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Abstract: The starting points of the paper are the classic Lototsky–Bernstein operators. We present an
integral Durrmeyer-type extension and investigate some approximation properties of this new class.
The evaluation of the convergence speed is performed both with moduli of smoothness and with
K-functionals of the Peetre-type. In a distinct section we indicate a generalization of these operators
that is useful in approximating vector functions with real values defined on the hypercube [0, 1]q,
q > 1. The study involves achieving a parallelism between different classes of linear and positive
operators, which will highlight a symmetry between these approximation processes.

Keywords: Lototsky operator; Korovkin theorem; modulus of smoothness; K-functional; Durrmeyer
extension

1. Introduction

It is widely acknowledged that the most studied linear positive operators are Bernstein
operators, which have known innumerable generalizations over time.

Bernstein operators Bn : C([0, 1])→ C([0, 1]) are defined by

(Bn f )(x) =
n

∑
k=0

bn,k(x) f
(

k
n

)
, x ∈ [0, 1],

where bn,k(x) =
(

n
k

)
xk(1− x)n−k, 0 ≤ k ≤ n, represent the n+ 1 Bernstein basis polynomi-

als of degree n. As usual, C([0, 1]) denotes the real Banach space of all continuous functions
f : [0, 1]→ R endowed with the sup-norm ‖ · ‖, ‖ f ‖ = sup

x∈[0,1]
| f (x)|. With the same norm

we endow B([0, 1]), the space of bounded real-valued functions defined on [0, 1].
Based on the generalized Lototsky matrix, an extension of these operators was given

by King [1]. We present this in the following. For each j ∈ N, let hj : [0, 1] → [0, 1] be a
continuous function. Further, for each n ∈ N, a system of functions (an,k)k=0,n on [0, 1] is
defined by the relation

n

∏
j=1

(hj(x)y + 1− hj(x)) =
n

∑
k=0

an,k(x)yk, y ∈ R. (1)

From the above identity we immediately obtain the coefficient of yk, k = 0, n, that is

an,k(x) = ∑
J∪J=Nn

Card(J)=k

∏
i∈J

(1− hi(x))∏
j∈J

hj(x), (2)
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where Nn = {1, 2, . . . , n} and J = Nn \ J. For each real-valued function f defined on [0, 1],
the n-th Lototsky–Bernstein operator is defined as follows

(Ln f )(x) =
n

∑
k=0

an,k(x) f
(

k
n

)
, (3)

see [1], Equation (4). Ln operators are linear. Since hj([0, 1]) ⊆ [0, 1] for all j ∈ N, they are
also positive. It is clear that in the special case hj(x) = x, j ∈ N, the functions (an,k)0≤k≤n,
n ∈ N become Bernstein bases (pn,k)0≤k≤n, n ∈ N; consequently the Ln operator turns into
a Bn operator.

King has established the sufficient condition on the sequence (hj)j∈N to ensure that
(Ln)n≥1 is an approximation process on C([0, 1]). His result can be written as follows. If

lim
n→∞

1
n

n

∑
i=1

hi(x) = x uniformly with respect to x on [0, 1], (4)

then
lim

n→∞
(Ln f )(x) = f (x) uniformly with respect to x on [0, 1] (5)

for every f ∈ C([0, 1]).
In recent years the study of these operators has been deepened; see, for example, the

papers of Ron Goldman, Xiao-Wei Xu, and Xiao-Ming Zeng [2–4].
The purpose of this paper is to define and to establish approximation properties for

a Durmmeyer-type extension of Ln, n ∈ N, operators. We mention that, using elements
of probability theory, a Kantorovich-type extension was achieved in 2020 by Popa [5].
A second goal of this paper is to extend the univariate operators for vector functions with
real values.

A third purpose of this paper is to present a construction of discrete Lototsky operators
in q-dimensional space. The approach follows a symmetrical path with the construction
of other approximation processes, the main instrument of investigation being the multidi-
mensional Korovkin theorem.

2. Dn Operators

Set N0 = {0} ∪ N and denote by ej, j ∈ N0 the monomials of degree j, e0(x) = 1,
ej(x) = xj, j ∈ N. The statement (5) is motivated by the Bohman–Korovkin criterion, which
says: If a sequence of linear positive operators (Λn)n≥1 defined on C([a, b]) has the property
that (Λnek)n≥1 converges to ek uniformly on [a, b], k ∈ {0, 1, 2}, then (Λn f )n≥1 converges
to f uniformly on [a, b] for each f belonging to C([a, b]). In relation (1) let us denote by
Pn(x; y) the polynomial of degree n in y and with the parameter x ∈ [0, 1]. Following [6]
we obtain

(Lne0)(x) = Pn(x; 1) = 1, (6)

(Lne1)(x) =
1
n

∂Pn(x; 1)
∂y

=
1
n

n

∑
i=1

hi(x), (7)

(Lne2)(x) =
1
n2

(
∂2Pn(x; 1)

∂y2 +
∂Pn(x; 1)

∂y

)

=

(
1
n

n

∑
i=1

hi(x)

)2

+
1
n2

n

∑
i=1

hi(x)(1− hi(x)). (8)

Taking in view the mentioned criterion, the proof of (5) is completed.
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Moreover, for any k ≥ 1,

(Lnek)(x) =
1
nk

k

∑
j=1

s(k, j)
∂jPn(x; 1)

∂yj , (9)

see [6], Equation (2.6). In the above s(k, j) denotes a Stirling number of the second kind.
For 1 ≤ j ≤ k, its closed form is given as follows

s(k, j) =
1
j!

j

∑
ν=0

(−1)j−ν

(
j
ν

)
νk,

see, e.g., [7], p. 824. For k = 1 and k = 2, from (9) we reobtain the identities (7) and (8).
Usually, in the papers that approached Lototsky operators, in order to obtain signifi-

cant results, the authors imposed additional conditions on the functions hj, j ∈ N. For a sim-
ilar reason, we define a particular Durrmeyer-type construction that involves both Lototsky–
Bernstein and classical Bernstein bases. L1([0, 1]) stands for the Banach space of all real-

valued integrable functions on [0, 1] endowed with the norm ‖ · ‖1, ‖ f ‖1 =
∫ 1

0
| f (x)|dx.

Define Dn : L1([0, 1])→ C([0, 1]) by formula

(Dn f )(x) = (n + 1)
n

∑
k=0

an,k(x)
∫ 1

0
pn,k(t) f (t)dt, x ∈ [0, 1]. (10)

Remark 1. (a) The operators keep the properties of linearity and positivity.
(b) By using a bivariate kernel we can write Dn f in a more compact form as follows

(Dn f )(x) =
∫ 1

0
k∗n(x, t) f (t)dt, x ∈ [0, 1],

where

k∗n(x, t) = (n + 1)
n

∑
k=0

an,k(x)pn,k(t), (x, t) ∈ [0, 1]× [0, 1].

(c) If f ∈ C([0, 1]), then ‖Dn f ‖ ≤ ‖ f ‖, n ∈ N; consequently the operators are non-expansive
in the space C([0, 1]).

(d) For the particular case hj = e1, j ∈ N, Dn operators turn into the classical Durrmeyer
operators [8].

Lemma 1. Let Dn, n ∈ N, be the operators defined by (10). The following identities

Dne0 = e0, (11)

Dne1 =
n

n + 2
Lne1 +

1
n + 2

, (12)

Dne2 =
n2

(n + 2)(n + 3)
Lne2 +

3n
(n + 2)(n + 3)

Lne1 +
2

(n + 2)(n + 3)
(13)

take place for each n ∈ N.

Proof. Using the Beta function, for any p ∈ N0 we deduce∫ 1

0
pn,k(t)tpdt =

(k + p)!
k!

n!
(n + p + 1)!

, k = 0, n.

By a straightforward calculation, the definition of Dn operators as well as the relation (3)
lead us to the enunciated identities.
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At this point we introduce the j-th central moment of Dn operators, j ∈ N, i.e.,
Dn ϕ

j
x, where

ϕx(t) = t− x, (t, x) ∈ [0, 1]× [0, 1].

Lemma 2. The second-order central moments of the operators Dn, n ∈ N operators satisfy the
following relations

(Dn ϕ2
x)(x) =

n2

(n + 2)(n + 3)

(
α2

n(x) +
1

n2

n

∑
i=1

hi(x)(1− hi(x))

)
+

3nαn(x) + 2
(n + 2)(n + 3)

− 2xαn(x) + x2 ≤ (αn(x)− x)2 +
4
n

, (14)

where

αn(x) =
1
n

n

∑
i=1

hi(x), x ∈ [0, 1]. (15)

Proof. The identity is a direct consequence of the relations (11)–(13) and (6)–(8). Further,
since 0 ≤ hi(x) ≤ 1, x ∈ [0, 1], i = 1, n, we conclude that αn(x) ≤ 1 and

1
n2

n

∑
i=1

hi(x)(1− hi(x)) ≤ 1
4n

.

Using simple increases in relation to n, we reach the postulated inequality.

3. Approximation Properties

Theorem 1. Let Dn, n ∈ N, be the operators defined by (10). If relation (4) takes place, then

lim
n→∞

(Dn f )(x) = f (x) uniformly with respect to x on [0, 1]

for every f ∈ C([0, 1]).

Proof. The motivation is based on the Bohman–Korovkin criterion, on the property of the
Lototsky operators mentioned in relations (4) and (5) and on the identities (11)–(13). The
conclusion follows immediately.

For estimating the approximation error, we will use the first modulus of smoothness
ω( f ; ·) associated to any bounded real-valued function defined in our case on [0, 1] and
expressed by the formula

ω( f ; δ) = sup
0≤h≤δ

sup
x,x+h∈[0,1]

| f (x + h)− f (x)|, δ ≥ 0.

Theorem 2. Let Dn, n ∈ N, be the operators defined by (10). If f ∈ B([0, 1]) ∩ L1([0, 1]), then

|(Dn f )(x)− f (x)| ≤ 2ω( f ; δn(x)), x ∈ [0, 1], (16)

where δn(x) = ((αn(x)− x)2 + 4/n)1/2.

Proof. We appeal to a classic result due to Shisha and Mond [9] and which can be formu-
lated as follows: if Λ is a linear positive operator, then

|(Λ f )(x)− f (x)| ≤ | f (x)| |(Λe0)(x)− 1|

+

(
(Λe0)(x) +

1
δ

√
(Λe0)(x)(Λϕ2

x)(x)
)

ω( f ; δ), δ > 0,
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holds for every bounded function belonging to the operator’s domain. We take in view (11)
and pick

δ :=
√
(Dn ϕ2

x)(x).

Based on (14) and knowing that ω( f ; ·) is an increasing function we arrive at (16).

Remark 2. If f ∈ C([0, 1]), then f is uniformly continuous on [0, 1] and ω( f ; ·) satisfies
lim

δ→0+
ω( f ; δ) = 0, see, e.g., [10], p. 40. Assuming that relation (4) takes place, from (16) we

obtain again the conclusion of Theorem 1

lim
n→∞

‖Dn f − f ‖ = 0, f ∈ C([0, 1]).

In the following, for a given M > 0, set

LipM1 = { f : [0, 1]→ R | | f (x)− f (y)| ≤ M|x− y| for every x, y ∈ [0, 1]}

and consider the space Lip([0, 1]) =
⋃

M>0
LipM1 endowed with the seminorm | · |Lip, where

| f |Lip = sup
x,y∈[0,1]

x 6=y

∣∣∣∣ f (x)− f (y)
x− y

∣∣∣∣.
Further we introduce the least concave majorant of a function f ∈ C([0, 1]), which is

defined by

ω̃( f ; δ) = sup
{
(δ− x)ω( f ; y) + (y− δ)ω( f ; x)

y− x
| 0 ≤ x ≤ δ ≤ y ≤ 1, x 6= y

}
,

if 0 ≤ δ ≤ 1. For δ > 1, ω̃( f ; δ) is the constant ω( f ; 1).
Obviously

ω( f ; δ) ≤ ω̃( f ; δ), δ ≥ 0, (17)

and this inequality follows from the definition of ω̃ as indicated above.
However, it is known [11] that

ω̃( f ; 2δ) = 2K( f , δ; C([0, 1]), Lip([0, 1])), (18)

where K is the Peetre K-functional of f ∈ C([0, 1]) with respect to the space Lip([0, 1])
defined as follows

K( f , δ) ≡ K( f , δ; C([0, 1]), Lip([0, 1])) = inf
g∈Lip([0,1])

(‖ f − g‖+ δ|g|Lip), δ ≥ 0. (19)

Starting from estimate (16), relations (17) and (18) lead us to the following result.

Theorem 3. Let Dn, n ∈ N, be the operators defined by (10). If f ∈ C([0, 1]), then

|(Dn f )(x)− f (x)| ≤ 4K
(

f ,
1
2

δn(x); C([0, 1]), Lip([0, 1])
)

, x ∈ [0, 1],

where δn(x) is specified in Theorem 2.

Remark 3. K( f , δ) expresses some approximation properties of f ∈ C([0, 1]). More precisely,
the inequality K( f , δ) < ε for δ > 0 implies that f can be approximated with the error ‖ f − g‖ < ε
in C([0, 1]) by a function g ∈ Lip([0, 1]) whose seminorm is not too large, namely |g|Lip < εδ−1.
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For the evaluation of the approximation error we can also involve the second modulus
of smoothness ω2( f ; ·) given by the formula

ω2( f ; δ) = sup{| f (x + 2h)− 2 f (x + h) + f (x)| : 0 ≤ h ≤ δ, x, x + 2h ∈ [0, 1]}, δ ≥ 0,

f ∈ B([0, 1]).
In (19) we can replace the space Lip([0, 1]) by

C2([0, 1]) = {g ∈ C([0, 1]) : g is twice continuously differentiable in [0, 1]}

endowed with the seminorm |g|C2([0,1]) = ‖g′′‖ and ‖ · ‖ is the sup-norm. In this case,
between ω2 and K-functional the following relations hold: the positive constants c1 and c2
independent of f exist such that

c1ω2( f ; δ) ≤ K( f , δ2; C([0, 1]), C2([0, 1])) ≤ c2ω2( f ; δ), δ > 0, (20)

see [12], Proposition 6.1.

Theorem 4. Let Dn, n ∈ N, be the operators defined by (10). If f ∈ C([0, 1]), then

|(Dn f )(x)− f (x)| ≤ cω2

(
f ;

1
2

γn(x)
)
+ ω( f ; βn(x)) (21)

where c is a constant independent of f , βn(x) =
∣∣∣∣αn(x)− x− 2x− 1

n

∣∣∣∣ and

γn(x) =
(
(αn(x)− x)2 +

4
n
+ β2

n(x)
)1/2

. (22)

Proof. First we define the operators En, n ≥ 1 as follows

(En f )(x) = (Dn f )(x)− f ((Dne1)(x)) + f (x), x ∈ [0, 1]. (23)

Based on relations (12) and (7), 0 < (Dne1)(x) < 1 takes place and the construction is
correct. Moreover, Enek = ek for k ∈ {0, 1} and, in this way, the first central moment En ϕx
is null. Remark 1(c) together with (1) implies for any function f ∈ C([0, 1]) the relation

|(En f )(x)| ≤ 3‖ f ‖, x ∈ [0, 1]. (24)

Let g ∈ C2([0, 1]) be arbitrarily chosen. Taylor’s expansion with integral expression of
the remainder allows us to write

g(t) = g(x) + (t− x)g′(x) +
∫ t

x
(t− u)g′′(u)du, (t, x) ∈ [0, 1]× [0, 1].

Applying in the above the linear operator En and using (23), we can write successively

(Eng)(x)− g(x) = g′(x)(En ϕx)(x) + En

(∫ e1

x
(e1 − u)g′′(u)du; x

)
= Dn

(∫ e1

x
(e1 − u)g′′(u)du; x

)
−
∫ (Dne1)(x)

x
((Dne1)(x)− u)g′′(u)du. (25)

Further, we obtain

Dn

(∣∣∣∣∫ e1

x
(e1 − u)g′′(u)du

∣∣∣∣; x
)
≤ Dn

(∣∣∣∣∫ e1

x
|e1 − u| |g′′(u)|du

∣∣∣∣) ≤ ‖g′′‖(Dn ϕ2
x)(x).
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At the same time, from (12) and (15) we deduce∣∣∣∣∫ (Dne1)(x)

x
((Dne1)(x)− u)g′′(u)du

∣∣∣∣ ≤ ‖g′′‖((Dne1)(x)− x)2

= ‖g′′‖
(

n
n + 2

αn(x) +
1

n + 2
− x
)2

≤ ‖g′′‖β2
n(x).

Consequently, from relation (25) we obtain

|(Eng)(x)− g(x)| ≤ ‖g′′‖((Dn ϕ2
x)(x) + β2

n(x)) ≤
(
(αn(x)− x)2 +

4
n
+ β2

n(x)
)
‖g′′‖, (26)

see Lemma 2.
Returning to (23) and taking into account (26), (24) and the definition of the modulus

of smoothness ω( f ; ·), we decompose the absolute error of approximation into several
terms, thus

|(Dn f )(x)− f (x)|
≤ |En( f − g; x)|+ |(Eng)(x)− g(x)|+ |g(x)− f (x)|+ | f ((Dne1)(x))− f (x)|

≤ 4‖ f − g‖+
(
(αn(x)− x)2 +

4
n
+ β2

n(x)
)
‖g′′‖+ ω

(
f ;
∣∣∣∣ n
n + 2

αn(x) +
1

n + 2
− x
∣∣∣∣)

≤ 4
(
‖ f − g‖+ 1

4
γ2

n(x)‖g′′‖
)
+ ω( f ; βn(x)),

see (22). Taking the infimum with respect to all g ∈ C2([0, 1]) and using (20), we obtain (21).
The proof is completed.

The construction carried out in (10) allowed us to obtain some notable results in terms
of approximation of functions. A complete generalization of the Lototsky operators would
be as follows:

(D̃n f )(x) =
n

∑
k=0

cn,kan,k(x)
∫ 1

0
an,k(t) f (t)dt, x ∈ [0, 1], f ∈ L1([0, 1]), (27)

where c−1
n,k =

∫ 1

0
an,k(t)dt, all assumptions about the functions an,k, k = 0, n, n ∈ N,

remaining unchanged.
This form implies D̃ne0 = e0. For this version we can prove the following.

Theorem 5. Let D̃n, n ∈ N, be the operators defined by (27). If f , g ∈ L1([0, 1]), then∫ 1

0
(D̃n f )(x)g(x)dx =

∫ 1

0
f (t)(D̃ng)(t)dt, n ∈ N. (28)

Proof.
∫ 1

0
(D̃n f )(x)g(x)dx =

∫ 1

0

n

∑
k=0

cn,kan,k(x)
(∫ 1

0
an,k(t) f (t)dt

)
g(x)dx

=
∫ 1

0

n

∑
k=0

cn,kan,k(t)
(∫ 1

0
an,k(x)g(x)dx

)
f (t)dt =

∫ 1

0
f (t)(D̃ng)(t)dt.

Consequently, the stated identity is valid.
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Remark 4. (a) In the particular case f , g ∈ L2([0, 1]), the identity (28) says

〈D̃n f , g〉 = 〈 f , D̃ng〉,

where 〈·, ·〉 represents the inner product of the Hilbert space L2([0, 1]).
(b) Since the monomial e0 is a fixed point for all three classes of operators (Ln, Dn, D̃n, n ∈ N),

they are of the Markov type.

4. The Case of the Multidimensional Lototsky–Bernstein Operators

We aim to present a q-dimensional generalization of discrete-type operators defined
by (3). For a positive integer q ≥ 2 we consider the hypercube Hq = [0, 1]q. The following
notations will be used throughout this section: x = (xi)1≤i≤q ∈ Hq, n = (nν)1≤ν≤q ∈ Nq.
For each i = 1, q and j ∈ N let hi,j : [0, 1] → [0, 1] be a continuous function on its domain.
With the help of these functions we define the systems (anν,s)0≤s≤nν , nν ∈ N, similar to
those of (2), by the following relations

nν

∏
j=1

(hi,j(xi)y + 1− hi,j(xi)) =
nν

∑
s=0

anν,s(xi)ys := Pnν(xi; y), i = 1, q. (29)

The announced multidimensional operators will be written as follows:

(Ln f )(x) =
n1

∑
k1=0

. . .
nq

∑
kq=0

an1,k1(x1) . . . anq ,kq(xq) f
(

k1

n1
, . . . ,

kq

nq

)
, (30)

where f is a real-valued function defined on Hq.
We focus on highlighting certain approximation properties of this general family of

operators. As a first step we introduce q + 2 test functions connected with the multivariate
Korovkin theorem. The constant function on Hq of the constant value 1 is denoted by 1 .
For each i ∈ {1, 2, . . . , q} we denote by pri : Hq → R the i-th canonical projection, which is
given by

pri(x) = xi for every x ∈ Hq.

Setting πq =
q

∑
i=1

pr2
i , it is clear that πq(x) represents the Euclidean inner product in

Hq of x with itself. We specify that for any vector v ∈ Rq, its i-th component will also be
denoted by pri(v).

Further, C(Hq) stands for the space of all real-valued continuous functions on Hq
endowed with the usual norm of the uniform convergence ‖ · ‖, ‖ f ‖ = sup

x∈Hq

| f (x)|.

Theorem 6. Let Ln, n ∈ Nq, be the operators defined by (30). Set

αn,i(x) =
1

pri(n)

pri(n)

∑
j=1

hi,j(pri(x))− pri(x), 1 ≤ i ≤ q. (31)

If
lim

n→∞
‖αn,i‖ = 0, 1 ≤ i ≤ q, (32)

then, for any f ∈ C(Hq),
lim

n→∞
‖Ln f − f ‖ = 0 (33)

takes place.
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Proof. Based on the relations (29), we deduce that the defined operators are linear and
positive. For proving (33) we resort to the multivariate Korovkin theorem. In this frame we
are reminded that

Kq = {1, pr1, . . . , prq, πq} (34)

is a Korovkin system of the test functions in C(Hq), see, e.g., [13], Theorem 4.1. Mentioning
that the q-dimensional Korovkin criterion was first reached by Šaškin [14], we have to
prove the following relations

lim
n→∞

‖Ln1− 1‖ = 0, (35)

lim
n→∞

‖Ln pri − pri‖ = 0 for i = 1, q, (36)

lim
n→∞

‖Lnπq − πq‖ = 0. (37)

Since for any nν ∈ N, based on (29), we obtain Pnν(xi; 1) = 1, i = 1, q, it follows that
Ln1 = 1 and (35) is fulfilled.

Further, taking in view the definition of Ln operators and inspired by (7), for each
i = 1, 2, . . . , q, and x ∈ Hq, we obtain

(Ln pri)(x) =
ni

∑
ki=0

ani ,ki
(xi)

ki
ni

=
1
ni

∂Pni (xi; y)
∂y

∣∣∣
y=1

=
1

pri(n)

pri(n)

∑
j=1

hi,j(pri(x)).

Consequently, using the notation from (31), we obtain

|Ln pri(x)− pri(x)| = |αn,i(x)| ≤ ‖αn,i‖, 1 ≤ i ≤ q, (38)

and relation (32) leads us to (36).
Further, we prove the fulfilling of the relation (37). Based on (8) we have for each

i = 1, q

(Ln pr2
i )(x)− pr2

i (x) = α2
n,i(x) +

1
pr2

i (n)

pri(n)

∑
j=1

hi,j(xi)(1− hi,j(xi))

+ 2pri(x)αn,i(x), x ∈ Hq.

Since hi,j([0, 1]) ⊆ [0, 1], j ∈ N, i = 1, q, we can write

|(Ln pr2
i )(x)− pr2

i (x)| ≤ α2
n,i(x) +

1
ni

+ 2αn,i(x), x ∈ Hq.

Consequently,

|(Lnπq)(x)− πq(x)| ≤
q

∑
i=1

(‖αn,i‖2 + 2‖αn,i‖) + ‖τn‖l1 , (39)

where τn =

(
1
n1

, . . . ,
1
nq

)
and ‖ · ‖l1 stands for the l1 norm (or so-called taxicab norm)

defined as the simple sum of the absolute values of the τn vector components. The
assumption (32) guarantees the validity of the relation (37) and the proof is ended.

In order to complete the study of this sequence of multidimensional operators, we
must establish the error of approximation. We achieve this task by involving the test
functions from the set Kq, as defined in (34). For the q-dimensional case, Censor [15]
obtained in a general case such an estimation with the help of the following modulus

ω( f ; δ) = max
x,y∈X

d(x,y)≤δ

| f (x)− f (y)|, δ ≥ 0, (40)
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where X ⊆ Rq is a convex compact, d(·, ·) stands for the Euclidean metric in Rq and f is a
real-valued function continuous on X.

Theorem 7. Let Ln, n ∈ Nq, be the operators defined by (30). The following relation

‖Ln f − f ‖ ≤ 2ω( f ; δn)

holds, where ω is given by (40), αn,i, i = 1, q, are defined by (31) and

δ2
n =

q

∑
i=1

(‖αn,i‖2 + 4‖αn,i‖) + ‖τn‖l1 . (41)

Proof. The statement is based on [15], Theorem 1, which says: if Λn is a positive linear
operator on C(X) such that Λn1 = 1, then

‖Λn f − f ‖ ≤ 2ω( f ; µn)

holds, where µ2
n =

∥∥∥∥∥Λn

(
q

∑
k=1

(ξk − xk)
2; x1, . . . , xq

)∥∥∥∥∥. Here Λn operates on a function of

ξ1, . . . , ξq and the resulting function is evaluated at the point (x1, . . . , xq). Above we used
the notations and the explanations given in [15]. Taking in view our notations, for the
operators Ln we obtain

Ln

(
q

∑
i=1

(pri − xi)
2; x

)
= (Lnπq)(x)− 2

q

∑
i=1

xi(Ln pri)(x) +
q

∑
i=1

x2
i

= (Lnπq)(x)− πq(x)− 2
q

∑
i=1

xi(Ln pri)(x) +
q

∑
i=1

x2
i .

Consequently, appealing also to relations (39) and (38), we deduce∥∥∥∥∥Ln

(
q

∑
i=1

(pri − xi)
2; ·
)∥∥∥∥∥ ≤ ‖Lnπq − πq‖+ 2

q

∑
i=1
‖Ln pri − pri‖

≤
q

∑
i=1

(‖αn,i‖2 + 4‖αn,i‖) + ‖τn‖l1 .

Defining δ2
n as in (41), the conclusion follows.

Remark 5. If condition (32) is valid and noting the definition of the vector τn, we deduce
lim

n→∞
δn = 0 in Theorem 7.

5. Conclusions

Starting from a brief presentation of the Lototsky–Bernstein discrete operators, this
paper has proposed two targets.

An extension of these operators on a hypercube included in Rq was achieved and the
study of convergence with the determination of an upper limit of the error of approximation
was obtained. At the same time, an integral Durrmeyer-type variant of one-dimensional
operators was introduced. The new class is linear and positive. The approximation
properties presented and proved in this paper apply to functions belonging to the space
C([0, 1]). The error of approximation was estimated by using both K-functionals and
moduli of smoothness of first- and second-order. The least concave majorant of the modulus
of smoothness ω( f ; ·) was also involved.

Our main results are concentrated in seven theorems stated and proved in Sections 3 and 4.
We specify that the constructions of integral operators of the Durrmeyer-type have caught
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the attention of many researchers in the field of Approximation Theory. Their study involves
different spaces of functions and generalizations in various directions, revealing some of
their essential properties. We support this statement by indicating some significant papers,
randomly selected, published in the years 2020–2021, see [16–20]. Regarding the extension in
multidimensional Euclidean space, what we have achieved in Section 4 can be found for many
other linear positive operators. For the sake of edification, we recall paper [21] published this
year, which targets Landau operators.

A weak point of the paper is that the construction of these integral operators was based
on an unspecified system of functions hn ∈ C([0, 1]), n ∈ N. This involves formulating the
results at a more general level, without specific issues. By identifying the above-mentioned
functions by particular laws, stronger results can be obtained but, following this route,
the general properties of the Durrmeyer–Lototsky operators are not well highlighted. For
example, in [5], after systematically studying general properties of Kantorovich–Lototsky
operators, the authors considered the following functions as two particular examples:

hn(x) =
nαx

nα + x
and hn(x) =

(ln n)αx
(ln n)α + x

, n ∈ N, x ∈ [0, 1],

where α is a positive parameter.
Finally we mention that we wanted the presentation to be self-contained such that it

is accessible to a wide audience.
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