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Abstract: A molecular-statistical theory of coil-rod–coil triblock copolymers with orientationally
ordered rod-like fragments has been developed using the density functional approach. An explicit
expression for the free energy has been obtained in terms of the direct correlation functions of the
reference disordered phase, the Flory–Huggins parameter and the potential of anisotropic interaction
between rigid rods. The theory has been used to derive several phase diagrams and to calculate
numerically orientational and translational order parameter profiles for different polymer architecture
as a function of the Flory–Huggins parameter, which specifies the short-range repulsion and as
functions of temperature. In triblock copolymers, the nematic–lamellar transition is accompanied by
the translational symmetry breaking, which can be caused by two different microscopic mechanisms.
The first mechanism resembles a low dimensional crystallization and is typical for conventional
smectic liquid crystals. The second mechanism is related to the repulsion between rod and coil
segments and is typical for block copolymers. Both mechanisms are analyzed in detail as well
as the effects of temperature, coil fraction and the triblock asymmetry on the transition into the
lamellar phase.

Keywords: phase transitions; block copolymers; liquid crystals; symmetry breaking

1. Introduction

Rod–coil block copolymers attract significant attention as they combine anisotropic
properties of smectic liquid crystals and microphase-separation properties of coil–coil
block copolymers. Their molecules contain both flexible chains and rod-like segments of
different chemical structure [1–6] and exhibit several anisotropic phases characterized by
translational and orientational ordering [7–9]. Rod–coil block copolymers are promising
polymer materials and can be applied, for example, in polymer photovoltaics [1,10,11]
and LEDs [12–14]. From the materials science point of view, triblock copolymers are of
particular interest because they possess more flexible molecular architecture. For example,
it may be possible to tune the properties of these materials by changing the parameters
of the third block. The overall structure of coil–rod–coil triblock copolymers is most
reminiscent of the conventional liquid crystals, which usually possess the rod-like rigid
core and two flexible tails. At the same time, the triblock macromolecules are significantly
larger than typical low molecular weight mesogenic molecules, and their flexible chains
are substantially longer.

Coil–rod–coil triblock copolymers may exhibit several different phases, but the most
common one is the orthogonal lamellar phase, which is similar to the smectic A liquid
crystal phase. Although it has the same symmetry as the smectic A phase, the mechanism
of the translational symmetry breaking transition is apparently very different. Indeed, the
classical statistical theory of conventional smectic liquid crystals assumes that the transition

Symmetry 2021, 13, 1834. https://doi.org/10.3390/sym13101834 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0461-243X
https://orcid.org/0000-0002-8119-4008
https://doi.org/10.3390/sym13101834
https://doi.org/10.3390/sym13101834
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13101834
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13101834?type=check_update&version=2


Symmetry 2021, 13, 1834 2 of 13

into the smectic phase is similar to the effective one-dimensional crystallization determined
by anisotropic interaction between orientationally ordered molecules [15–17]. On the other
hand, one may consider another mechanism of translational symmetry breaking, which
is determined by the microphase separation. This is a predominant mechanism of trans-
lational ordering in lyotropic liquid crystals and block copolymers. In block copolymers,
such a local separation is related to the repulsion between monomers of different kinds,
and the regular layered structure appears mainly for entropic reasons. At the same time,
an element of microphase separation (more exactly the nanoscale segregation) between
different molecular fragments (i.e., between rigid cores and flexible tails) may also be
important in thermotropic liquid crystals. The corresponding molecular theory, which
takes both mechanisms into account, has been developed in Reference [18]. It is reasonable
to assume that the properties of rod–coil block copolymers are mainly determined by
the separation effect. On the other hand, the orientational interaction between rod-like
fragments of the macromolecules may be relatively large, and hence the “crystallization”
mechanism of the translational symmetry breaking may also be important in these systems.
Thus, it is important to assess the relative role of these two mechanisms in coil–rod–coil
triblock copolymers, which is the primary goal of this paper.

One notes that the triblock macromolecules can be in the looped and bridged con-
figurations in the lamellar phase. In the looped configuration, the end coil chains reside
in the same layer, while in the bridged one, the end chains reside in two different layers
separated by the layer occupied by rods. The presence of such bridges strongly affects the
mechanical rigidity of the coil–rod–coil block copolymer materials including, for example,
thermoplastic elastomers.

The theory of triblock copolymers is mainly based on the Landau–de Gennes approach
to the theory of phase transitions [19–21] and is mainly limited to coil–coil triblock copoly-
mers. In this approach, the density–density correlation functions of ideal Gaussian chains
are used to calculate the parameters of the theory. The advantage of this approach is in its
generality, and it has been used to describe a number of non-conventional morphologies.
One notes, however, that in this theory, the equilibrium inhomogeneous densities contain
only one Fourier harmonic, and the amplitude of this harmonic is assumed to be small.
Thus, the approach is justified mainly in the region of the phase diagram, which is close to
the isotropic phase, i.e., for weak segregation.

A statistical theory of rod–coil diblock copolymers has also been developed in the
framework of the SCFT theory [22–27]. In this approach, the free energy of a copolymer
macromolecule in a self-consistent field is evaluated numerically by calculating the cor-
responding path integral or by solving numerically the generalized diffusion equations
for semi-flexible chains. In the past decades, the SCFT theory based on the generalized
diffusion equations has been repeatedly applied to rod–coil diblock copolymers [28–37].
One notes that in the system of long chains with rigid rod fragments characterized by
both orientational and translational degrees of freedom, the SCFT theory remains com-
putationally challenging even taking into account recently developed novel numerical
algorithms [27,38]. This may explain why the existing theory of rod–coil triblock copoly-
mers [39,40] does not account for the orientational interaction between rigid rod segments
and their orientational ordering.

Recently, the authors have developed a novel molecular-statistical theory of rod–coil
diblock copolymers [41–43] employing the same general density functional theory, which
has been used before in the description of nematic and smectic liquid crystals [18,44–48].
This theory is based on the free energy functional, which depends on the one-particle
distribution functions of rod and coil segments and is not expanded in powers of the
order parameters. The equilibrium distribution functions, which are obtained by the free
energy minimization, depend nonlinearly on the order parameters and are characterized
by the infinite set of Fourier harmonics. As a result, the molecular theory is expected
to be approximately valid also in the regions far from the isotropic phase, when the
segregation is relatively strong. In the region close to the disordered phase, the theory can
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be reduced to the corresponding Landau–de Gennes theory [42], as it employs the same
correlation functions calculated for Gaussian chains. Such a molecular-statistical theory is
computationally simpler than the full SCFT theory (being not so precise, however) and can
be efficiently used to evaluate numerically all order parameter profiles.

The paper is arranged as follows. In Section 2, we derive a molecular theory of coil–
rod–coil triblock copolymers and consider the corresponding free energy functional. In
Section 3, density–density correlation functions between different segments of triblock
copolymers are considered in detail together with the corresponding direct correlation
functions. The results of numerical calculations of the order parameters and the corre-
sponding phase diagrams are presented in Section 4 followed by the discussion. Finally,
Section 5 contains our conclusions.

2. Molecular Theory of Coil–Rod–Coil Triblock Copolymers

A molecular theory of coil–rod–coil triblock copolymers can be developed using the
general density functional theory, which has been applied before to nematic and smectic
liquid crystals [44–49]. In such a theory, the free energy F of a multicomponent polymer
system depends on one-particle number densities ρν(r, ω), which depend both on the
positional r and orientational ω degrees of freedom of the segments of type ν and which
satisfy the normalization condition

∫
ρν(r, ω)drdω = fν M, where fν is the relative fraction

of segments of type ν, while M is the number of macromolecules.
In the case of coil–rod–coil triblock copolymers, the free energy depends on the density

of rod segments ρr(r, a), where the unit vector a is parallel to the rigid rod, and on the
densities ρc1(r), ρc2(r) of the coil segments c1 and c2, which belong to the two different
coils within one triblock copolymer chain. Triblock copolymer chains are characterized by
the relative molar fractions fr, fc1 and fc2, which are related as fr + fc1 + fc2 = 1, and the
asymmetry of the triblock chain is described by the ratio fc1/ fc2.

Using the fact that the second derivatives of the free energy functional with respect to
one particle densities are proportional to the corresponding direct correlation functions
for different segments, one can approximately express the free energy of a given phase by
expanding it around the value in the isotropic phase.

Similarly to the statistical theory of rod–coil diblock polymers [41–43], such an expan-
sion can be performed in the following way:

βF = βFI + ∑
ν=r,c1,c2

∫
ρν(x)[ln ρν(x)− 1]dx + ∑

i=1,2

∫
χ(r12)δρr(x1)δρci(r2)dx1dr2

− β

2

∫
J(r12)P2(a1 · a2)δρr(x1)δρr(x2)dx1dx2

− 1
2 ∑

ν,η=r,c1,c2

∫
Cν,η(x1, x2)δρν(x1)δρη(x2)dx1dx2, (1)

where β = (kBT)−1, and where the variable x = (r, a) is assigned to the rod segments and
x = r to the coil segments. Here FI is the free energy of the disordered reference phase,
and δρν = ρν − ρ0

ν is the deviation of the one-particle density from the average density
in the disordered phase. The functions Ccicj(r12), Crci(r12, a1) and Crr(r12, a1, a2) are the
direct correlation functions between coil–coil, rod–coil and rod–rod segments, respectively,
defined in the reference isotropic phase without interaction between different chains. In this
free energy, the mean-filed approximation is employed to take into account the interaction
between different chains. These interactions include the rod–coil repulsion determined by
the Flory–Huggins parameter χ, and the Maier–Saupe type interaction between rigid rods
J(r12)P2(a1 · a2).

General expressions for the one-particle densities ρci(r1) and ρr(r, a) can be obtained
by minimization of the free energy functional (1):
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ρci(r1) = Z−1
ci exp

{
∑

j

∫
Ccicj(r12)δρcj(r2)dr2

−
∫
[χ(r12)− Crci(r12, a)]δρr(r2, a)dr2da

}
(2)

ρr(r1, a) = Z−1
r exp

{∫
Crr(r12, a)δρr(r2, a)dr2

−∑
i

∫
[χ(r12)− Crci(r12, a)]δρci(r2)dr2

+β
∫

J(r12)P2(a · a2)δρr(r2, a2)dr2da2

}
(3)

where i, j = 1, 2, while Zci and Zr are the normalization constants.
Densities of all segments in the lamellar phase are periodic functions of the position

along the lamellae normal. Thus the effective “mean-field potentials” in Equations (2) and (3)
are also periodic and can be expanded in Fourier series keeping the first harmonic:∫

Ccicj(r12)δρcj(r2)dr2 = ρ0 fcjψcjCcicj(q) cos(q · r1), (4)

∫
Crr(r12, a)δρr(r2, a)dr2

= ρ0 frψr

[
C(0)

rr (q) +
1
2

C(2)
rr (q)P2(a · k)

]
cos(q · r1)

+
1
2

ρ0 frσC(2)
rr (q) cos(q · r1), (5)

∫
Crci(r12, a)δρci(r2)dr2 = ρ0 fciψci

[
C(0)

rci (q) + C(2)
rci (q)P2(a · k)

]
cos(q · r1), (6)

∫
Crci(r12, a)δρr(r2, a)dr2da = ρ0 fr cos(q · r1)

[
ψrC(0)

rci (q) + σC(2)
rci (q)

]
, (7)

and

∫
J(r12)P2(a1 · a2)δρr(r2, a2)dr2da2 = ρ0 fr[J0S ++J2σ cos(q · r1)]P2(a · k). (8)

where k = q/q is the unit lamellae normal, and the Fourier transforms of the correlation
functions between rod segments and rod and coil segments depend on the orientation of
the rod with respect to k. Therefore, while deriving Equations (4)–(7), we have used the
expansion in Legendre polynomials P2n(k · a) [41,42] taking into account the first few terms:

Crci(q, a) ≈ C0
rci(q) + C(2)

rci (q)P2(a · k), (9)

Crr(q, a1, a2) ≈ C0
cr(q) +

1
2

C(2)
rr (q)P2(a1 · k) +

1
2

C(2)
rr (q)P2(a2 · k), (10)

where the symmetry of the correlation function is maintained. The correlation func-
tion between rod segments should be substituted into the “mean-field potentials” with
a1 = a2 = a, because all segments of the same rigid rod are parallel.

As a result of the straightforward expansions, Equations (4)–(8) depend on a finite set
of order parameters:
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S = 〈P2(a · k)〉r =
1

M fr

∫
δρr(r, a)P2(a · k)drda, (11)

ψr = 〈cos(qi · r)〉r =
1

M fr

∫
δρr(r, a) cos(q · r)drda, (12)

ψci = 〈cos(qi · r)〉ci =
1

M fc

∫
δρci(r) cos(q · r)dr, (13)

σ = 〈P2(a · k) cos(q · r)〉r =
1

M fr

∫
δρr(r, a)P2(a · k) cos(q · r)drda, (14)

Here, S is the orientational (nematic) order parameter, ψr and ψci are the translational order
parameters of rod and coil segments, respectively, and the order parameter σ characterizes
both translational and orientational ordering of rod segments.

Substitution of Equations (4)–(8) into Equations (2) and (3) and then into Equation (1)
yields an approximate expression for the free energy of a coil–rod–coil triblock copolymer:

βF/V =
1
2

ρ2
0σ
[

f 2
r C(2)

rr (q)ψr + 2 fc1 frC(2)
rc1 (q)ψc1 + 2 fc2 frC(2)

rc2 (q)ψc2

]
+

1
2

βρ2
0S2 f 2

r J0 +
1
2

βρ2
0 f 2

r J2σ2

+
1
2

ρ2
0 f 2

r C(0)
rr (q)ψ2

r +
1
2

ρ2
0 f 2

c1C(0)
c1c1(q)ψ

2
c1 +

1
2

ρ2
0 f 2

c2C(0)
c2c2(q)ψ

2
c2 + ρ2

0 fc1 fc2C(0)
c1c2(q)ψc1ψc2

+ ρ2
0 fr fc1C(0)

rc1 (q)ψrψc1 + ρ2
0 fr fc2C(0)

rc2 (q)ψrψc2 − ρ2
0 fr fc2χψc2ψr − ρ2

0 fr fc1χψc1ψr

− ρ0 fr ln Zr − ρ0 fc1 ln Zc1 − ρ0 fc2 ln Zc2 (15)

where V is the polymer volume and

Zc1 =
∫

dz exp
[
ρ0 cos(qz)

(
fc1C(0)

c1c1(q)ψc1 + fc2C(0)
c1c2(q)ψc2

+ frC(2)
rc1(q)σ + frC(0)

rc1(q)ψr − frχψr

)]
, (16)

Zc2 =
∫

dz exp
[
ρ0 cos(qz)

(
fc2C(0)

c2c2(q)ψc2 + fc1C(0)
c1c2(q)ψc1

+ frC(2)
rc2(q)σ + frC(0)

rc2(q)ψr − frχψr

)]
, (17)

Zr =
∫

dzda exp[ρ0 cos(qz)

×
(

frC(0)
rr (q)ψr + fc1C(0)

rc1(q)ψc1 + fc2C(0)
rc2(q)ψc2 − fc1χψc1 − fc2χψc2

)
+ ρ0 cos(qz)P2(a · k)

(
fc1C(2)

rc1(q)ψc1 + fc2C(2)
rc2(q)ψc2 +

1
2

frC(2)
rr (q)ψr + frβJ2σ

)
+

1
2

cos(qz)ρ0 frC(2)
rr (q)σ+ρ0 frβJ0SP2(a · k)], (18)

where J0 > 0, χ > 0 and the z-axis points along the wavevector q.
In the general case, all orientational and translational order parameters can be calcu-

lated numerically by the free energy minimization. However, simultaneously, one has to
take into consideration the polymer incompressibility, which plays the role of a constraint
during the minimization process. In the first approximation, the incompressibility can be
accounted for by supplementing the free energy with the following term (15):

δF = λ

[∫
cos(q · r)ρr(r, a)drda +

∫
cos(q · r)ρc1(r)dr +

∫
cos(q · r)ρc2(r)dr

]
, (19)
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where λ is the Lagrange multiplier (see [42] for more detail). In practice, λ is calculated
numerically using the equations for the translational order parameters before the total
free energy is evaluated. After that, the free energy is minimized as a function of the
order parameters.

3. Direct and Total Correlation Functions of Triblock Copolymers

The free energy of the lamellar phase depends on the Legendre polynomial expansion
coefficients of the direct correlation functions of the system, which are not known explicitly.
At the same time, the direct correlation function of a simple fluid is determined by the
Ornstein–Zernike equation:

h2(x1, x2) = C2(x1, x2) +
∫

C2(x1, x3)h2(x3, x2)ρ(x3)dx3, (20)

where the variable x denotes both the orientation and the position degrees of an anisotropic
particle and h2(x1, x2) is the total pair correlation function, which can be expressed in terms
of the pair distribution function f2(x1, x2) = f1(x1) f1(x2)[1 + h2(x1, x2)].

Similarly to the case of rod–coil diblock copolymers [41,42], the Ornstein–Zernike
equations for coil–rod–coil triblock copolymers are expressed as:

hν,η(r1, r2, a1, a2) = Cν,η(r1, r2, a1, a2)+

∑
γ

∫
Cν,γ(r1, r3, a1, a3)hγ,η(r2, r3, a2, a3)ρη(r3, a3)dr3da3, (21)

where ν, η, γ = (r, c1, c2) and where hν,η(r1, r2, a1, a2) are the corresponding total pair
correlation functions.

Taking into account that the equilibrium densities of all segments are constants in the
isotropic phase, the Fourier transforms of the direct correlation functions satisfy the equation:

hν,η(q, a) = Cν,η(q, a) + ργhν,γ(q, a)Cγ,η(q, a), (22)

where all terms depend on the orientation of the rigid rod a.
The solution of this equation enables one to express the direct pair correlation functions

in terms of the total ones:

Cν,γ(q, a) = hν,η(q, a)
[
δγ,η + ργhγ,η(q, a)

]−1

= ρ−1
ν δν,γ − [ρνδν,γ + ρνργhν,γ(q, a)]−1. (23)

At the same time, the density–density correlation function of coil–rod–coil triblock copoly-
mers is defined as the following ensemble average:

Gν,γ(x1, x2) = 〈δρν(x1)δργ(x2)〉, (24)

where δρν(x) = ρM
ν (x) − ρν and where ρν is the corresponding average density. The

microscopic number density ρM
ν (x) is defined by the following general expression:

ρM
ν (x) = ∑

i
δ(x− xi), (25)

where xi denotes the orientational and translational coordinates of the molecule i.
Taking into account that 〈ρM

ν (x)〉 = ρν the density correlation function between the
segments of types ν and γ can be expressed as:

Gν,γ(r12, a) = ρνδν,γδ(r12) + ρνργhν,γ(r12, a). (26)

Using Equations (23) and (26) it is possible to obtain a simple relationship between the
density–density correlation functions Gν,γ(r12, a) and the corresponding direct correlation
functions Cν,γ(q, a):
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Cν,γ(q, a) = ρ−1
ν δν,γ − Gν,γ(q, a)−1, (27)

which allows obtaining the direct correlation functions by inverting the matrix of the
density–density correlation functions.

In a particular case of symmetric triblock copolymers, Gν,γ(q, a) is a symmetric matrix:

Ĝ(q, a) =

 Grr(q, a) Grc(q, a) Grc(q, a)
Grc(q, a) Gcc(q) Gc1c2(q)
Grc(q, a) Gc1c2(q) Gcc(q)

. (28)

The determinant of this matrix reads as:

det Ĝ = (Gcc − Gc1c2)[Grr(Gcc + Gc1c2)− 2G2
rc], (29)

and the inverse of (28) is expressed as:

[Ĝ]−1
rr =

(Gcc + Gc1c2)/2
Grr(Gcc + Gc1c2)/2− G2

rc
, (30)

[Ĝ]−1
rc1 = [Ĝ]−1

rc2 = − Grc/2
Grr(Gcc + Gc1c2)/2− G2

rc
, (31)

[Ĝ]−1
c1c1 = [Ĝ]−1

c2c2 =
GrrGcc − G2

rc
(Gcc − Gc1c2)[Grr(Gcc + Gc1c2)− 2G2

rc]
, (32)

[Ĝ]−1
c1c2 = [Ĝ]−1

c2c1 = − GrrGc1c2 − G2
rc

(Gcc − Gc1c2)[Grr(Gcc + Gc1c2)− 2G2
rc]

. (33)

The analytical expression for the coil–coil density correlation function of long Gaussian
chains has been obtained by a number of authors [50–52] including the original paper by
Leibler [50]:

Gcc(q) = ρ0
1
N

∫ N fc

0

∫ s

0
exp[(s− s′)q2a2/6]dsds′

= ρ0N
2
x2 ( fcx + exp(− fcx)− 1), (34)

where N is the number of monomers in the chain, fc is the fraction of coil monomers, a is
the monomer radius, x = q2Na2/6 = q2R2 and fcN � 1.

Density correlation functions for rod–coil diblock copolymers, averaged over all
orientations, have been derived by Reenders and ten Brinke [53], and the non-averaged
functions Grc(q, a) and Grr(q, a), which depend on the rigid rod orientation can be derived
in a similar way using the general formulae presented in [53]. For example, the correlation
function between rod and coil segments can be written in the form:

Grc(q, a) = ρ0N fr fcK(1)
R (y)K(1)

c (x), (35)

where

K(1)
c (x) =

1
x
[1− exp(−x)], (36)

and

K(1)
R (y) = Re

1
N fr

∫ N fr

0
exp[i(q · a)s]ds =

sin(y)
y

, (37)

where y = N frqa(k · a) while fr is the fraction of rod monomers.
The density correlation function between rod monomers can be expressed as:
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Grr(q, a) = ρ0
1
N

∫ N fr

0

∫ N fr

0
exp[i(s− s′)qa(q · a)]dsds′ = 2ρ0N f 2

r
(1− cos y)

y2 . (38)

4. Results and Discussion. Phase Diagrams of Symmetric and Asymmetric
Triblock Copolymers

In the general case of asymmetric coil–rod–coil copolymers with variable lamellar
periodicity, we minimize the free energy (15) with the Lagrange term (19) by varying
all order parameters S, ψc1, ψc2 and σ, as well as the wavenumber q. The latter cannot
be simply included as another minimization variable, since the correlation functions are
obtained by the matrix inversion and eventually diverge at certain values of q. Therefore,
we perform the minimization in two steps: firstly the free energy is minimized for a certain
fixed q and then q is varied to obtain the lamellar state with the lowest possible free energy.

In this way, one obtains the phase diagram and the order parameter profiles of a
symmetric coil–rod–coil triblock copolymer shown in Figure 1 keeping fc1 = fc2 and
varying the dimensionless temperature τ = kBT/J0 and the total coil fraction fc = fc1 +
fc2. At the next stage, we derive in a similar manner a phase diagram for asymmetric
copolymers with fc1 = 2 fc2, and present it together with typical order parameter profiles
in Figure 2.

Comparing Figures 1 and 2 demonstrates that breaking the polymer molecule symme-
try by changing the ratio of the coil fragments produces marginal effect on the polymer
thermodynamics. In particular, it does not change the phase diagram, the order parameters
S and σ remain unaffected, while the coil positional order parameters ψc1 and ψc2 experi-
ence a weak splitting. With the decreasing temperature, both symmetric and asymmetric
coil–rod–coil triblock copolymers undergo a transition into the nematic phase and then
a transition from the nematic phase into the lamellar one. This is similar to a typical
phase sequence observed in conventional liquid crystals. Both transition temperatures also
increase with the decreasing coil fraction fc. One notes that in the lamellar phase, the order
parameter S is large and weakly temperature dependent, i.e., the rods are characterized by
strong orientational order.
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Figure 1. Phase diagram (a) and order parameters (b,c) of a symmetric triblock copolymer with
fc1 = fc2, χ = 3 and N = 10 obtained by a consequent minimization of the free energy by varying the
order parameters and the wavenumber. The temperature and concentration order parameter profiles
are presented for two cross-sections of the diagram including the vertical dashed line ( fc = 0.8)
and the horizontal dotted one (τ = 0.03). The sign of the order parameters ψc1,2 is reversed for
presentation convenience.
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Figure 2. Phase diagram (a) and order parameters (b,c) of an asymmetric triblock copolymer with
fc1 = 2 fc2, χ = 3 and N = 10 obtained by a consequent minimization of the free energy by varying the
order parameters and the wavenumber. The temperature and concentration order parameter profiles
are presented for two cross-sections of the diagram including the vertical dashed line ( fc = 0.8)
and the horizontal dotted one (τ = 0.03). The sign of the order parameters ψc1,2 is reversed for
presentation convenience.

For a better insight into the role of the polymer molecule asymmetry, we study the
phase behavior of a coil–rod–coil triblock copolymer keeping the total fraction of coil
fragments fixed and varying the ratio of the lengths of coil fragments, which is effectively
expressed by the ratio of their partial fractions fc1/ fc2. The corresponding phase diagram is
shown in Figure 3 together with typical profiles of the order parameters along the indicated
cross sections of the diagram. One can readily see that the molecular asymmetry has a
negligible effect on the phase diagram and leaves unaffected the order parameters S and
σ. At the same time, the increase in the ratio fc1/ fc2 noticeably suppresses the positional
order parameter ψc2, which is related to a decrease in the coil length. The order parameter
ψc1 of the opposite coil is then moderately enhanced.
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Figure 3. Phase diagram (a) and order parameters (b,c) of a triblock copolymer with variable
molecular asymmetry fc1/ fc2. The total coil fraction is kept fixed fc1 + fc2 = 0.8, N = 10, and χ = 3.
Temperature variation of the order parameters (b) has been calculated along the vertical dashed
line ( fc1/ fc2 = 3.0) across the phase diagram, and the dependence of the order parameters on the
molecular asymmetry fc1/ fc2 (c) has been calculated along the horizontal dotted (τ = 0.02) line. The
sign of the order parameters ψc1,2 is reversed for presentation convenience.
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Finally, to study the role of the Flory–Huggins parameter χ in the theory of coil–rod–
coil triblock copolymers, we consider the symmetric system with fixed fc1 = fc2 = 0.4 and
obtain the T – χ phase diagram presented in Figure 4.

One notes that all typical order parameter profiles presented in Figures 1, 2 and 4
indicate that the decrease in T and fc or the increase in χ promote the stability of the
lamellar phase in comparison to the highly ordered nematic phase. One notes also that
the effect of the phase transition into the lamellar phase on the value of the nematic order
parameter S is very weak.
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Figure 4. Phase diagram (a) and order parameters (b,c) of a symmetric triblock copolymer with
fc1 = fc2 = 0.4 and N = 10 obtained by a consequent minimization of the free energy by varying the
order parameters and the wavenumber. Temperature variation of the order parameters (b) has been
calculated along the vertical dashed line (χ = 4.0) across the phase diagram, and the dependence of
the Flory-Huggins parameter χ (c) has been calculated along the horizontal dotted (τ = 0.03) line.
The sign of the order parameters ψc1,2 is reversed for presentation convenience.

To summarize, a number of phase diagrams in terms of the temperature T, the total
fraction of coil segments fc, the repulsion parameter χ and the asymmetry of the triblock
macromolecule have been derived, and the orientational and translational order parameters
have been numerically calculated for several cross-sections of these diagrams. The results
of the theory indicate that the nematic phase-lamellar transition strongly depends both on
temperature and on the Flory–Huggins parameter χ. One concludes that there are two
different microscopic mechanisms of the translational symmetry breaking in coil–rod–coil
triblock copolymers, which determine the transition into the orthogonal lamellar phase.
The first mechanism is related to the short range repulsion between rod and coil segments,
which leads to the corresponding microphase separation specific for block copolymers.
The second mechanism is determined by the orientational attraction interaction potential
between rigid rods, which is the predominant mechanism of smectic ordering in low molec-
ular weight liquid crystals composed of rod-like molecules. Although certain microphase
separation between rigid cores and flexible tails is also present in conventional liquid
crystals, it is not a major mechanism of stabilization of smectic phases unless the molecules
possess a specific structure [18,46,54–57]. One notes also that in the nematic phase, the
order parameter S rapidly increases on the approach to the transition into the lamellar
phase. Thus, the nematic-lamellar transition occurs in the system of nearly perfectly or-
dered rigid blocks and hence the effect of temperature on the transition is not related to the
temperature variation of the nematic order.

It is also remarkable that the lamellar phase exhibited by coil–rod–coil triblock copoly-
mers is accompanied by a relatively weak microphase separation. Indeed, the rigid rods
are characterized by high values of the orientational and translational order parameters as
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well as the sufficiently high value of the order parameter σ, which specifies simultaneous
orientational-translational ordering. Thus, the rods form a well-defined layer structure. At
the same time, the translational order parameter of the coil segments is relatively low, which
indicates that they partially penetrate into the rigid blocks. This model is qualitatively
confirmed by the temperature–concentration phase diagram, where the nematic–lamellar
transition temperature strongly decreases with the increasing coil fraction fc. On the other
hand, the transition temperature practically does not depend on the triblock asymmetry
specified by the ratio of the fractions of the two different coils fc1/ fc2. Thus, the effect of
triblock asymmetry on the properties of the lamellar phase deserves further experimental
and theoretical research including, in particular, the study of how it affects the mechanical
stability of the corresponding copolymer materials.

5. Conclusions

We have developed a molecular theory of phase transitions and liquid crystal ordering
in coil–rod–coil triblock copolymers, employing the same density functional theory that
has been used before in our theoretical studies of rod–coil diblock copolymers [41,42]. The
expression for the free energy of the system has been obtained in terms of both orientational
and translational order parameters, the Flory–Huggins parameter χ, direct correlation
functions of the isotropic phase, and the potential of the orientational interaction between
rod segments. The direct correlation functions between different segments of the triblock
chain have been analytically related to the corresponding density correlation functions,
which are calculated using the model of two Gaussian chains connected to a rigid rod.
All orientational and translational order parameters of the triblock copolymer have been
calculated numerically by free energy minimization also using the Lagrange multiplier
technique to account for the polymer incompressibility. The results of the molecular theory
indicate that there are two microscopic mechanisms of the translational symmetry breaking
in coil–rod–coil copolymers, which are related to the microphase separation between rod
and coil segments and to the attraction interaction between rigid rods, respectively. Both
mechanisms contribute to the stability of the lamellar phase.
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