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Abstract: We review the hot QCD transition with varying number of flavours, from two till the onset
of the conformal window. We discuss the universality class for N f = 2, along the critical line for two
massless light flavours, and a third flavour whose mass serves as an interpolator between N f = 2
and N f = 3. We identify a possible scaling window for the 3D O(4) universality class transition, and
its crossover to a mean field behaviour. We follow the transition from N f = 3 to larger N f , when
it remains of first order, with an increasing coupling strength; we summarise its known properties,
including possible cosmological applications as a model for a strong electroweak transition. The
first order transition, and its accompanying second order endpoint, finally morphs into the essential
singularity at the onset of the conformal window, following the singular behaviour predicted by the
functional renormalisation group.

Keywords: strong interactions; critical phenomena; conformal field theory; quark gluon plasma

1. Phases of QCD and Critical Behaviour

Strong interactions have different phases in the space of the number of flavours N f ,
quark mass, temperature [1,2]. At low temperatures and low number of flavours their
chiral symmetry is spontaneously broken. The hot symmetric phase is known as quark
gluon plasma; in the chiral limit the phase transitions may be of a second order for N f = 2,
probably in the universality class of the three dimensional O(4) ferromagnet. The addition
of a third flavour to the N f = 2 theory produces the so-called N f = 2 + 1 theory, which
interpolates between N f = 2 and N f = 3 [3]. The strength of the transition increases with
N f [4], and it is unclear when it turns into a first order transition [5–7]. At zero temperature
the symmetric phase is conformal: it is separated from the broken phase by a conformal
phase transition [2,8]—similar to a Berezinskii–Kosterlitz–Thouless (BKT) transition: the
scaling of the order parameter reveals an essential singularity. It is not clear—to our
knowledge—how the line of first order phase transitions expected at large N f would turn
into a conformal transition, and indeed other scenarios are possible, including a power-law
scaling [9] and even a first order transition [10,11].

The critical line of QCD (Figure 1) separates the hadronic phase from a hot phase where
chiral symmetry is restored—for physical values of the quark masses, this is the phase
explored in heavy ion collisions, much explored also on the lattice [12,13]. At zero temper-
ature, in the broken phase, we have the Goldstone singularity. Above a critical number
of flavours the theory is conformal, with anomalous dimension [2]. The global symmetry
of QCD: U(n)L × U(n)R ∼= SU(n) × SU(n) × U(1)V × U(1)A valid at classical level is
broken by topological fluctuations, for which the η′ mass gives an experimental evidence.
The remaining symmetry is then U(n)L × U(n)R/U(1) ∼= SU(n) × SU(n) × U(1)V . This
prompted the question [14]: Which chiral symmetry is restored at high temperature?
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U(1)A will always be broken, but the amount of breaking may well be sensitive to the
temperature, leading to an approximate restoration, and a natural question arises on the
interrelation of the SU(N)× SU(N) symmetry with the U(1)A symmetry. Since the chiral
condensate breaks the U(1)A symmetry, the only possibilities are a near-coincidence of the
two transitions, or an axial breaking persisting beyond chiral restoration.

Figure 1. Sketchy view of the phases of strong interactions in the space spanned by N f massless
flavours, and temperature T.

The axial symmetry is discriminating: if its breaking is not much sensitive to the
chiral restoration, the breaking pattern for N f = 2 is indeed SU(2)L × SU(2)R → SU(2)V
or O(4) → O(3) [1]. Due to the associate diverging correlation length, the theory is
effectively three dimensional, leading to the well known 3D O(4) universality class. If in-
stead axial symmetry is correlated with chiral symmetry, the relevant breaking pattern is
U(2)L × U(2)R → U(2)V , hinting either at a first or even at a second order transition with
different exponents [15].

Beyond two flavours, the issue of the anomaly becomes more subtle: the definition of
a proper order parameter for axial symmetry is entangled with different susceptibilities
associated with different flavours [16]. Some studies indicate restoration above Tc [17–31],
others find hints of a near-coincidence of the two transitions [5,29]. Our recent study [32],
which will be reviewed in detail in Section 4, attempts at quantifying the limit of the scaling
window and finds compatibility with 3D O(4), thus implicitly suggesting a separation
between the two transitions. However, we have also observed a correlation between the η′

meson mass and the chiral condensate around the transition, which may also be compatible
with their coincidence [33,34]. Figures 2 and 3 illustrate two possible scenarios for the
critical behaviour and scaling window between N f = 2 and N f = 3. We will discuss them
in detail in Sections 3 and 4.

For N f = 3, 4 the standard lore is a first order transition, even if some contrasting
evidence has been reported [5]. The strength of the transition increases with N f [4,35–37],
and this has been used as a possible paradigm for the generation of gravitational waves at
a strong electroweak transition in models with composite Higgs [38].

All the phenomena above are intrinsically non-perturbative, and the lattice approach
has been extensively used to address them. They are often discussed from different
viewpoints, having in mind different applications. Here, we would like to present a general
overview, attempting at a synthesis. The remaining of this report is organised as follows: in
the next Section we review the theoretical knowledge about the critical line. The following
two Sections contain results for N f = 2 and N f = 2 + 1. In these Sections we rely mostly
on our work, and, for the latter case, we include some unpublished analysis. In addition,
we use this case to illustrate some recent proposal for the study of the critical behavior.
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Section 5 reviews the effort towards the identification of the critical endpoint of a first
order transition for N f = 3, 4. Section 6 is devoted to large N f and to the approach to the
conformal window. We conclude with a brief summing up.

2. Universal Approach to Phase Transitions

We summarise here a few general aspects of the different critical behaviours encoun-
tered along the critical line, while the numerical evidence for the different possibilities is
discussed in the following Sections.

To make this discussion self-contained, let us summarise a few facts about phase
transitions and critical behaviour, see, e.g., Ref. [39] for a complete discussion. We con-
sider a system undergoing a phase transition between phases characterised by different
symmetries, under the action of an external parameter (temperature, for instance). Early
descriptions of such systems were made in the framework of the Landau mean-field
theory, which is based on a local, space homogeneous order parameter M. The free
energy F is analytic in M and in the temperature T, and it is truncated to fourth or-
der in M: F(M, T) = F(0, T) + Va(T)M2 + Vb(T)M4, with a(T) = a0τ and b = b0,
and a0, b0 are positive. τ is the reduced temperature τ = (T − Tc)/T. Under these
assumptions, the minimisation of the free energy gives the well-known power-law be-
haviour for the order parameter with M(T) = M0τβ, β = 1/2. The Landau theory
is readily generalised to include an external field linearly coupled to the order param-
eter, F(M, T) = F(0, T) + Va(T)M2 + Vb(T)M4 − VMh. The power-law singularity at
h = 0, T = Tc is washed out, while a singular behaviour at Tc is manifest in the scaling of
the order parameter M ∝ hδ, δ = 1/3. Experiments, however, show that the mean field
exponents are not accurate: to address this, a phenomenological scaling theory has been
developed, which still produces a power-law behaviour for the order parameter, but with
different exponents. A pivotal assumption, theoretically motivated within a renormali-
sation group approach, is that the behaviour of the system is completely controlled by a
diverging correlation length at the critical point. The essence of the behaviour is captured
by the universal Equation of State (EoS), which is characteristic of a given combination of
symmetry breaking pattern and dimensionality:

M/h1/δ = f (t/h1/βδ). (1)

In the QCD EoS we will identify M ≡ ψ̄ψ, h ≡ mq, t ≡ T − Tc, mq is the quark
mass, and Tc is the critical temperature in the chiral limit: the bare quark mass and the
chiral condensate play the role of the external breaking field and of the spontaneous
magnetisation. Note that there are two arbitrary normalisations for M and for T. A detailed
discussion together with explicit calculations in spin models may be found, e.g., in Ref. [40].
f is a regular function: by expanding it to first order, and setting β = 0.5, δ = 3 one recovers
the Landau mean field behaviour. The question now is, what triggers the crossover
from mean field to the critical behaviour? A short answer is to follow the Ginzburg
criterium [41]: the correlation length increases towards the critical point, and at some point
the fluctuations take over, the details of the microscopic behaviour do not matter, and the
system shows the appropriate universal behaviour. Interestingly, the same reasoning
applies to weakly first order transitions [42]. In short summary, when approaching a
critical region, one may observe first a mean-field behaviour, then, when the Ginzburg
criterium is satisfied, the true critical behaviour will appear. The crossover between the
interaction-dominated region, which follows mean-field predictions, to the true critical
regime, dominated by the diverging correlation length, has been extensively studied in
condensed matter systems [15,43]. In the following, we will search for it in the QCD
transition where it is much less explored.

Let us consider first the case of a continuous, second order transition. The discussion
is general, we will use, however, as concrete examples the mean field and the three
dimensional O(4) universality class.
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To describe the critical behaviour, it is convenient to use an alternative, equivalent
form of the EoS for the order parameter:

M = h1/δ fG(t/h1/βδ). (2)

The high x and low x expansions

fG(x) = x−γ
∞

∑
n=0

dnx−2n∆, x → +∞

= (−x)β
∞

∑
n=0

cn(−x)−n∆/2, x → −∞ (3)

with x ≡ t/h1/βδ, ∆ ≡ βδ, γ = β(δ− 1) are known [44], and the coefficients have been
computed in spin models for the O(4) continuous universality class [44]. Ref. [44] found a
good interpolating form around x = 0:

f ′G(x) = b1 + 2b2x + 3b3x2 + 4b4x3 + 5b5x4 + 6b6x5, (4)

whose coefficients are tabulated in the paper [44].
To identify the critical scaling, and the critical temperature in the chiral limit, at finite

temperatures there are basically three (interrelated) strategies:

• Direct comparison with the Equation of State;
• The study of the dependence of the pseudo-critical temperatures on the breaking field,

also known as scaling of pseudo-critical temperatures;
• Definition of RG invariant quantities, which do not depend on the breaking field at

the critical point.

The second one is probably the most popular: in practice, one relies on pseudo-
critical temperatures associated with features of the order parameter, or related observables.
For instance, considering the expression for the susceptibilities

χL =
∂ψ̄ψ

∂m
,

χ∆ =
∂ψ̄ψ

∂T
(5)

derived from the EoS, one finds that for the O(4)universality class they peak at t/h1/βδ = 1.35(3)
and t/h1/βδ = 0.74(4), respectively. The corresponding pseudo-critical temperatures

Ts
c (mπ) = Tc(0) + ksm2/βδ

π (6)

(where s labels the different observables) should scale with the pion mass mπ with the
same exponent 2/βδ, but with different k′ss, whose ratio is a prediction of universality. The
longitudinal and transverse susceptibility χL and χT , where χT ≡ 〈ψ̄ψ〉/m, may be used
to implement the third approach, based on RG invariant quantities [45–47].
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Mean field

Figure 2. Zooming in the region between N f = 2 and N f = 3: assuming a 3D O(4) scenario,
with hypothesised scaling windows in the ml , ms plane (upper diagram).The dotted lines are a
possible sketchy behaviour of the crossover between the mean field region and the critical region.

Figure 3. As Figure 2, but for a first order transition extending from N f = 2 to N f = 3. There are
no theoretical predictions for the shape of the critical Z2 line and the scaling window, the lines are
merely indicative. Above the upper dotted line the behaviour should be compatible with mean field.

All these approaches are prone to suffer from the contamination of regular terms, es-
pecially when the pseudo-critical temperature Ts

c associated with the particular observable
s under consideration has a strong dependence on the breaking field, i.e., on the pion mass
(see also Refs. [17,32]). These considerations suggest an alternative order parameter [32],
see also [48,49], free from linear contributions:

〈ψ̄ψ〉3 ≡ m(χT − χL) ≡ 〈ψ̄ψ〉 −mχL ≡ 〈ψ̄ψ〉 −m
∂〈ψ̄ψ〉

∂m
. (7)

We dubbed this order parameter 〈ψ̄ψ〉3 to highlight the fact that the leading m correc-
tion in its Taylor expansion, when defined, is m3. Longitudinal and transverse suscepti-
bility become degenerate at the transition in the chiral limit, hence their difference is an
order parameter.

The m factor has been included to avoid divergences in the chiral limit in the broken
phase. The associated Equation of State reads:

〈ψ̄ψ〉3
m1/δ

= fG(x)(1− 1/δ) +
x

βδ
fG(x)′. (8)

Interestingly, the high temperature leading term is 〈ψ̄ψ〉3 ∝ t−γ−2βδ rather than
〈ψ̄ψ〉 ∝ t−γ: the decay is rather fast, not surprisingly given that this observable is closer to
the chiral condensate in the chiral limit.
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In Figure 4 we compare the EoS for 〈ψ̄ψ〉3 with the one for 〈ψ̄ψ〉 for the 3D O(4)
Universality class, and for mean field. Note the sharper decrease in 〈ψ̄ψ〉3, consistent with
it being closer to the critical behaviour. Away from criticality dimensional reduction is less
and less justified, and the system remains four dimensional and possibly closer to mean
field. For instance, mean field scaling has been reported in large-N Gross–Neveu [50],
where the scaling window shrinks to zero, and also in weak first order transitions [42].
The extent of the scaling window is a non-universal feature—a recent analysis for spin
models is in Ref. [51]. It is then very natural to compare the 3D O(4) Equation of State
with the prediction of mean field: mean field is indeed very close to 3D O(4) (see again
Figure 1), so the transition from the scaling window to a regime with small fluctuations
could be very smooth.

1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

O4, ψ̄ψ

Mean Field

O4,ψ̄ψ3

Mean Field

O4,ψ̄ψ3 , scaled

Mean Field,scaled

Figure 4. The Equation of State for the chiral condensate 〈ψ̄ψ〉 and the new order parameter 〈ψ̄ψ〉3
in the critical region for the O(4) three dimensional universality class, and for mean field. For a more
direct comparison we also plot the results suitably rescaled as thin lines from Ref. [32]).

From the Equation of State data we can estimate the inflection point, which will drive
the behaviour of the pseudo-critical temperature associated with 〈ψ̄ψ〉3, xinfl = 0.55(1)
where the error has been estimated from the dispersion of different fits interpolating the
high and low temperature branches. Table 1 summarises the finding for the k′ss for the
different chiral observables.

Table 1. ks for three chiral observables, from the 3D O(4) Equation of State, see Equation (6).

Observable χ 〈ψ̄ψ〉 〈ψ̄ψ〉3

ks 1.35(3) 0.74(4) 0.55(1)

As we will discuss in Section 4, as of today, N f = 2 is serious candidate for a second
order behaviour.

We move from second to first order transition by increasing N f . One way to interpolate
continuously between different N f ’s is by tuning the mass of the ’extra’ flavour. The original
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discussion is Ref. [3], and refers to the horizontal axis of Figure 2: there is a first order
transition for N f = 3, terminating at a critical point in the Z2 universality class at ms = ms

crit.
For ms � ms

crit, ms merely renormalises the coefficients of the effective action, resulting in
a shift of the critical temperature, without changing the critical behaviour [3]. In this case,
one conventionally assumes that there is a line of second order transition ∞ > ms > ms

crit,
Tc = Tc(ms). The question is, how the scaling window for N f = 2 morphs into the scaling
window around ms

crit. Figure 2 presents a simplistic scenario: the scaling windows in ml
on either sides shrink till they almost disappear in the middle. Therefore, the two scaling
windows basically do not communicate. A more compelling answer would require an
analysis of the pseudo-critical behaviour around ms

crit [52]. Interestingly, in Ref. [16] the
standard subtracted condensate

χS − χK =
2ms

m2
s −m2

l

[
〈q̄q〉l(T)− 2

ml
ms
〈s̄s〉(T)

]
(9)

has been advocated as a diagnostic tool for the behaviour with a finite ms. Figure 3 shows
the alternative first order scenario, which is also a generic prototype for larger N f .

The first order region for larger N f is ’uneventful’ from the perspective of the critical
behaviour. Its important feature is the endpoint: when the breaking field becomes stronger,
the transition weakens, and finally it becomes a continuous one. The weakening of the first
order transition has been studied in detail in q-state Potts models [42], where the strength
of the transition has been linked to the position of the spinodal point—the apparent
divergence point of the correlation length. At the endpoint of the first order transition the
strength becomes zero, and the spinodal points collapse on the critical point. The axes are
no longer the usual ones, and are defined by the directions of the first order line. A clean
observation of the endpoint is essential to complete the analysis of a first order behaviour.

When N f increases, the coupling at the transition is known to become stronger [36,37].
The zero temperature theory has scale separation, and may be used to model a composite
Higgs [38]. The high temperature first order transition may offer a model of a strong
electroweak transition [53], a very attractive possibility for gravitational wave generation.

The zero temperature quantum phase transition is expected to be conformal [2], although other
possibilities cannot be excluded, including a first order transition [10,11], and a power-law
scaling [9]. It occurs for a non-integer number of flavours, and observing it by extrapolation
needs a control on the scaling setting procedure for different theories. The behaviour with a
finite mass is less established in this case. It is studied in Ref. [54], but to our knowledge this
general scaling has not been directly applied to the case at hand. The universal behaviour
of a conformal transition with a breaking field remains an open problem.

3. N f = 2

A much discussed scenario for N f = 2 is a second order transition, see Figure 2.
The search for universality is mostly done via the scaling of the pseudo-critical temperature
according to Equation (6). The scaling works, within the large errors: basically, the data are
consistent with a linear scaling of the pseudo-critical temperature with the pion mass, to be
compared with the predicted power law scaling with Tc(mπ) ∝ m2/δ

π ' m1.08
π for the 3D

O(4) universality class. The U(2)×U(2)→ U(2) pattern predicts a very similar scaling,
m2/δ

π ' m1.16
π , leading to an indistinguishable behaviour within the current errors.

The possibility of a first order transition is also explicitly considered for two flavours.
In such scenario, depicted in Figure 3, the first transition region stretches all the way till
there N f = 3, bordered by a line of Z2 endpoints [5].

The Z2 endpoint has been extensively searched for in QCD with three flavours (see
next Section), and it has proven to be elusive and very sensitive to lattice details. As a
part of these uncertainties, there is no clear indication of mixing at the critical point, so in
practical analysis the mixing is ignored. The search for a first order scenario then relies
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on direct searches, so far unsuccessful, at small masses, as well as on the scaling of the
pseudo-critical temperature:

Ts
c (mπ) = Tc + ks A(m2

π −m2
c )

1/βδ (10)

with 1/βδ = 0.64 for the Z2 universality class [55].
The outcome of these analysis [56] is that there is no evidence for mc. A recent

study [29] confirms these findings, after performing a careful comparison of the different
breaking patterns. Summing up, it is impossible to discriminate among different univer-
sality classes on the basis of the scaling of Tc(mπ) alone. On the positive side, the critical
temperature in the chiral limit is robust against different choices: Tc(0)(O(4)) = 163(27)
MeV and TC(0)(U(2)×U(2)) = 167(25) MeV, which compares well with the twisted mass
results Tc = 152(26) [56].

On the analytic side, interesting studies in four dimensions [9] have suggested scaling
behaviour only for pion masses below 1 MeV. There is, however, an apparent scaling for
much larger masses, and it would be interesting to see whether the apparent scaling for
larger masses is compatible with a mean field analysis.

Important complementary information comes from the analysis of screening masses [14]:
some studies find the axial breaking much reduced at the chiral transition. A detailed
discussion is found in Ref. [28], but the issue remains open as different observables appear to
give different information.

4. N f = 2 + 1, and the Physical Point

This is a much studied theory, as it includes the physical case of a strange mass (see
Figure 2) with hope that the light quarks will still be within, or not too far from, the scaling
window. We note that the results in the chiral limit may have a phenomenological relevance,
according to low energy effective theory computations: the two massless flavour chiral
transition temperature is an upper bound for the temperature of the critical endpoint [47].
Clearly only a full ab-initio computation may confirm or disprove this, and, in turn, such
observation would be a validation of these models.

This Section is mostly based on our recent work [32], where we have made use
of the ad-hoc order parameter introduced in Section 2. The results are obtained with
a dynamical charm. However, around the critical temperature a dynamical charm is
completely decoupled, hence we are effectively discussing the N f = 2 + 1 theory, with a
physical strange mass. We have simulated four different pion masses, from the physical
value till 470 MeV. Our simulations are performed in the fixed scale approach, where
we keep the bare lattice parameters fixed and vary temperature by varying the number
of lattice spacings in the temporal direction, to cover a temperature span ranging from
120 MeV till 800 MeV, approximatively. Our ensembles, as well as more details, can be
found in Refs. [32–34].

Before turning to our results, let us briefly summarise the current status. By use
of a subtracted condensate and related susceptibilities, as well as finite volume scal-
ing, Refs. [13,17] find a satisfactory O(4) scaling up to nearly physical pion mass, with
Tc = 132+3

−6 MeV. A recent FRG study [57] confirms these findings, but with a slightly
larger Tc = 142 MeV in the chiral limit.

For the discussion of the universality class and the chiral limit we consider the chiral
condensate, the connected and the full susceptibility. These observables suffer from an
additive renormalisation, which, in our fixed scale approach, does not affect the estimate
of the pseudocritical point. However, it hampers the direct comparison with the Equation
of State, and blurs the behaviour of the pseudo-critical temperatures, which receive mass
corrections. By contrast, the observable 〈ψ̄ψ〉3:

〈ψ̄ψ〉3 = 〈ψ̄ψ〉 −mlχL (11)

is free from linear additive renormalisation, as well as from linear correction to scaling.
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We use various functional forms to parameterise our observables in various intervals,
and to identify the associated pseudo-critical temperature. We then use the difference
among results from different intervals and fitting forms to estimate the systematic error.
In some cases, in particular for the full susceptibility, no explicit parameterisation fared
well through the data. In this case, we have also used cubic splines as smooth interpola-
tors, estimating statistical uncertainty by adding random Gaussian noise to each point,
weighted by statistical uncertainty of our data points. The details can be seen in our recent
publication [32].

In Table 2, reproduced from Ref. [32], we summarise our results for the pseudo-critical
temperatures extracted from different chiral observables.

Table 2. Pseudo-critical temperature extracted from the chiral observables, from Ref. [32].

mπ [MeV] T∆ T∆3 Tχ

139 157.8(7)(10) 146.2(21)(1) 152.7(13)(23)
225 172(3)(1) 163.3(18)(8) 171(6)(1)
383 187(5)(1) 178(4)(0) 192(3)(1)
376 197(2)(0) 181(1)(4) 197(2)(3)

The fits for the pseudo-critical temperatures proceed exactly as for the N f = 2 case, so
we do not repeat the discussion here, and simply show the summary plots, from Ref. [32],
in Figure 5. Mutatis mutandis, it remains true that the results in the chiral limit do not
depend on the universality class.

0 100 200 300 400 500
mπ [MeV]

140

160

180

200

T
c

[M
eV

]

T∆

T∆3

Tχ

T0

HotQCD

WB, Tχ

WB, T∆

FASTSUM, T∆

Figure 5. Pseudo-critical temperatures with their chiral extrapolations: comparison with the re-
sults from the HotQCD collaboration [58], FASTSUM collaboration [59,60], Wuppertal–Budapest
collaboration [61]. The purple diamond at mπ = 0 marks the critical temperature [47], which com-
pares well with our result T0 = 134+6

−4 MeV (light-green cross, slightly shifted for better readability).
From Ref. [32].

An interesting added feature is the possibility to check the ratio of the k′ss: the scaling
is not quantitatively accurate, but to some extent consistent with 3D O(4).
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Since 〈ψ̄ψ〉3 is free from additive renormalisation, and the multiplicative renormal-
isation is available, we can convert it to physical units. This also allows us to attempt a
semi-quantitative check of critical scaling. One first simple way of doing this is to identify
the scaling of the condensate at Tc:

〈ψ̄ψ〉3(m) ∝ m2/δ
π . (12)

The results for the chiral condensate rescaled by m2/δ
π should cross at the critical point

in the chiral limit. The curves for two lightest masses cross around T = 138 MeV [32],
which may be taken as a tentative estimate of the critical temperature. We can then try

to draw the (would be) scale invariant plot 〈ψ̄ψ〉3/m2/δ
π versus (T − 138 MeV)/m

2
βδ
π for

different masses. Indeed, the results fall more or less on the same curve, see Figure 6,
and we have observed that this approximate scaling behaviour degrades rapidly when
Tc is varied by more than a couple of MeV around Tc = 138 MeV. However, a fit to the
3D O(4) Equation of State and a constrained Tc = 138 MeV works nicely only for the
physical pion, see the continuous line in Figure 6. This behaviour is reminiscent of that
observed in Ref. [62], where an apparently good scaling is observed at larger masses, which
is, however, distinct from the predicted three dimensional O(4) scaling. In conclusion,
after constraining the critical temperature to the best estimate in the chiral limit coming
from the empirical universal scaling, we observe a qualitative scaling for the reduced
variables, but the would-be universal curve is clearly different from that predicted by the
3D O(4) universality.
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Figure 6. Empirical 3D O(4) scaling with fixed Tc = 138 MeV; there is an apparent scale invariance,
however, the universal EoS fitted for the physical pion mass —computed with a fit in the interval
[120–160 MeV] and marked as a continuous line—does not fare well on the results for the other masses.

Next, we fit to the 3D O(4) Equation of State with an open critical temperature,
and (pion mass dependent) scaling parameters. The fits are satisfactory, but the would
be critical temperature Tc depends heavily on the pion mass: we find Tc = 142(2), 159(3),
174(2) MeV, from light to heavy masses. Interestingly, for the physical pion mass the result
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for the critical temperature in the chiral limit is consistent with the estimate from the mass
scaling of the condensate.

Summarising: we obtain a good scaling with a common temperature Tc = 138 MeV,
but at the price of violating the universal EoS. Or, we fit all the masses to the universal EoS,
but at the price of forfeiting the parameters’ scaling. The only consistency is for the lowest
pion mass, which may be taken as an indication of the onset of the scaling behaviour for
masses around the physical values.

Finally, we consider the high temperature limit: in Figure 7, left, show fits to a
constrained O(4) behaviour, for our preferred critical temperature in the chiral limit
Tc = 138 MeV (the sensitivity to Tc is very mild in this case): the results in the interval of
temperatures [160:300] MeV (marked bold) fare nicely through the data. For T > 300 MeV
the behaviour is distinctly different: in the right-hand plot (from Ref. [32]) we show the
data rescaled according to m3

q ' m6
π , the anticipated high temperature leading behaviour,

and indeed we see that the scaling is nicely satisfied above 300 MeV. This suggests that the
temperature extent of the scaling window above Tc extends up to about 300 MeV, and then
a simple regular behaviour follows, unrelated with criticality. In a previous study [63,64],
we have found that this is also the threshold for a behaviour consistent with the dilute
instanton gas approximation.
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Figure 7. Fits to a constrained O(4) behaviour: the results in the interval of temperatures [160:300] MeV (marked bold) fare
nicely through the data. For T > 300 MeV the behaviour is distinctly different. In the righthand plot (from Ref. [32]) we
show the data scaled according to m3 ' m6

π , the anticipated high temperature leading behaviour.

One final comment concerns the U(1)A symmetry: given its prominent role, it is
natural to resort to its analysis to try to shed more light on the symmetry pattern. However,
again, the problem remains open: the current understanding is that it seems to be effec-
tively restored above Tc [17–31], but there is no consensus on the restoration temperature.
For instance, Ref. [17] finds the axial symmetry still broken at T ' 1.6Tc, while Ref. [29]
suggests a near-coincidence of axial and chiral transition. An interesting probe of the
interrelation of the axial and chiral symmetry is the η′ meson, which seems to be well
correlated with the chiral condensate also around Tc, favouring to some extent a close
interrelation of the different symmetries [34].

As a summary of this discussion, we plot the results in the mπ , ms, T space in Figure 8.
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Figure 8. The space spanned by the pion mass, the strange mass, and the temperature, for strange
masses ranging from infinite till the physical value. The scaling window identified for N f = 2 + 1 is
marked in shades of red.

5. N f = 3, 4: Between the Physical Region and the Pre-Conformal Window

Much of the effort in these cases focuses on the search for the critical endpoint of the
expected first order transition. Nice overviews of recent results can be found in [5,65],
including an extensive bibliography. The main conclusion (shared by all authors) is that the
precise location of the critical endpoint is hard to pinpoint, and very sensitive to the lattice
discretisation. Recent results from Ref. [66] indicate mc

π ' 110 MeV and Tc ' 134(3) MeV.
This value, rather close to the estimated critical temperature of the N f = 2 + 1 flavour, is
obviously an upper bound to the critical temperature in the chiral limit for the N f = 3
theory. Assuming—rather arbitrarily—that the slope of the critical first order line is not too
different from the slope of the pseudo-critical line of the N f = 2 + 1 + 1 theory, one may
estimate a critical temperature for the N f = 3 theory at Tc(N f = 3) ' 120 MeV. (We note
that some recent unpublished studies presented at the latest Lattice conference indicate a
lower value Tc(N f = 3) ≈ 100 MeV [67]).

The candidate endpoint, as well as the guess at the critical temperature in the chiral
limit are both marked in Figure 9 as a blue and cyan triangles, respectively.

Since most studies for N f = 3 have been carried out with staggered fermions, a sug-
gestion was made [65] that the rooting needed at N f = 3 may be the source of the strong
lattice artifacts observed. This motivated an analysis of the N f = 4 theory, which is free
from the rooting issue. However, also in this case it was not possible to locate the critical
point with confidence.

In the most recent study [68] an extensive investigation with unimproved staggered
fermions covering the whole range of N f = 2 to N f = 8 was reported. The results
suggest that for all studied values of N f the first order region significantly shrinks upon
taking the continuum limit and eventually the chiral transition in the chiral limit might be
second-order (although a tiny first-order region cannot be excluded).
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Figure 9. A sketchy view of the numerical results for the critical temperature Tc in the temperature,
number of flavour plane. The theories with N f = 2 and N f = 2 + 1 (marked as non-integer number
of flavours) have been summarised in Sections 3 and 4, N f = 3 and N f = 4 in Section 5, and larger
N f in Section 6. The approach to the conformal window for N f ' 12 is apparent for N f ≥ 4. See text
for details.

6. Large N f

From now on, we approach the conformal window: a region of the phase diagram
where chiral symmetry remains unbroken also at zero temperature. Let us then take one
step backwards, and ask: what triggers the breaking of the SU(N f )× SU(N f ) symmetry?
In the following, we briefly summarise the original model calculations leading to the
discovery of the conformal window [2,69]. It is clear that, since these phenomena are
strongly-coupled, non-perturbative ones, ab-initio studies, such as lattice QCD simulations,
are needed to confirm, or disprove, analytic predictions.

Let us consider the renormalisation group equation for the running coupling:

µ
∂

∂µ
α(µ) = β(α) ≡ −bα2(µ)− cα3(µ) . . . , (13)

where α(µ) = g2(µ)/4π. With N colors and N f fermions in the fundamental representation

b =
1

6π

(
11N − 2N f

)
, (14)

c =
1

24π2

(
34N2 − 10NN f − 3

N2 − 1
N

N f

)
. (15)

Hence, the theory is asymptotically free if b > 0, i.e., N f < 11
2 N, and it has an

infrared stable, non-trivial fixed point (FP) α∗ = −b/c if b > 0 and c < 0. This happens for
34N3

13N2+3 < N f <
11
2 N, in short N?

f < N f < N??
f .

With the infrared FP for N?
f < N f < N??

f the RG equation for the running coupling
can be written as

b log
(

q
µ

)
=

1
α
− 1

α(µ)
− 1

α∗
log

(
α(α(µ)− α∗)
α(µ)(α− α∗)

)
, (16)
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where α = α(q).
For α, α(µ) < α∗ we can introduce a scale defined by

Λ = µ exp
[ −1

b α∗
log

(
α∗ − α(µ)

α(µ)

)
− 1

bα(µ)

]
, (17)

so that 1
α = b log

( q
Λ
)
+ 1

α∗ log
(

α
α∗−α

)
. Then, for q� Λ the running coupling displays the

usual perturbative behaviour: α ≈ 1
b log( q

Λ )
, while for q� Λ it approaches the fixed point

α∗: α ≈ α∗
1+ 1

e (
q
Λ )

bα∗ .

These considerations, already present in the famous Banks-Zaks paper [70], lead to
the discovery of the conformal window [69], once one takes into account the condition for
chiral breaking. The analysis of two-loop effective potential finds that chiral symmetry
breaking is favoured when

αc ≡
π

3 C2(R)
= 2π

N
3(N2 − 1)

, (18)

where C2(R) is the quadratic Casimir of the representation.
Till there are no zeros of the beta function, this large value is always reached: as long

as N f is below the value Nc
f at which α∗ = αc, chiral symmetry is spontaneously broken.

When the breaking happens, it washes out the IR fixed point and there is the usual running.
For N f > Nc

f the chirally symmetric theory is infrared conformal [2], with anomalous
dimension. The transition at Nc

f is similar to the BKT one. Below, but not too far from Nc
f ,

there is scale separation: in ordinary massless QCD dimensional transmutation generates a
dimensional parameter ΛQCD which is the natural mass scale of the theory. Close to the
conformal window the coupling ’walks’ rather than running, between two scales—above
the UV scale there is the usual running, below the IR scale confinement sets in. In between
the behaviour is near-conformal. This behaviour, known as scale separation (referring the
the distinction between IR and UV scale) offers [35] the possibility to build models for a
composite Higgs. Lattice studies have scrutinised in detail the model with N f = 8 [71–75],
finding evidences of scale separation: the lightest massive state, the scalar of the model, is
suited for phenomenology —it could be the Higgs meson. We emphasise that at T = 0, it is
very hard to distinguish a chirally broken theory from a mass-deformed conformal theory,
see, for instance, Refs. [76–78].

Other vector states lie much above—this is where scale separation is needed—which
is why they have not been observed so far [38,74].

Coming back to the main motivation of this write-up, and so to Figure 1, we are now
interested in the thermal transition in the near-conformal region. The first complete sketch
of Figure 1 was obtained with FRG methods in Ref. [79]. Lattice studies have focused on
the very existence of the transition: indeed, not knowing exactly where the conformal
phase begins, the observation of a thermal transition is per se an evidence of a broken
phase [73], while within the conformal window temperature merely breaks conformality,
and there is no thermal phase transition [80].

A systematic study of the thermal phase transition as a function of the number of
flavours has been carried out in Refs. [36,37]. The pseudo-critical temperature has been
identified by performing lattice simulations for N f = 4, 6, 8. After a suitable choice of a
common scale among the different theories, it was possible to extrapolate Tc(N f ) to zero,
thus identifying the candidate critical number of flavour. Here, an interesting issue appears:
shall Tc follow an essential scaling, as expected of the conformal nature of the transition, or,
rather, a power law scaling [9]? Again, the quality of the numerical results does not give a
clear answer on the nature of the critical behaviour. However, again, luckily, the estimated
critical number of flavour does not depend on the parametrisation chosen, within the
largish errors [35].
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In Figure 9 we show the results in the N f , T plane. We have used the input from
Ref. [9], which predicts a linear behaviour of the critical line for small N f , and an estimate
of the critical temperature for N f = 3 in the chiral limit to convert the result in the chiral
limit for light quarks, and a physical strange mass, to a non-integer number of flavor
N f ≈ 2.6. The results for N f = 4, 6, 8 are normalized in such a way that Tc(N f = 4) follows
the linear behaviour predicted for a small number of flavors. The continuous line is the
predicted scaling of the critical temperature [79]:

Tc = K(Nc
f − N f )

−2b2
0(Nc

f )/b1(Nc
f ) (19)

with a fixed Nc
f = 12 (of course this does not depend on the normalization chosen). The

exponent −2b2
0(Nc

f )/b1(Nc
f ) ' −1.64 should be contrasted with the theoretical prediction

−2b2
0(12)/b1(12) = −1.05 and would correspond to Nc

f ' 12.9 [79].
We are not aware of any theoretical modeling which explains how the first order

behaviour for smaller N f eventually develops into the conformal transition. One possible
scenario is that the second order Z2 line, which terminates the first order region above the
thermal line, shrinks to zero at Nc

f . Another possibility is a first order transition [10,11]:
in such a case the would-be critical number of flavour would correspond to a spinodal
point, and the critical line would terminate at 8 < N1st

f < 12, where the lower bound stems
from the clean observation of chiral breaking in the eight flavour theory. One interesting
observation emerging from the data is the strength of the phase transition: it has been found
that it becomes stronger and stronger when approaching the conformal window [4,5,36].
Moreover, at the critical point the coupling at the thermal transitions equals the coupling
at the infrared fixed point appearing there [36]. Although the critical behaviour remains
unclear, the dynamical scenario seems thus well understood. In particular, the N f = 8
theory remains an interesting candidate for physics beyond the Standard Model [71],
and its strong first order transition may then be used to model a strong Electroweak
transition and the generation of gravitational waves [53].

7. Summary

The study of the critical line of strong interactions has several interesting points and
remaining unknowns.

We started from Figure 1 and we progressively filled in the qualitative summary
plot Figure 9 with numerical results. The linear, low N f part of the critical line has been
imposed, by aligning the N f = 2 + 1 results with the N f = 2 and N f = 3, and by suitably
renormalising the results for large N f .

A detailed view for a small number of flavours is given in Figure 8. In that plot, we
have concentrated on the beginning of the chiral critical line, between N f = 2 and N f = 3.
We have reviewed our results for N f = 2 and for N f = 2 + 1 + 1, with the strange flavour
serving as an interpolator between N f = 2 and N f = 3. We have discussed the results at
the physical point, as well as the different scenarios for the chiral limit in the light sector
for N f = 2, and N f = 2 + 1. We have identified a candidate scaling window for the 3D
O(4) theory: the physical pion mass maybe right at the onset of scaling, which extends up
to temperatures of about 300 MeV.

N f = 3 is an interesting unphysical model which would greatly help understanding
the critical behaviour for N f = 2 + 1: we have briefly reviewed the status of the search
of the endpoint for three quarks of equal masses. Such an endpoint would belong to the
same Z2 critical line as the ml = 0, mc

s point in Figure 2. Establishing (or ruling out) such
a line would greatly contribute to building a consistent scenario for universality in the
physical case.

We have then explored the large N f region, and discussed the approach to the con-
formal window. Clearly the results for the thermodynamics of these large number of
flavours are much less developed than in the other cases, however, there is at least a good
compatibility between the anticipated critical behaviour and the data, as well as between
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the estimated critical number of flavours for the onset of conformality, and the one inferred
from the T = 0 studies. It is confirmed that N f = 12 is a subtle, borderline case, which
justifies the use of N f = 8 as a model for a walking theory, and related phenomenology.

It remains to be understood how the transition changes its nature for first to second
order, towards N f = 2. From the first order to BKT transition, at the onset of the conformal
window, if indeed the BKT transition is realised—the possibility of a first order conformal
transition has been discussed as well [10,11], as well as of a second order transition persist-
ing for large N f [68], and this remains an open issue. In either cases this transition may
well happen for non-integer number of flavours, or, correspondingly, for a finite value of
the interpolating mass in the N f + 1 model. The fate of the anomaly plays an important
role in this discussion, and a close comparison between numerical and analytic results
may well hold the key to a complete understanding of the properties of the chiral line of
strong interactions.
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