34 70 84 56 16

Cycle type 1681 11289 18834 870 884 856 816

Hyperplane
q = 1

(hexeracts)
q = 2

(penteracts)
q = 3

(tesseracts)
q = 2

(cubic cells)
q = 5

(square faces)
q = 6 edges q = 7 vertices

The Möbius transform illustrated above for a conjugacy class was iterated by the
author [102] using a computer code in order to generate the cycle index polynomials of
all hyperplanes for all 110 irreducible representations. As this was extensively considered
in a previous article [102], further details can be obtained from reference [90]. In the next
section, we show how the cycle index polynomials and the characters of various irreducible
representations can be used in enumerative combinatorics of big data sets, including giant
fullerenes up to C150,000 in computing their chirality and spectroscopic properties.
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3.3. Pólya’s Theory, Euler’s Totient Function, and Their Generalization to All Irreducible
Representations of Groups

Pólya’s combinatorial theorem [68,100,107] concerns the enumeration of equivalence
classes of configurations under the action of a group. Stimulated by the chemical problem
of isomer enumeration and Burnside’s lemma of enumerating different necklaces with a
given set of color beads, in 1937, Pólya formulated his enumeration technique, now well
known as Pólya‘s theorem [68,100,107]. The present author [108] generalized this technique
and the Harary–Palmer power group enumeration theorem to all IRs of the group under
action. Another generalization of related combinatorics considered by the author [77]
is Sheehan’s [109] version of Pólya’s theorem to all IRs. These generalizations provide
powerful combinatorial tools that find applications to multiple quantum NMR, nuclear spin
statistics of rovibronic levels, ESR hyperfine structure, enumeration of vibrational modes,
and enumeration of stereo and chiral isomers of chemical compounds, giant fullerenes,
and carbon nanotubes. We briefly outline the author’s generalization [77] of Sheehan’s
version to all characters that were recently applied to nanotubes [75].

In order to exemplify the process of character cycle index construction and Euler
totient function, we consider a cylindrical nanotube with a square cross-section and of
any length n. We note that the vertices of such a tube are partitioned into equivalence
classes, and the number of such classes depends on n and the odd/even parity of the tube
length. We refer to each cylindrical cross-section of the tube along the vertical axis as a
layer. In general, the σh plane of the dihedral group Dmh, for a tube with a cross-section
Cm for an even m, passes between the two central layers; for an odd n, the σh plane
of symmetry coincides with the central layer. Hence the layers of a cylindrical tube are
partitioned into equivalence classes, and the cardinalities of the equivalence classes vary
with n. Consequently, if D is the set of vertices of a nanotube, then D is divided into sets Y1,
Y2, . . . Yn/2 for even n, and Y1, Y2, . . . Y(n+1)/2 for odd n. For a cross-section of m vertices,
the total number of vertices in the set D is mn, and consequently, the equivalence classes of
vertices Yi have the following cardinalities depending on the parity of n:

|Yi| = 2 m, for a nanotube of even length n, for all i, 1 ≤ i ≤ n/2. (24)

|Y1| = m, |Yi| = 2 m for a nanotube of odd length n, for all i 6= 1, 2 ≤ i ≤ (n + 1)/2. (25)

Thus a vertex coloring is a map from the sets D to R, where R is a set of colors and D
is divided into Y-sets as follows:

D = Un/2
i=1 Yi Yi ∩ Yj = ∅ for i 6= j and for even n or D = U

n+1
2

i=1 Yi Yi ∩ Yj = ∅ for i 6= j and for odd n. (26)

Sheehan’s version [109] of Pólya’s theorem is quite powerful, as it provides for differ-
ent coloring schemes for the various equivalence classes, and thus even the more general
Redfield–Read superposition theorem becomes a special case of this theorem. We have
further generalized Sheehan’s version to all characters of the group acting on D, which
provides a scheme to delineate the chiral and achiral colorings. We define the general-
ized character cycle index (GCCI) for the character χ corresponding to the irreducible
representation Γ of the G acting on a nanotube as:

Pχ
G =

1
|G| ∑gεG′

χ(g)∏
i

∏
j

s
cij(g)
ij (27)

In the above expression, the sum is taken over all permutation representations of g
∈ G; cij(g) is the number of j-cycles of g ∈ G contained in the set Yi upon its action on the
vertices of the nanotube. The index i varies from 1 to n/2 or (n + 1)/2 for even and odd
n, respectively. It can be seen that the second index j is the orbit length contained in the
corresponding Yi set generated upon the action of g ∈ G.

As the nanotube’s cross-section becomes a necklace of m beads, this part of the
rotational subgroup for an m-bead necklace is given by the Euler totient function. This
has been applied in its various generalizations to the combinatorial enumerations of the
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isomers of substituted kekulenes, septulenes, octulenes, cylindrical nanotubes, and so
on [69,75]. The corresponding cycle indices for a cylindrical nanotube of cross-section Cm
and length n are shown below:

m odd; n odd; σh plane passes through the central layer; each of m C2 axes passes
through a vertex of the central layer; σv/σd planes pass through n vertices:

PχDmh
= 1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . . sbn

n = 1
4m{∑d/m χ(g) ϕ(d)s

mn
d

d + ms1s(mn−1)/2
2

+sm
1 sm(n−1)/2

2 +∑d/m χ(g) ϕ(d)s
m
d

d s
m(n−1)

2d
2d + msm

1 sm(n−1)/2
2 }

(28)

m odd; n even; σh plane does not pass through any vertex of the tube; each of m C2
axes passes through the centers of edges; σv/σd planes pass through n vertices:

PχDmh
= 1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . . sbn

n = 1
4m{∑d/m χ(g) ϕ(d)s

mn
d

d + msmn/2
2

+smn/2
2 +∑d/m χ(g) ϕ(d)s

mn
2d

2d + msm
1 sm(n−1)/2

2 }
(29)

m even; n odd; each of m/2 C2 axes passes through the centers of edges; each of m/2
C2 axes passes through two vertices; m/2 σv planes pass through 2n vertices; m/2 σd
planes pass through the centers of the edges:

PχDmh
= 1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . . sbn

n = 1
4m{∑d/m χ(g) ϕ(d)s

mn
d

d + m
2 s2

1s(mn−2)/2
2 + m

2 smn/2
2

+smn/2
2 +∑ d

m ;d even χ(g) ϕ(d)s
mn
d

d + ∑ d
m ;d odd χ(g) ϕ(d)s

m
d

d s
m(n−1)

2d
2d + m

2 s2n
1 sn(m−2)/2

2 + m
2 smn/2

2 }
(30)

m even; n even; each of m C2 axes passes through the centers of the edges; m/2 σv
planes pass through 2n vertices; m/2 σd planes pass through the centers of the edges:

PχDmh
= 1

4m ∑gεDmh
χ(g)sb1

1 sb2
2 . . . . . . sbn

n = 1
4m{∑d/m χ(g) ϕ(d)s

mn
d

d + msmn/2
2

+smn/2
2 +∑ d

m ;d even χ(g) ϕ(d)s
mn
d

d + ∑ d
m ;d odd χ(g) ϕ(d)s

mn
2d

2d + m
2 s2n

1 sn(m−2)/2
2 + m

2 smn/2
2 }

(31)

where the sum is over all divisors d of m, and ϕ(d) is the Euler totient function
given by

ϕ(d) = d ∏p/d

(
1− 1

p

)
. (32)

The product is taken over all prime numbers p that divide d. The Euler totient function
is intimately related to the Möbius function by the expression:

ϕ(d) = d ∑p/d
µ(p)

p
, (33)

In the above expression, the sum is over all prime divisors of d and µ(d) is the Möbius
function that we introduced in the previous subsection.

A multinomial generating function can be obtained from the above expressions. Let
[n] ne an ordered partition of n into p parts such that n1 ≥ 0, n2 ≥ 0, . . . , np ≥ 0, ∑

p
i=1 ni = n.

A generating function with arbitrary weights λs and n1 colors of the type λ1, n2, colors of
the type λ2 . . . . np colors of the type λp is derived by an extension of the Pólya’s procedure
for all IRs with the introduction of multinomials shown below:(

λ1 + λ2 + . . . + λp
)n

=

∑
p
[n]

(
n1 n2

n
. . np

)
λ1

n1λ2
n2 . . . . . . λp−1

np−1λp
np

(34)
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where
(

n1 n2

n
. . np

)
are multinomials given by

(
n1 n2

n
. . np

)
=

n!
n1!n2! . . . . . . np−1!np!

(35)

The set R of colors can be partitioned into sets R1, R2 . . . such that R = Um/2
i=1 Ri, for an

even m and R = U(m+1)/2
i=1 Ri for an odd m and |Ri| = pi in our generalization of Sheehan’s

theorem. Let the weight wij be assigned for each color rj in the set Ri. The multinomial
function for each IR for coloring the vertices of the nanotube is thus derived:

GFχ
(
λ1, λ2 . . . . . λp

)
= PχG

{
sik →

(
wk

i1 + wk
i2 + · · · . + wk

i,pi−1 + wk
i,pi

)}
, (36)

The multinomial generators thus obtained for each IR for the various color distri-
butions yield the nanotube vertex colorings that transform according to the IR with the
character χ. Consequently, the number of such multinomial generating functions equals
the number of irreducible representations of the group.

3.4. Hadamard Matrices, Latin Squares, and Designs

An n × n Hadamard matrix H is an orthogonal matrix comprised of 1 s and −1 s
such that

HHT = nI, (37)

where I is the n × n identity matrix. An example of a 16 × 16 Hadamard matrix is
displayed below:

H16 =
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1

Hadamard matrices are important in many disciplines, for example, in the construction
of balanced designs, Hadamard transform spectroscopy, etc. In the chemical context, they
are not only connected to molecular orbitals, but they are also extremely useful in the
diagonalization of very large matrices where all eigenvalues and eigenvectors are required.
The Hadamard transform techniques have been applied to large carbon nanotubes [79],
and in the context of spectroscopy, they are applicable to NMR spectroscopy [78]. The
construction of Hadamard matrices of any order is a mathematically challenging problem
due to combinatorial explosions, although several algorithms have been explored for the
computational construction of Hadamard matrices [80].

A Hadamard matrix is considered skew-Hadamard if H can be expressed as:

H = S + I, Sij = −Sji for I 6= j, (38)
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Williamson’s algorithm for the construction of skew-Hadamard matrices seeks solu-
tions for positive integers a, b, c, d that satisfy:

a2 + b2 + c2 + d2 = 4m = n, (39)

A solution (a,b,c,d) generates the first rows of circulant matrices A, B, C, and D
such that:

∑m
j=1 a1j = a, ∑m

j=1 b1j = b, ∑m
j=1 c1j = c ∑m

j=1 d1j = d, and
a1j = −a1,m+2−j b1j = b1,m+2−j c1j = c1,m+2−j d1j = d1,m+2−j

(40)

As the matrices A, B, C, and D can contain only 1 s and−1 s, multiple solutions for the
first rows are obtained for each (a,b,c,d). There are also multiple solutions for a, b, c, and d,
and thus several skew-Hadamard matrices are constructed for each solution (a,b,c,d). The
matrices A, B, C, and D generate an nxn Hadamard matrix:

A B C D
−B A D −C
−C −D A B
−D C −B A

 (41)

A 28× 28 skew-Hadamard matrix is obtained from the solution for a2 + b2 + c2 + d2 = 28,
which yields a = 1, b = 3, c = 3, and d = 3. This generates 15 possible solutions for the first
rows of the matrices A, B, C, and D yielding 15 Hadamard matrices. A second solution with
a = 1 b =1 c = 1 d = 5 yields more matrices. Figure 5 shows a design thus constructed for a = 1,
b = 3, c = 3, and d = 3 by mapping 1 to blue and −1 to orange.

Figure 5. A combinatorial design constructed from a skew-Hadamard 28 × 28 constructed for
(a,b,c,d) = (1,3,3,3).
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A complex computer-generated design obtained from a 144 × 144 Hadamard matrix
is shown in Figure 6.

Figure 6. A Hadamard Design Generated from a 144 × 144 Hadamard Matrix.

A Latin square is an nxn array where any given entry occurs exactly once in a row
and exactly once in any column. The relation between a Latin square and Williamson’s
construction of skew-Hadamard matrices in Equation (44) using smaller mxm matrices
A, B, C, and D seems self-evident. The matrix in Equation (44) constitutes a Latin square
when A, B, C, and Ds are interpreted as symbols or objects without the negative signs.
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The number of Latin squares [110] explodes as a function of n; for example, there are
812,851,200 Latin squares for n = 6. Although an exact expression for the number of Latin
squares is not known, the bounds for the number of Latin squares, Ln are given by:

(n!)2n

nn2 ≤ Ln ≤∏n
k=1(k!)n/k. (42)

It is possible to compute Ln for relatively smaller values of n using the inclusion–
exclusion principle considered in the previous section. Shao and Wei [110] obtained such a
formula using this method, and it is shown below, although the formula gives rise to an
exponential algorithm rather than a polynomial algorithm.

Ln = n! ∑A∈Bn
(−1)σ0(A)

(
per(A)

n

)
, (43)

per (A) = ∑(i1,i2,....im)∈Sn(m)
ai1ai2 . . . .aim (44)

where Bn is the set of n × n (0, 1) matrices, A is an mxn real submatrix of Bn for m ≤ n,
σ0(A) be the number of zero elements of the matrix A and per A be the permanent of A
defined by (44) in which Sn(m) is a permutation group of m objects chosen from the set of
n elements; the permanent of a matrix is a special case of the immanent of A and imma-
nent polynomials discussed by the author previously [111] when applied to the identity
irreducible representation of the Sm group of m! permutations [61,112]. Consequently, the
problem of Latin square enumeration is related to both the representation theory of the
symmetric groups [61,112] and the inclusion–exclusion combinatorics considered in the
previous section. Evidently, the computation of Latin squares by itself is a topic of research.

Latin squares find several applications in statistical designs of experiments, Fisher’s
design of biological experiments, minimizing errors, error correction codes, etc. In the
symmetry context, Latin squares constitute group multiplication tables of quasigroups.

Magic squares and Soduku puzzles are special cases of Latin squares. A magic square is
comprised of an nxn matrix of nonnegative integers such that the sum of all elements in a row
or a column adds to the same number. Magic squares have been found in stone inscriptions
of temples and churches around the world; for example, the Chautisa yantra on the wall
of the 12th Century Parshvanath temple in Khajuraho, India, reproduced in Figure 7. The
Devanagari symbols of the numbers are shown in Arabic numerals in Figure 7 (Right).

The sum of any row, column, and the sum along the diagonals is 34 in the Chautisa yantra.
In the context of music theory, magic squares and Latin squares are directly related to

Babbitt’s partition problems [12] of generating balanced covers for a given integer pitch
projection. As shown in the papers by Bazelow and Brickle [13,14] as well as others [15–19],
Babbitt’s problem [12] has to do with musical pitch class integer cover wherein an integer
pitch sequence adds to the same value in each row of a sequence of notes. The integer pitch
sequence is determined by using integer modulo 11 arithmetic or Z11 = {0,1,2,3, . . . 10} for a
12-tone chromatic scale. The mapping of the 12-notes in such a musical scale is in Figure 1
(top left) in the form of a 12-tone chromatic wheel. We map 0 to S (C) and N3 (B Natural)
to 10 to obtain pitch class integers, although other mappings are possible so long as the
sequence is maintained, as Figure 1 is a circular wheel. One of the Babbitt problems asks
for an algorithm for determining all mxm matrices with entries drawn from the set {1, 2,
. . . , n} for which all rows and columns have the sum n. Algorithms have been employed
for several variations of Babbitt’s problem, one of which is to generate partitions that yield
the exact cover for a given integer pitch projection. For example, Figure 8 displays 58 rows
of partitions in 6 columns that provide cover for a projection of 696 pitch class integer
projection [18,19]. It can be seen from Figure 8 that the sum of the numbers in each row and
column is 12, and thus the partition exactly covers for a projection of 696 (58 × 12 = 696) as
reconstructed from in Ref. [18].
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Figure 7. (Left) Chautisa yantra found on the wall of the 12th Century Parshvanath temple in
Khajuraho, India reproduced from RainerTypke—Own work, CC BY-SA 3.0, https://commons.
wikimedia.org/w/index.php?curid=7515567 (accessed on 15 July 2021). (Right) Reconstructed
magic square from the Chautisa yantra in Arabic numerals.

Figure 8. A pitch cover partition for Babbitt’s musical partition problem is shown in 29 rows in
two groups of 6 columns that provide cover for a projection of 696 pitch class integers. The sum of
the numbers in the group of six columns in each row is 12, and thus the partition exactly covers for a
projection of 696 pitch class integers (58 × 12 = 696). Reproduced from Ref. [18], under open license
creative commons attribution.

https://commons.wikimedia.org/w/index.php?curid=7515567
https://commons.wikimedia.org/w/index.php?curid=7515567
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4. Symmetry, Combinatorics & Spectroscopy
4.1. Applications to Chirality of Giant Fullerenes

An object is said to be chiral when its mirror image is not superimposable on itself or
when the object does not have an improper axis of rotation. Chirality plays an important
role in many disciplines, including drug discovery. For example, only L-Dopa is effective
for Parkinsonism and not its chiral isomer. Another example of a chiral drug is Conter-
gan/Thalidomide, which is used in the treatment of multiple myeloma, tuberculosis, and
leprosy. Thalidomide occurs as two chiral isomers, and only the R isomer is a sedative
while the teratogenic S iomer causes fetal abnormalities. Although many musical scales
are symmetrical relative to the mirror plane that bisects the ascent and descent, there are
musical scales that lack mirror symmetry, for example, the south Indian raga Bhairavi; the
raga is heptatonic–heptatonic in its scale but lacks a mirror symmetry owing to the differ-
ence in the note D2 in the ascent compared to D1 in the descent. Combinatorial techniques
outlined before can be applied to enumerate the chiral isomers of giant fullerenes. In a
previous study by the author [77], he has applied distance degree vectorial sequences in
conjunction with Sheehan’s version of Pólya’s theorem and the Möbius inversion technique
for all irreducible representations of the point groups for a series of giant fullerenes. In
particular, such techniques were applied to the golden fullerene series, C60m

2 for m up to
50 or C150,000 and the series C180m

2 and C70(D5h). To exemplify, the structure of a golden
fullerene, C60m

2 (m = 3) or C540 with the icosahedral symmetry (Ih), is shown in Figure 9.

Figure 9. An Icosahedral golden fullerene C540 (Ih) in the series C60m
2 (m = 3). Reprinted with

permission from [77] copyright (2020) American Chemical Society.

The generalized character cycle indices (GCCI) for the golden fullerenes C60m
2 with

p = m2 containing 120 symmetry operations for coloring the vertices of C60p are given by:

P
Ag
Ih

=
1

120

{
s60p

1 + 16s30p
2 + 24s12p

5 + 20s20p
3 + 24s6p

10 + 20s10p
6 + 15s4m

1 s(30p−2m)
2

}
(45)
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PAu
Ih

=
1

120

{
s60p

1 + 14s30p
2 + 24s12p

5 + 20s20p
3 − 24s6p

10 − 20s10p
6 − 15s4m

1 s(30p−2m)
2

}
(46)

where we show only the GCCIs for the Ag and Au IRs of the icosahedral group, as these
representations enumerate the achiral and chiral isomers. The isomer count expressions for
the two IRs obtained using the Pólya substitution for C60pXk are shown below by invoking
the eta functions defined as follows:

Nk
(

Ag ; C60 p Xk
)
= 1

120

{(
60p

k

)
+ 16η

( k
2

)[( 30p
k
2

)]
+ 24η

( k
5

)( 12p
k
5

)
+ 20η

( k
3

)( 20p
k
3

)
+ 24η

( k
10

)( 6p
k
10

)
+ 20η

( k
6

)( 10
k
6

)
+

15 ∑[λ1,λ2 ]

(
4m
λ1

)(
30p− 2m
λ2

)} (47)

where η
(

k
d

)
= 1 if d divides k and 0 otherwise, and [λ] is any ordered partition of

any number less than or equal to k into 2 parts, (λ1, λ2), such that λ1 + 2λ2 = k.

Nk
(

Au ; C60 p Xk
)
= 1

120

{(
60p

k

)
+ 14η

( k
2

)[( 30p
k
2

)]
+ 24η

( k
5

)( 12p
k
5

)
+ 20η

( k
3

)( 20p
k
3

)
− 24η

( k
10

)( 6p
k
10

)
− 20η

( k
6

)( 10
k
6

)
−

15 ∑[λ1,λ2 ]

(
4m
λ1

)(
30p− 2m
λ2

)} (48)

In particular for k = 2 and k = 3, we arrive at the following results:

N2
(
Ag; C60pX2

)
=

1
120

{
60p(60p− 1)

2
+ 480p + 15 [(4m(2m− 1) + 30p]

}
(49)

N2
(

Ag; C60 pX2
)
=

1
120

{
60p(60p− 1)

2
+ 480p + 15 [(4m(2m− 1) + 30p]

}
(50)

N2
(
Total; C60 pX2

)
=

1
120

{
120p(60p− 1)

2
+ 900p

}
(51)

N2
(
Achiral; C60pX2

)
= 8p + m(2m− 1) (52)

N3
(

Ag; C60 pX3
)
=

1
120

{
10p(60p− 1)(6p− 2) + 400p + 15

[
4m(30p− 2m) +

2m(4m− 1)(4m− 2)
3

]}
(53)

N3
(
Au; C60pX3

)
=

1
120

{
10p(60p− 1)(6p− 2) + 400p− 15

[
4m(30p− 2m) +

2m(4m− 1)(4m− 2)
3

]}
(54)

N3
(
Total; C60pX3

)
=

1
60
{10p(60p− 1)(6p− 2) + 400p}} (55)

N3
(
Achiral; C60 pX3

)
=

1
4

{
4m(30p− 2m) +

2m(4m− 1)(4m− 2)
3

}
(56)

Consequently, for the fullerene C150,000X2, the numbers for Ag and Au are 93,771,225
and 93,746,275, respectively and hence there are 93,746,275 chiral pairs, 24,950 achiral
isomers, among 187,517,500 stereo-position isomers for C150,000X2. Figure 10 shows the
relative trend for the distribution of chiral and total isomers for the golden fullerene series.
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Figure 10. Distribution of chiral and stereo-position isomers for golden fullerenes. The top figure
shows the distribution of chiral and all isomers of polysubstituted C4860Xk and C6000Xk. The bottom
figure shows the relative distribution of position and chiral isomers of C60pX2, where p = m2 for the
golden series with m varying from 2 to 10. Reprinted with permission from [77] copyright (2020)
American Chemical Society.

As can be seen from Figure 10, chirality dominates quite rapidly for giant fullerenes in
that almost all isomers become chiral for the larger giant fullerenes, while this is not the
case for the first two members of the series. For example, among 37 stereo-position isomers
of C60X2, only 14 pairs of isomers are chiral, while among 508 isomers, 235 pairs of isomers
become chiral for C240. The author has introduced a chirality measure for golden fullerenes
called the nth order chirality index for fullerenes defined as follows:

χ(k) =
Nk(Au; C60m2)

Nk
(
Ag; C60m2

) (57)
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Figure 11 shows the first and second-order chirality measures thus obtained for
golden fullerenes:

Figure 11. The first and second-order chirality indices for icosahedral golden fullerenes C60 to
C150,000. Reprinted with permission from [77] copyright (2020) American Chemical Society.

As can be seen from Figure 11, C60 exhibits a first-order chirality index of 0 while
C150,000 exhibits a first-order chirality index close to unity. The second-order chirality index
approaches unity more rapidly than the first order as the size of the golden fullerene
increases (see Figure 11). Consequently, almost every isomer of a substituted giant golden
fullerene becomes chiral for large values of m (Figure 11).

4.2. Applications to MQ-NMR

The GCCI techniques outlined earlier for the enumeration of isomers can be extended
to multiple quantum NMR spectroscopy and the nuclear spin statistics of the rovibronic
levels of giant fullerenes and their derivatives obtained by hydrogenation or partial halo-
genation of fullerenes. For naked fullerenes, 13C NMR spectra can provide information on
their structures. We note that the spectroscopic signatures of these structures are reminis-
cent of music scale signatures that we discussed in previous sections. The combinatorial
formulations for the 13C NMR or MQ-NMR spectra of the naked giant fullerenes are com-
pletely equivalent to the proton NMR of fully hydrogenated fullerenes C60pH60p. This is
because we can assign to each vertex in an equivalence class of shells of fullerenes two
spin functions with the labels α and β. Consequently, partitioning the vertices of golden
fullerenes into equivalence classes of shells of 60 and 120 vertices provides an elegant
technique to compute the generating functions for NMR spin functions as well as nuclear
spin statistics, in general, by partitioning the GFs in terms of the equivalence classes of
shells. Hence the multiple quantum NMR generating functions for the Ag and Au IRs of a
shell of 60-vertices of a golden fullerene are given by:

PAg
Ih

(C120Shell− Ih; MQ−NMR) = 1
120

{
(α+ β)120 + 16

(
α2 + β2

)60
+ 24

(
α5 + β5

)24
+ 20

(
α3 + β3

)40
+

24
(
α10 + β10

)12
+ 20

(
α6 + β6

)20
+ 15(α+ β)8

(
α2 + β2

)56
} (58)

PAu
Ih

(C60Shell− Ih; MQ−NMR) = 1
120

{
(α+ β)60 + 14

(
α2 + β2

)30
+ 24

(
α5 + β5

)12
+ 20

(
α3 + β3

)20
−

24
(
α10 + β10

)6
− 20

(
α6 + β6

)10
− 15(α+ β)4

(
α2 + β2

)28
} (59)
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In an analogous manner, the generating function for each C120 equivalence class of
shell in the golden fullerene can be obtained for the same irreducible representations of
the Ih group. Although we do not show the GFs for other IRs of the Ih group, they can be
obtained likewise, and such GFs for all IRs are required for the nuclear spin statistics of
fermions or bosons arising from the nuclear spin functions depending on the magnetic
spin quantum numbers of the isotopes of the substituents of giant fullerenes.

Figure 12 shows the multiple quantum NMR signatures for the Ag and Au IRs of C60
and C120 shells in the equivalence classes of giant fullerenes. These spectra were obtained
using the coefficients of the GFs for the Ag IR, which are then sorted in accord with the
total mF quantum numbers. The results thus enumerated from the GFs and are shown
in Figure 12a,b for C60 and C120 equivalence classes, respectively. The overall MQ-NMR
signature is obtained as the composite of the individual patterns shown in Figure 12a,b for
the C60 and C120 shells of the golden fullerene.

Figure 12. (a) MQ-NMR pattern of C60 shells in golden fullerenes (b) MQ-NMR pattern of C120 equiv-
alence shells in golden fullerenes (Reprinted with permission from [77] copyright (2020) American
Chemical Society.

4.3. Applications to ESR

The concept of pitch class integer partition in the context of Babbitt’s partitions for
covering the entire pitch class resonates with electron spin resonance spectra of molecular
radicals. The ESR spectra contain the rich hyperfine structures of radicals derived by
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removing an electron from the highest occupied molecular orbital (HOMO). The hyperfine
structure depends on the interaction of the unpaired electron of the radical with the nuclear
magnetic moments. Such interactions depend on the distance between the unpaired
electron and the various nuclei that exhibit nuclear magnetic moments in the radical. Thus
these techniques would be immensely helpful in machine learning and artificial intelligence
techniques for the generation of ESR hyperfine patterns. In the case of giant fullerenes that
we have been discussing, radicals can be derived by removing an electron from the HOMO
or by the attachment of a functional group such as a t-butyl group to one of the carbon
vertices. All nuclei present in an equivalence class of a shell of a golden fullerene that are
closest to the unpaired electron density would have the strongest nuclear-electron coupling
to the unpaired electron. Consequently, the hyperfine constant would be the largest for the
nuclei in the near proximity of the unpaired electron. The nuclei in the same equivalence
shell would have the same hyperfine coupling constant if they are equidistant from the
unpaired electron. Under such a scenario, the most general ESR generating function for the
ESR hyperfine splitting of a golden fullerene with the vertex equivalence class partition
60m120m(m−1)/2 is shown below:

PIh

(
C60p − Ih; ESR

)
= {∏m

i=1(αi + βi)
60} {∏

(
m
2

)

j=1

(
αj + βj

)120
} (60)

Once a generating function is constructed, as shown above, we can substitute the
value of m for the given golden fullerene to generate the ESR hyperfine signature. For
this purpose, we collect the coefficients of different terms by expanding the various bino-
mials and multiplying them and gathering the coefficient of every term of the form αm

βn. Figure 13 displays the ESR hyperfine pattern thus obtained by expanding the ESR
generating function shown above for a golden fullerene. We assume that two C60 shells
closest to the unpaired electron make the largest contribution to the ESR hyperfine pattern.
As can be seen from Figure 13, the hyperfine pattern is reminiscent of musical scale patterns;
that is, for the ESR, we find clusters of lines grouped together in a characteristic pattern
that reflects the symmetry of the molecule through vertex class partitions.

Figure 13. ESR hyperfine signatures for golden giant fullerenes. Reprinted with permission from [77]
copyright (2020) American Chemical Society.

4.4. Applications to Vibrational Spectra

The intimate connection between music and vibrations can be readily seen from the
very definition of the frequency of a musical note which is the number of vibrations per
second. The vibrational modes of a string tied on both ends are all represented by standing
waves with sinusoidal forms determined by integral quantum numbers in steps n = 1,2,3
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. . . . The vibrational modes of percussion instruments such as drums, tabla, and the double-
headed mridangam are all determined by the Bessel polynomial functions. In a recent
study on the microfabrication of two-dimensional circular silicon nitride (SiNx) membranes,
Serra et al. [113] have harnessed the nodal properties and shapes of the vibrational modes
of such a circular membrane displayed in Figure 14. Likewise, harmony in music theory
looks for frequencies with approximate rational ratios so as to avoid beats. The entire set of
rhythmic cycles is mathematically expressible as partitions of integers into various parts. In
general, there are infinite such partitions, as the number of partitions of an integer n, p(n),
is given by the coefficient of xn in the partition generating function, which is the inverse of
the Euler function:

∑∞
n=0 p(n)xn = ∏∞

j=0
1(

1− xj
) , (61)

Figure 14. The vibrational modes of the first 0n and 1n modes of a 2D-circular membrane as inferred from their Bessel
polynomial solutions. The hot regions are regions with the greatest displacement, while the grey regions are the regions
of the smallest displacement relative to the equilibrium position. These patterns were harnessed in the microfabrication
of SiNx circular membrane in a recent study by Serra et al. Reproduced under a Creative Commons Attribution (CC BY)
license open license creative commons with permission from [113].

P(n) (n ≥ 0) forms the sequence 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176,
231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, . . . (sequence
A000041 in the OEIS). For example, P(29) = 4565 yields 4565 rhythmic cycles for a cycle of
length 29. There is a further nuance in that the rhythmic cycles are represented by ordered
partitions which are given by the number of compositions of n into k parts with k varying
from 2 to n − 1. Likewise, P(n,k), the number of partitions of n exactly into k parts is given
by the coefficient of xnyk in the expression:

∑∞
n,k p(n, k)xnyk = ∏∞

j=0
1(

1− yxj
) (62)

In the south Indian Carnatic music system, although there are many rhythmic cycles,
the common ones are derived from a classification of 7 types that can be set into 5 groups
(jatis) or 35 rhythmic schemes with cycle lengths varying from 3 to 29. All of these rhythmic
cycles are combinatorial ordered partitions of integers such that they add up to the total
cycle lengths of 3 to 29. The most common rhythmic cycles are all of even lengths, viz.,
4, 6, 8, 10, 14, etc., although the same cycle length can be divided into different partitions
and hence different thaalams. The rhythmic partitions are analogous to Babbitt’s partitions
of pitch class integers, except in the case of rhythm, time is partitioned into integers with
up to 6 different constituent strokes or angas, denoted by various symbols such as O, |n,
U, × . . . and so on. The symbols denote different types of stoke patterns; for example,
O stands for a clap followed by a wave, |n (n = 3,4,5,7,9) stands for a clap followed by
counting with fingers n − 1 times, and × stands for an elaborate hexadeca-stroke. In
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the hexadeca-stroke, chirality is built into the rhythm in that it is composed of |4 + 4U
(waving a hand upward four times) + 4L (waving a hand toward the left 4 times) + 4R
(waving a hand toward the right 4 times). There is an elaborate inverse pyramidal descent
followed by a pyramidal ascent symmetry and combinatorics in a solo performance of
percussion instruments, eventually culminating into the confluence of all performers as
in a crescendo in a Carnatic music concert. In some Carnatic music compositions, the
krithi itself is set into an inverted pyramidal symmetry, as illustrated in Table 7 by the
Muttuswamy Dikshitar krithi tyāgarāja yoga vaibhavaṁ sadās.ivaṁ in the ragam Ananda
Bhairavi set to rupaka thaalam or O|4 that is, a 2 + 4 partition of a rhythmic cycle of length
6 (cf. bears no connection to the rupak thaal of the Hindustani music which is 3 (thee, thee,
na) + 2 (dhi,na) + 2 (dhi,na) partition). It is not surprising at all that the vibrational modes
exhibited by molecules bear many similarities to those of musical instruments.

Table 7. An Illustration of an Inverted Pyramidal Symmetry in a Composition and Rhythm; the
composition is set to Rupaka Thaalam: O|4 or 2 + 4 partition of a cycle of length 6.

Original Lyrics: English Verse:

tyāgarāja yoga vaibhavaṁ sadās.ivaṁ King of sacrifices’ penance fanfare, All abiding-

tyāgarāja yoga vaibhavaṁ sadāśrayāmi King of sacrifices’ penance fanfare, I’m
adoring,

tyāgarāja yoga vaibhavaṁ King of sacrifices’ penance fanfare,
agarāja yoga vaibhavaṁ King of mounts’ penance fanfare
rāja yoga vaibhavaṁ King of paths’ penance fanfare,
yoga vaibhavaṁ Penance fanfare
vaibhavaṁ Fanfare
bhavaṁ Fare
vam Ar

Reproduced from https://lyrical-thyagaraja.blogspot.com/2009/11/tyagararaja-yoga-vaibhavam.html (accessed
on 15 July 2021).

Symmetries of the vibrational modes of a molecule govern their interactions with
electromagnetic radiation, and thus the selection rules of the vibrational modes or their
activities depend on their symmetries. Some modes are active in the Raman vibrational
spectra as the selection rules are dependent on the symmetry of the polarizability ten-
sor, while the infrared-activity of vibrational modes would depend on the symmetry of
the dipole moment vector. Thus the symmetry classifications of vibrational modes of a
molecule exhibiting symmetry, such as giant fullerenes, is critical to determining their
activities in Raman and IR spectra. In this section, we illustrate this by consideration of the
symmetry classification of vibrational modes of giant golden fullerenes in accord with the
icosahedral symmetry.

Combinatorics facilitates the classification of the vibrational modes of giant fullerenes
through the enumeration of the equivalence classes of the vertices. For a golden fullerene of
the formula C60m

2 with the icosahedral point group symmetry, the vertices are partitioned
into 60m120m(m−1)/2 equivalence classes of shells, where the former corresponds to shells
containing 60 atoms while the latter corresponds to equivalence classes of cardinality
120. There are 180 m2 degrees of freedom for a giant golden fullerene. By employing the
combinatorial techniques that are based on the GCCIs introduced earlier, we can obtain
the various IRs contained in the Γvib, the reducible representation spanned by the 180 m2

degrees of freedom. Combinatorics thus facilitates the generation of the IRs of the Ih group
contained in the vibrational modes as follows:

Γvib(C60m2 ) = m{2Ag + Au + 4T1g + 4T2g + 5 T1u + 5T2u + 6Gg + 6Gu + 8Hg + 7Hu }+
(

m
2

){
3Ag + 3Au + 9T1g + 9T2g

+9 T1u + 9T2u + 12Gg + 12Gu + 15Hg + 15Hu
}
− T1u − T1g.

(63)

Substituting m = 10 in the above expression (61) yields the vibrational modes of C6000
which are shown below:

https://lyrical-thyagaraja.blogspot.com/2009/11/tyagararaja-yoga-vaibhavam.html
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Γvib(C6000) = 10{2Ag + Au + 4T1g + 4T2g + 5 T1u + 5T2u + 6Gg + 6Gu + 8Hg + 7Hu} + 45{3Ag + 3Au + 9T1g + 9T2g +
9T1u + 9T2u + 12Gg + 12Gu + 15Hg + 15Hu } − T1u − T1g.
= 155Ag + 145Au + 444T1g + 454T1u + 445T2g + 455 T2u + 600Gg + 600Gu + 755Hg + 745Hu

(64)

Combinatorics facilitates the partitioning of vibrational modes into various IRs and
hence the partitioning of complex vibrational mode equations of golden fullerenes as a
function of the vibrational equations of each shell. Consequently, this, in turn, simplifies
Wilson’s GF vibrational mode equations for giant fullerenes. Wilson’s vibrational ma-
trices [65] are thus factored into smaller matrices expressed in terms of the equivalence
classes of shells of IRs for any golden fullerene. Figure 15 shows the distribution of the
vibrational normal modes for C6000 thus obtained. Owing to the symmetries of the dipole
vector and polarizability tensor, among the vibrational modes in Figure 15, only the Ag
and Hg vibrational modes are Raman active, whereas the T1u modes are IR active.

Figure 15. Combinatorially-generated vibrational normal Mode distributions of C6000 golden
fullerene. We note that Hg and Ag modes are Raman active while only T1u modes are IR active.
Reprinted with permission from [77] copyright (2020) American Chemical Society.

Likewise, for another set of giant fullerenes with icosahedral symmetry, C180m
2,

m = 1,2,3 . . . , the shells of equivalence classes are given by 603m1203m(m−1)/2. Hence
the combinatorial techniques yield the normal vibrational modes for the giant C180m

2

fullerenes as:

Γvib(C180m2 )= 3m(2Ag + Au + 4T1g + 4T2g + 5 T1u + 5T2u + 6Gg + 6Gu + 8Hg + 7Hu
)
+ 3
(

m
2

)
(3Ag + 3Au + 9T1g+

9T2g + 9 T1u + 9T2u + 12Gg + 12Gu + 15Hg + 15Hu)− T1u − T1g.
(65)

Spectroscopic concepts can be applied to music theory and vice versa. The intimate
relation between the two fields can be further exemplified by considering the blue and red
shifts in spectroscopy. Figure 16 illustrates this quite well by applying these spectroscopic
concepts to music. As can be seen from Figure 16, a blue shift by a tone in a 12-tone scale
applied to the major scale (Ionic mode, number 29 in Table 5) results in the Dorian mode
(number 22 in Table 5). Likewise, when we apply a red shift by three tones to the major scale
(29), we obtain the natural minor scale (number 20 in Table 5). Although all spectral shifts
do not result in meaningful musical scales, the concept has been invoked in the south Indian
Carnatic School to juxtapose one music scale on the other, which is called a graha bedham or
a tonal shift. Up to now, tonal shifts have always been made only to the right, or only a blue
shift is performed in creating a graha bedham. Here we have shown how red shifts can also
generate another music scale from one music scale, as demonstrated in Figure 16.
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Figure 16. Spectroscopic blue and triple-red shifts applied to the major Ionian mode (29 in Table 5) generate the Dorian
mode (22 in Table 5) and natural minor (20 in Table 5) scales.

5. Machine Learning, Music, Spectroscopy and Multidisciplinary Concepts

Although machine perception of the music of the east and west has been receiving
attention since the 1970s, only recently has progress been made in making use of the tools of
artificial intelligence such as embedding and machine learning algorithms. As pointed out
by Longuet-Higgins in a series of pioneering papers [28–34] concerning cognitive science
and machine perception of patterns in music, it is evident that one needs to go beyond the
musical pitch and scales. Even though musical notes emanating from a piano are discrete
and no continuous glides and vibratos are feasible, there are several other technical nuances
such as the duration, rhythm, tempo, and many other features that must be considered in
the machine perception of music. Longuet-Higgins has pointed out the analogy between
music and a natural language in that metrical rhythms are similar to syntactic structures of
a natural language. That is, the applications of artificial intelligence to music and machine
perception of musical patterns can be benefited by advances in the field of computational
linguistics. Regarding the interconnection between pitch-class integers, rhythms, and
group theory, we have already discussed this subject in the previous sections.

Transcription of a musical piece through stave notation has been emphasized as a
premier step in the machine perception of western music. Longuet-Higgins [32] elegantly
demonstrates this with stave notations of the same melody in multiple ways, among which
only one is musically correct. That is, the relative lengths and pitches of a composition
are more accurately conveyed in a correct stave notation, thus making it possible for an
algorithm for the machine perception through the use of stave notations. However, as there
are practically infinite ways to create a sequence of notes in any given scale, the problem
becomes challenging without some rules of music grammar. Consequently, Longuet-
Higgins and others have pointed out analogies between music and natural languages
by formulating generative grammar for rhythm and tonality. This approach has been
accentuated further in the last paper of Longuet-Higgins with Dienes [34] in 2004. In this
work, Dienes and Longuet-Higgins point out that human learning of music takes place
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through recognition of a group of adjacent elements in sequences that they call chunks. To
test this hypothesis, the authors [34] employed a case study by using a pool of participants,
mixing those who had significant prior exposure to atonal western music and those who
had none. The authors found a distinct disparity in that only those who had significant
prior exposure to atonal music could correctly recognize all of the melodies emphasizing
the learning aspect of music.

Machine perception of the eastern systems of music such as Hindustani and Carnatic
music must take a completely different approach, primarily because the musical composi-
tions not only directly depend on the scale and rhythm, but significant emphasis is placed
on jaarus and vibratos called the gamakas. A gamakam in the Carnatic music system is
a shake or an oscillation around a note in the musical scale that permits such oscillations
primarily determined by traditions of rendering a composition. Hence the south Indian
music system is largely based on compositions called krithis and the traditional trinity
schools of music. In order to bring out pathos, sympathy, or emotions, significant use of
the gamakas and certain repetitive phrases are invoked in the rendering of a composition.
Likewise, continuous glides from one note to the other within a sequence of notes rendered
during a composition, called the meends, play a very critical role in the north Indian
Hindustani system of music.

To demonstrate the point concerning the critical role played by oscillations, the meend
(a continuous slow glide from one note to the next) and or gamakas, one can consider
three ragas (musical scales) shown in Figure 17, all of which originate from the 20th scale
in Table 5 called the Asaveri Thaat in the Hindustani system, while it is known in the
Carnatic school as Natabhairavi. The three ragas derived from this scale all have the same
notes and similar ascents and descents with subtle variations. The characteristic features
of a raga are called the pakads, which are sequences of notes (phrases) that bring out the
essence of a raga in a musical rendering. The pakads of the three ragas under consideration
are in Figure 17, which bring out the contrast somewhat among them. We note that we
have shown the recognizable features of the middle raga in Figure 17 in continuous glides
with oscillations. Indeed these glides and oscillations around the note D1 are critical to
Darbari Kanada (Figure 17 (mid)). Moreover, the andolan or an oscillation around the
note G2 (komal Ga), combined with the oscillation around D1, are the two distinguishable
features that bring out the essence of this raga, in addition to the pakads shown in Figure 17
(mid) with oscillations around both G2 and D1. On the other hand, the raga adana, a close
derivative from the same Thaat (20 in Table 5), must be rendered with discrete notes
without many oscillations, as shown in Figure 17; otherwise, the rendering will get mixed
with Darbari.

A critical comparison of the renderings of a raga with the same scale in the two
schools of Indian music reveals substantial differences. Consider the Dorian scale (no. 22 in
Table 5), which is called the Kaafi Thaat in the Hindustani system of music while the same
scale becomes Kharaharapriya in the Carnatic school of music. In the Carnatic system,
the rendering of this raga invokes vibratos or gamakas for almost every dynamic note
because of the symmetrical tetrachord spacing of the notes. A quintessential composition
in Kharaharapriya is the Thiyagaraja krithi Chakkani Rāja mārgamu performed by the late
stalwart Semmangudi Srinivasa Iyer. Consequently, all krithis rendered in Kharaharapriya of
south India bear little resemblance to the rendering of the Kaafi Thaat of the Hindustani
system, for example, Pandit Jasraj’s mewati gharana in the Kaafi Thaat or the western
renderings of the Dorian scale or the pop music song “The Night The Lights Went Out In
Georgia” in the same Dorian scale. All of these important musical nuances characteristic
to the particular school and tradition need to be considered in any realistic application of
the artificial intelligence techniques to the machine perception algorithms. This continues
to be one of the major challenges for the machine perception of the music of different
cultures. This is analogous to how languages, dialects, and grammar differ in different
parts of the world, and hence musical perception is as complex as the machine perception
of different linguistics.
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Figure 17. Signatures of 3 musical scales (ragas) derived from the same Asaveri Thaat or the natural
minor scale (Scale no 20 in Table 5: Natabhairavi of Carnatic), but the three ragas have distinct
signatures. Machine perception must include these nuances, intonations, and oscillations in the
middle raga through embeddings.

Stimulated by Longuet-Higgins’ work [32] on the application of AI to western music
where the generative grammar and analog between musical patterns and the natural
language are shown to play important roles, one approach for the machine perception
of music is to generate computerized recordings of a given raga in multiple krithis or
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compositions spanning different rhythmic cycles. For example, there are numerous krithis
in the raga Kharaharapriya (the Dorian scale) by all three trinities, and one can find these
compositions in different rhythmic cycles. Likewise, in the Hindustani system of music,
one can generate computer recordings of several schools of gharanas, for example, the
khayal style gharanas of Agra, Dilli, Gwalior, Indore, etc. Once different schools of such
compositions in varied rhythmic cycles are created, the machine learning techniques with
neural networks can be employed through machine embeddings of distinguishable musical
phrases that give rise to the raga, including the meends (glides), andolans (vibratos),
gamakas, and/or oscillations around specific notes that constitute the signatures of the
raga under consideration. In recent years several authors [35–43] have employed neural
networks and machine learning techniques for the machine perception of Hindustani
music compositions through embedding raga phrases like the ones we described. Such
techniques can be extremely challenging for computations as they need to encompass
multiple nuances and intonations specific to different schools and the varied renderings of
the same raga. Ross et al. [43] have developed quantitative similarity measures of ragas
in order to compare and contrast one raga from the other through neural networks and
embeddings of musical phrases using bandish (composition) notations of the Hindustani
school. As pointed out by Ross et al. [43], such quantitative measures need to encompass
both intrinsic features such as the notes and tempo as well as extrinsic features such as
meends, andolans, variations in temporal factors within a rhythmic cycle, and thus the
emotional features pertinent to a raga. By employing these features, Ross et al. have
developed a number of deep recursive neural networks with Long-Short Term Memory
(LSTM) units developed based on bandish notations. Consequently, the note embeddings
capture many characteristic features of a raga, including the various nuances that we have
described above. Such an approach is able to provide a quantitative machine framework
for delineating the subtle variations among even closely related ragas, as demonstrated by
these authors using the embedding maps which show close similarities between the ragas
Yaman and Yaman Kalyan arising from the same Kalyan Thaat (Lydian mode, Number 65
in Table 5), and differences with the raga Pilu, a derivative of the Kaafi Thaat (Dorian scale,
Number 22 in Table 5). Such embeddings facilitate the clustering of a large group of ragas
on the basis of quantitative similarity measures analogous to molecular similarity clustering
schemes that are extensively used in drug discovery and computational toxicology [91]. It is
evident that such developments in one field can result in significant advances in the other.

The fast Fourier transform (FFT) technique has been extensively employed in spec-
troscopy to resolve complex spectroscopic signals into individual constituent components
of different frequencies. In western music theory, FFT has been applied to musical com-
positions to extract the discrete Fourier transforms (DFT) using spectral music analysis.
Such techniques utilize the power of FFT through the applications of DFT to analyze
complex musical compositions. The technique holds considerable promise for extracting
discrete components in gamakas, meends, and other musical nuances extensively used
in the Hindustani and Carnatic schools. The application of DFT to music can yield more
specific mathematical quantities for the characterization of such subtle features of mu-
sic compositions, providing an important tool for quantitative similarity analysis and
cluster algorithms. Likewise, the fast Walsh–Hadamard transform is a powerful tool to
compute the Walsh–Hadamard transforms through efficient computations of Hadamard
matrices of order 2m × 2m by a recursive dissection of larger matrices of order nxn into
n/2 × n/2 matrices in each iteration. In the present review, we have already pointed
out the extensive applications of Hadamard transforms to spectroscopy, combinatorial
balanced designs, music, Fisher’s design of biological experiments, and other fields.

6. Conclusions and Future Perspectives

In this review, we laid the combinatorial foundations of music theory and spectroscopy
and pointed out a number of similarities between spectroscopy and music theory. Symme-
try is shown to play a critical and integral part in both of these disciplines as the concepts of
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rhythm, proportion, and harmony, when expressed in mathematical group theoretical and
combinatorial structures, find direct applications to both music theory and spectroscopy, as
established in this review. Moreover, spectroscopic concepts such as the blue and red shifts
can be directly applied to musical scales in order to transform one musical scale into an-
other through such tonal shifts. Combinatorial techniques such as the inclusion–exclusion
principle, Möbius inversion, Pólya’s theory of counting and its generalization to encompass
all irreducible representations of the symmetry group, Latin squares, Hadamard matrices,
magic squares, ordered partitions, and many more combinatorial structures are shown to
find extensive applications both in music theory and spectroscopy. In the context of spec-
troscopy, we demonstrated the applications of such combinatorial and group theoretical
techniques to giant golden fullerene domes by way of providing elegant solutions to the
complex problems of machine construction of their MQ-NMR, ESR, and vibrational modes
with applications up to supergiant fullerene C150,000.

Applications of machine learning algorithms and artificial intelligence pioneered by
Longuet-Higgins, who is credited with the coining of the term “cognitive science”, were
reviewed with comparisons between the machine perception of music and computational
linguistics. We showed how signatures of closely related ragas could be delineated through
combinatorial music phrases and characterizations of meends, gamakas, and oscillations
around a note in a raga. Radial symmetries, mirror symmetries, and cyclic group integer
modulo symmetries in music theory were pointed out, and their interconnections to the
formulation of machine learning algorithms were presented. We reviewed the use of
deep learning neural networks through embedding to differentiate ragas and to develop
quantitative similarity measures for clustering of a group of ragas. We also pointed out sim-
ilarities of such neural networks to those developed in other disciplines such as quantitative
molecular similarity analysis and clustering of molecules and drugs, quantitative shape
measures of molecules, quantum similarity measures, etc., all of which play important
roles in drug discovery and computational toxicology.

Various advances that we reviewed clearly bring out the emerging challenges in
these fields, especially in music theories, as these are based on aesthetics, traditions, and
various schools with multiple complexities. While the notes in a raga and their charac-
teristic features combined with rhythmic cycles form the mathematical basis of machine
learning, musical compositions or krithis with all their technical nuances play the role
of generative grammar of music. Consequently, algorithms for machine perception of
complex nuances of traditional musical compositions need to consider all these faculties,
and thus they continue to pose extreme challenges. Although there are several papers
published in the area of machine perception of Hindustani music, less progress has been
made in Carnatic music. It is hoped that this review article will stimulate giant leaps in
these multidisciplinary areas. Such developments are critical as parallel advances can
be made in drug discovery and administration as well as in medical science in general.
Likewise, emerging nanomaterials such as 2D-nanosheets, nanobelts, and nanomaterials of
varied configurations [114–118] have all revived interest in the applications of group theory,
combinatorics, graph theory, and topological indices for seeking efficient algorithms for the
computations of their thermodynamic, spectroscopic, optoelectric, chiral, and phase trans-
formation properties. It is evident that with discoveries of molecules such as kekulenes,
septulenes, and octulenes [117,118], several 2D sheets of such molecules [97–99,114–117]
are likely to be synthesized in the future. Moreover, the advent of metal–organic frame-
works [119,120] has opened up new vistas for applications of combinatorics, graph theory,
and topology for the enumeration, construction, and characterization of the properties
of such emerging novel materials. Although the present review did not delve into other
applications of combinatorial and graph-theoretical techniques to various structural enu-
merations, enumeration, and electronic properties of clusters including gallium arsenides,
topological characterization of 2D materials, zeolites, sodalities, other fullerenes, nuclear
spin statistics, tessellations of cycloarenes such as kekulenes, their helical analogs, and
the recently synthesized expanded kekulenes, and so forth, the readers are referred to
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references [121–133]. Finally, the Diophantine equations similar to the ones used in the
Williamson construction of skew-Hadamard matrices as described in this review also find
applications in their linear forms in chemical reactions and equilibria [134].
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