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Abstract: In recent years, symmetry in abstract partial differential equations has found wide appli-
cation in the field of nonlinear integrable equations. The symmetries of the corresponding trans-
formation groups for such equations make it possible to significantly simplify the procedure for
establishing equivalence between nonlinear integrable equations from different areas of physics,
which in turn open up opportunities to easily find their solutions. In this paper, we study the symme-
try between differential geometry of surfaces/curves and some integrable generalized spin systems.
In particular, we investigate the gauge and geometrical equivalence between the local/nonlocal
nonlinear Schrödinger type equations (NLSE) and the extended continuous Heisenberg ferromagnet
equation (HFE) to investigate how nonlocality properties of one system are inherited by the other.
First, we consider the space curves induced by the nonlinear Schrödinger-type equations and its
equivalent spin systems. Such space curves are governed by the Serret–Frenet equation (SFE) for
three basis vectors. We also show that the equation for the third of the basis vectors coincides
with the well-known integrable HFE and its generalization. Two other equations for the remaining
two vectors give new integrable spin systems. Finally, we investigated the relation between the
differential geometry of surfaces and integrable spin systems for the three basis vectors.

Keywords: symmetry in nonlinear integrable equation; nonlinear Schrödinger equation; Heisenberg
ferromagnet equation; Chen–Lee–Liu equation; derivative spin system; isomorphism of Lie algebras;
soliton solution; soliton surfaces; nonlocal integrable equations

1. Introduction

The paper proposes an algebraic-geometric approach, which enables a universal de-
scription of symmetric nonlinear integrable equations. The method is based on the theory
of isomorphism of the su(2) and so(3) Lie algebras. The proposed scheme is twisted, start-
ing from the previously known results in [1,2], where geometric and gauge equivalences
are established, respectively, between the nonlinear Schrodinger equation (NLSE)

iqt + qxx + 2q∗q2 = 0, (1)

and the Heisenberg ferromagnet equation (HFE)

St = S ∧ Sxx. (2)

Here, q(x, t) is a complex-valued wave function, the asterisk ∗ means the complex
conjugation, S(x, t) = (S1, S2, S3) is a three-component spin vector, and S2 = 1. The
equivalent matrix form of HFE (2) is given by

St =
1
2
[S, Sxx], (3)
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where

S =

(
S3 S−

S+ −S3

)
, S2 = I, S± = S1 ± iS2. (4)

The solutions of these two equations (NLSE and HFE) are related by the Hasimota
transformation

q(x, t) =
κ

2
ei
∫

τdy, (5)

where κ and τ are the curvature and torsion of the space curve, respectively. The equations
of motion for κ and τ are derived from the following Serret–Frenet equation (SFE) [3],e1

e2
e3


x

= C

e1
e2
e3

, (6)

e1
e2
e3


t

= D

e1
e2
e3

, (7)

where

C =

 0 κ σ
−κ 0 τ
−σ −τ 0

, D =

 0 ω3 ω2
−ω3 0 ω1
−ω2 −ω1 0

. (8)

Here, κ and σ are the geodesic and normal curvatures of the of the space curve, τ is its
torsion, and ωj (j = 1, 2, 3) are some real functions. The later functions must be expressed
in terms of κ, σ, τ and their derivatives, when identifying spin vector S with basis vector e1
(S ≡ e1) [1].

As a second example of the application of the approach described in Section 2 to other
nonlinear integrable equations, we demonstrate it to the derivative NLSE [4,5]

iqt + qxx + iqq∗qx = 0, (9)

which is also called the Chen–Lee–Liu equation (CLLE) and to the derivative spin system

iSt +
1
2
[S, Sxx]−

i
8β2 tr(S2

x)Sx = 0. (10)

The last equation is also known as the derivative HFE (dHFE).
The paper is organized as follows. Section 2 provides information on an algebraic-

geometric approach to establishing geometric equivalence between integrable nonlinear
equations based on the isomorphism of the su(2) and so(3) Lie algebras. Section 3 applies
this method for NLSE (1) and HFE (3). A demonstration of this approach for derivative-type
NLSE (9) and dHFE (10) is given in Section 4. Section 5 is devoted to solving dHFE (10).
The soliton surface approach is presented in Section 6. The nonlocal NLSE and CLLE
with their nonlocal dHFE was studied in Section 7. The conclusion of the work is given in
Section 8.

2. Isomorphism of the su(2) ≈ so(3) Lie Algebras and Integrable Equations

The Lax pair for the NLSE (1) is given by [2]

U1 = −iλσ3 + Q, (11)

V1 = −2iλ2σ3 + λV1 + V0, (12)

where

σ3 =

(
1 0
0 −1

)
, Q =

(
0 q
r 0

)
, V1 = 2Q, V0 = i

(
−rq qx
−rx rq

)
. (13)
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At the same, the Lax pair for the HFE (3) has the form

U2 = −iλS, (14)

V2 = −2iλ2S + λSSx, (15)

where S has the form as (4). Then, the linear systems corresponding to the NLSE (1)

Φ1x = U1Φ1, (16)

Φ1t = V1Φ1 (17)

and to the HFE (3)
Φ2x = U2Φ2, (18)

Φ2t = V2Φ2 (19)

are gauge equivalent to each other through the transformation Φ2 = g−1Φ1 [2], where
the function g(x, t) is a solution of the system (16) and (17) for λ = λ0 and U1, V1, U2,
V2 ∈ su(2).

Let us give some information on the isomorphism su(2) ≈ so(3) Lie algebras [6]. We
expand the matrix C ∈ so(3) from the SFE (6)–(8) in the form

C =

 0 κ σ
−κ 0 τ
−σ −τ 0

 = −τL1 + σL2 − κL3. (20)

Here, Lj(j = 1, 2, 3) are basis of the so(3) algebra and

L1 =

0 0 0
0 0 −1
0 1 0

, L2 =

 0 0 1
0 0 0
−1 0 0

, L3 =

0 −1 0
1 0 0
0 0 0

. (21)

These basis matrices satisfy the following commutation relations

[L1, L2] = L3, [L2, L3] = L1, [L3, L1] = L2.

Similarly, we have

[l1, l2] = l3, [l2, l3] = l1, [l3, l1] = l2,

where lj are basis of the su(2) algebra

lj =
1
2i

σj.

Here, σj are Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (22)

The matrix U ∈ su(2) can be expanded in the basis matrices as

U =

(
u11 u12
u21 −u11

)
= a1l1 + a2l2 + a3l3 = a1

2i σ1 +
a2
2i σ2 +

a3
2i σ3 = 1

2i

(
a3 a1 − ia2

a1 + ia2 −a3

)
. (23)

From Equation (23), we have

a3 = 2iu11, a+ = a1 + ia2 = 2iu21, a− = a1 − ia2 = 2iu12 (24)
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or
a1 = i(u21 + u12), a2 = u21 − u12, a3 = 2iu11. (25)

Similarly, the matrix D ∈ so(3) can be expanded in basis matrices as

D =

 0 ω3 ω2
−ω3 0 ω1
−ω2 −ω1 0

 = −ω1L1 + ω2L2 −ω3L3. (26)

At the same time, for the matrix V ∈ su(2) we have

V =

(
v11 v12
v21 −v11

)
= b1l1 + b2l2 + b3l3 = b1

2i σ1 +
b2
2i σ2 +

b3
2i σ3 = 1

2i

(
b3 b1 − ib2

b1 + ib2 −b3

)
. (27)

Thus, we obtain

b3 = 2iv11, b+ = b1 + ib2 = 2iv21, b− = b1 − ib2 = 2iv12 (28)

or
b1 = i(v21 + v12), b2 = v21 − v12, b3 = 2iv11. (29)

Finally, we get the following connections between the elements of the matrices U, V
and C, D:

a1 = −τ, a2 = σ, a3 = −κ, (30)

b1 = −ω1, b2 = ω2, b3 = −ω3 (31)

or
τ = −i(u21 + u12), σ = u21 − u12, κ = −2iu11, (32)

ω1 = −i(v21 + v12), ω2 = v21 − v12, ω3 = −2iv11. (33)

From the compatibility condition ejxt = ejtx of the SFE (6)–(8) it is easy to write
equations for κ, τ, and σ as

κt = ω3x − τω2 + σω1, (34)

σt = ω2x − κω1 + τω3, (35)

τt = ω1x − σω3 + κω2. (36)

For our convenience, let us rewrite the SFE (6)–(8) in components as

e1x = κe2 + σe3, (37)

e2x = −κe1 + τe3, (38)

e3x = −σe1 − τe2 (39)

and
e1t = ω3e2 + ω2e3, (40)

e2t = −ω3e1 + ω1e3, (41)

e3t = −ω2e1 −ω1e2. (42)

Calculating the vector product e3 × e3xx from (39) and taking into account (37)
and (38), we get

τxe1 − σxe2 = e3 × e3xx + κe3x.

Now from (42), taking into account the last relation, we can always obtain the follow-
ing generalized HFE in the form

e3t + e3 × e3xx + 2κe3x = 0. (43)
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The specific form of the spin system depends on the accepted value κ.

3. NLSE and HFE

Take into account the object of research the Lax pair (7) and (8), we expand U1(x, t) in
the basis matrices as

U1 = γ1l1 + γ2l2 + γ3l3. (44)

We get
U1 = i(r + q)l1 + (r− q)l2 − 2λl3. (45)

Moreover, expanding V1(x, t) in these basis matrices as

V1 = z1l1 + z2l2 + z3l3, (46)

we obtain that

V1 = (2iλ(r + q) + (r− q)x)l1 + (2λ(r− q)− i(r + q)x)l2 + (4λ2 + 2rq)l3. (47)

Now, we move from lj ∈ su(2) to Lj ∈ so(3) and from U1, V1 ∈ su(2) to C, D ∈ so(3).
Then, we have

κ = −2λ, (48)

σ = r− q, (49)

τ = −i(r + q). (50)

Similar transformation for the matrices V1 and D

V1 → D = z1L1 + z2L2 + z3L3 (51)

gives us the following expressions for the functions ωj:

ω3 =
1
2
(τ2 + σ2)− κ2, (52)

ω2 = τx − κσ, (53)

ω1 = −σx − κτ. (54)

In this case, from the integrability condition ejxt = ejtx taking into account the equa-
tions for κ, σ, τ (48)–(50) we derive the following equation:

e3t + e3 × e3xx + 2κe3x = 0. (55)

This equation in the case when λ = 0 and S ≡ e3 goes to the HFE (2).
Next, we consider the case λ = 0, then κ = 0, σ = r − q, τ = −i(r + q). Then,

we have
e1x = σe3, (56)

e2x = −τe3 (57)

and
e1t =

1
2
(τ2 + σ2)e2 + τxe3, (58)

e2t = −
1
2
(τ2 + σ2)e1 − σxe3. (59)

Finding e3 from the Equation (56) and vector multiplying on the left by e1 we have

e2 =
1
σ

e1 × e1x (60)



Symmetry 2021, 13, 1827 6 of 18

and also
e1xx = σxe3 − σ(σe1 + τe2). (61)

Scalar multiplying (61) by e1, we get

σ =
√
−e1 · e1xx. (62)

Thus,
σx

σ2 e1 · e1x
1
σ

e1 × e1xx =
τ

σ
e1x. (63)

Therefore, we obtain

τ = −e1x · (e1 × e1xx)

e2
1x

, (64)

as well as
e1 × e1x =

σ

σx
(e1 × e1xx + τe1x). (65)

Now, for e1 in (58), taking into consideration Equations (62)–(64), we get the equation

e1t = −
τ2 + σ2

2σx
e1 × e1xx +

(
τx

σ
− (τ2 + σ2)τ

2σx

)
e1x. (66)

Similarly, for e2 we get

e3 =
1
τ

e2x, e1 =
1
τ

e2 × e2x, (67)

τ =
√
−e2 · e2xx, σ =

e2x · (e2 × e2xx)

e2
2x

(68)

and
e2 × e2x =

τ

τx
(e2 × e2xx − σe2x). (69)

From these equations, we obtain the following equation for e2:

e2t = −
τ2 + σ2

2τx
e2 × e2xx −

(
σx

τ
− (τ2 + σ2)σ

2τx

)
e2x. (70)

Thus, the well-known isomorphism su(2) ≈ so(3) of two Lie algebras gives the trans-
formation from U1, V1 to C, D. Thus, we have obtained three integrable vector equations for
three unit vectors ej. Note that the equation for the vector e3 coincides with Equation (55),
which is the well-known integrable HFE (2) that corresponds to the case λ = 0 and the
identification S = e3. At the same time, for the κ = 0, σ 6= 0, τ 6= 0 case we obtain the
following two other integrable equations for the remaining two vectors e1 and e2:

e1t = a1e1 × e1xx + b1e1x,

e2t = a2e2 × e2xx + b2e2x,

where

a1 = −τ2 + σ2

2σx
, b1 =

τx

σ
− (τ2 + σ2)τ

2σx

and

a2 = −τ2 + σ2

2τx
, b2 = −σx

τ
+

(τ2 + σ2)σ

2τx
.

This concludes the demonstration of the application of our proposed algebra-geometric
approach to NLSE (1) and HFE (2). Thus, in this section, we presented the geometrical
formulation of the two fundamental integrable equations: the NLSE and the HFE. Using
this approach, we have found three integrable spin systems which are equivalent to the
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NLSE. One of these equations, namely, the equation for the vector function e3, coincides
with the original HFE. It is recovered the well-known geometrical equivalence between the
NLSE and HFE.

4. Chen–Lee–Liu Equation and Its Equivalent Derivative Spin System

In this section, we will apply the algebraic-geometric approach of establishing geomet-
rical equivalence between nonlinear integrable equations to the derivative NLSE, namely,
to the so-called Chen–Lee–Liu equation (CLLE) [5]. The standard (local) CLLE is given by

iqt + qxx + 2qq∗qx = 0. (71)

Its equivalent spin system, the local derivative spin system reads as

iSt +
1
2
[S, Sxx]−

i
8β2 tr(S2

x)Sx = 0. (72)

The CLLE (71) is associated with the following linear system [5]:

Φx = U3Φ, (73)

Φt = V3Φ. (74)

Here, the Lax matrices U3 and V3 have the forms

U3 =

(
−iλ2 − i

4
rq
)

σ3 + λQ, (75)

V3 =

[
−2iλ4 − irqλ2 − 1

4
(rxq− rqx)−

i
8

r2q2
]

σ3 + 2λ3Q + λP, (76)

where

Q =

(
0 q
r 0

)
, P =

(
0 iqx +

1
2 rq2

−irx +
1
2 r2q 0

)
.

The compatibility condition of the linear Equations (73) and (74)

U3t −V3x + [U3, V3] = 0

gives the CLLE
iqt + qxx + 2rqqx = 0, (77)

irt − rxx − 2rqrx = 0, (78)

where in the local case we have the following reduction r(t, x) = kq∗(t, x) with k = ±1.
The set of the linear equations associated with the dHFE (72) reads as

Ψx = U4Ψ, (79)

Ψt = V4Ψ. (80)

To find the matrices U4 and V4, let us consider the transformation

Ψ = h−1Φ, (81)

where Ψ is the solution of the required spectral problem, Φ is the solution of the linear
system (73) and (74), h = Φ|λ=β.

The derivative of (81) with respect to x yields

Ψx =
(
h−1Φ

)
x = h−1Φx − h−1hxh−1Φ = h−1U3Φ− h−1U03Φ

= h−1[U3 −U03]Φ = h−1[U3 −U03]hΨ = U4Ψ,
(82)
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where U03 = U3|λ=β. From (75) in the case λ = 0, we get

U3 −U03 =
(
−iλ2 − i

4 rq
)

σ3 + λQ−
(
−iβ2 − i

4 rq
)

σ3 − βQ

= −i
(
λ2 − β2)σ3 + (λ− β)Q.

(83)

Let us now introduce the notation

S = h−1σ3h =
1
∆

(
|h1|2 − |h2|2 −2h∗1h∗2
−2h1h2 |h2|2 − |h1|2

)
=

1
1 + |w|2

(
1− |w|2 2w∗

2w |w|2 − 1

)
, (84)

where

h =

(
h1 −h∗2
h2 h∗1

)
, ∆ = |h1|2 + |h2|2, w = − h2

h∗1
. (85)

Here, H = (h1, h2)
T is a solution of the system (79) and (80), and components of the

spin matrix S =

(
S3 S−

S+ −S3

)
are written as

S+ = −2h1h2

∆
, S− = −

2h∗1h∗2
∆

, S3 =
h1|2 − |h2|2

∆
(86)

and

S+ =
2w

1 + |w|2 , S− =
2w∗

1 + |w|2 , S3 =
1− |w|2
1 + |w|2 . (87)

Let us here we present the angle presentation of the components of the spin vector
(matrix). We have

S+ = eiϕ sin θ, S− = e−iϕ sin θ, S3 = cos θ (88)

so that
w = eiϕ tan

θ

2
. (89)

Then,

Sx =
(

h−1σ3h
)

x
= h−1

[
σ3, hxh−1

]
h = βh−1[σ3, Q]h = 2βSh−1Qh, (90)

and

S2
x = 4β2h−1

(
−rq 0

0 −rq

)
h = −4β2rqI = S2

x I. (91)

The trace of the last equation gives

tr
(

S2
x

)
= −8β2rq = 2S2

x (92)

or
rq = − 1

8β2 tr
(

S2
x

)
= − 1

4β2 S2
x. (93)

From the equation (90), we obtain

2βh−1Qh = SSx (94)

or
h−1Qh =

1
2β

SSx =
1

4β
[S, Sx]. (95)

Now taking into account (82) and (87), we can finally write the matrix U4 in the
following form:
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U4 = h−1(U3 −U03)h = −i
(

λ2 − β2
)

S +
λ− β

2β
SSx. (96)

For convenience of further calculations, we represent U4 as a polynomial of the second
degree in λ as

U4 = λ2 A2 + λA1 + A0, (97)

where
A2 = −iS,

A1 =
1

4β
[S, Sx] =

1
2β

SSx,

A0 = iβ2S− 1
2

SSx.

Similarly, we obtain

V4 = h−1(V3 −V03)h =
[
−2i

(
λ4 − β4

)
− irq

(
λ2 − β2

)]
S+

+ 2
(

λ3 − β3
)

h−1Qh + (λ− β)h−1Ph. (98)

The last term of this relation must also be expressed in terms of the matrix S. It is not
difficult to verify that

h−1Ph = iSh−1Qxh +
rq
4β

SSx. (99)

Next, in order to express h−1Qxh in terms of S, we find the derivative of Sx in (90)
with respect to x as

Sxx = −S2
xS + 2

(
iβ2 +

i
4

rq
)

SSx + 2βS
(

h−1Qxh
)

. (100)

Therefore, we get

h−1Qxh =
1

2β

(
SSxx + S2

x − 2
(

iβ2 +
i
4

rq
)

Sx

)
(101)

Substituting (101) into (99), we obtain the relation

h−1Ph =
rq
4β

SSx +
i

2β

(
Sxx + S2

xS− 2i
(

β2 +
rq
4

)
SSx

)
=

=
i

2β

(
Sxx + SS2

x

)
+

(
β +

rq
2β

)
SSx. (102)

Finally, we have the following expression for the matrix V4:

V4 =
[
−2i

(
λ4 − β4

)
− irq

(
λ2 − β2

)]
S +

λ3 − β3

β
SSx+

+
i

2β
(λ− β)

(
Sxx + S2

xS
)
+ (λ− β)

(
β +

rq
2β

)
SSx. (103)

Equation (103), in short, can be rewritten as

V4 = λ4B4 + λ3B3 + λ2B2 + λB1 + B0, (104)
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where

B4 = −2iS,

B3 =
1
β

SSx,

B2 = −irqS,

B1 =
i

2β

(
Sxx + S2

xS
)
+

(
β +

rq
2β

)
SSx,

B0 =
(

2iβ4 + 3iβ2rq
)

S− i
2

Sxx −
(

2β2 +
rq
2

)
SSx.

The left side of the zero curvature condition

U4t −V4x + [U4, V4] = 0 (105)

is a sixth degree polynomial in λ. The coefficients at the corresponding powers of λ have
the form

λ6 : [A2, B4] = 0,

λ5 : [A2, B3] + [A1, B4] = 0,

λ4 : B4x − [A2, B2]− [A1, B3]− [A0, B4] = 0,

λ3 : B3x − [A2, B1]− [A1, B2]− [A0, B3] = 0,

λ2 : A2t − B2x + [A2, B0] + [A1, B1] + [A0, B2] = 0,

λ1 : A1t − B1x + [A1, B0] + [A0, B1] = 0,

λ0 : A0t − B0x + [A0, B0] = 0.

The coefficients of powers λ6, λ5, and λ4 satisfy identically, and the coefficient at
powers λ3 gives the expression

(SSx)x =
1
2
[S, Sxx]− irq(1 + β2)Sx.

The coefficient of the degree λ2 generates the dHFE (72). The coefficient of the constant
term with the coefficient of λ1 also gives equation (72). Thus, we have shown that there is
a gauge equivalence between the local CLLE (71) and dHFE (72).

Next, we illustrate the geometrical formalism presented in Section 2 to the local
CLLE (71) and dHFE (72). In this case, for the Lax matrices U3, V3 we have

U3 = i(r + q)l1 + (r− q)l2 − 2λl3 (106)

and

V3 = (2iλ(r + q) + (r− q)x)l1 + (2λ(r− q)− i(r + q)x)l2 + (4λ2 + 2rq)l3. (107)

Then, passing from U3, V3 ∈ su(2) to C, D ∈ so(3) through an isomorphism of Lie
algebras su(2) ≈ so(3), for the functions κ, σ, τ, ωj we obtain the following expressions:

κ = −(2λ2 +
qr
2
), (108)

σ = λ(r− q), (109)

τ = −iλ(r + q) (110)
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and

ω3 = −4λ4 − 2rqλ2 +
i
2
(rxq− rqx) +

i
4

r2q2, (111)

ω2 = 2λ3(r− q)− iλ(rx + qx) +
λ

2
rq(r− q), (112)

ω1 = −
(

2iλ3(r + q) + λ(rx − qx) +
iλ
2

rq(r + q)
)

(113)

with
r =

σ + iτ
2λ

, q = −σ− iτ
2λ

. (114)

Now from SFE (6) and (7), using (108)–(113), for any λ = β, β = const, we get the
following equation:

e3t + e3 × e3xx −
(

2λ2 − 1
8λ2 e2

3x

)
e3x = 0. (115)

Equation (115) at rq = − 1
4β2 S2

x = − 1
8β2 tr(S2

x) and S ≡ e3 takes the form

St + S× S3xx −
(

2λ2 − 1
8β2 S2

x

)
Sx = 0, (116)

which in matrix form becomes exactly the same as (72). This confirms that the method used
in the Section 2 works for any integrable equations.

5. Soliton Solution

Now we would like to construct, for example, the 1-soliton solution of the dHFE.
To construct the 1-soliton solution of the dHFE (72), we consider the seed solution of the
CLLE (71) of the form r = q = 0. Then, the associated linear system (73) and (74) takes
the form

Φ0x = −iλ2σ3Φ0, (117)

Φ0t = −2iλ4σ3Φ0, (118)

where

Φ0 =

(
φ01 −φ∗02
φ02 φ∗01

)
, Φ−1

0 =
1

det Φ0

(
φ∗01 φ∗02
−φ02 φ01

)
, det Φ0 = |φ01|2 + |φ02|2. (119)

The corresponding solution of the linear Equations (117) and (118) has the form

φ01 = c1e−χ = c1e−i(λ2x+2λ4t+δ1), (120)

φ02 = c2eχ+iδ21 = c2ei(λ2x+2λ4t+δ2), (121)

where cj are complex constants, and χ = χ1 + iχ2 = i(λ2x + 2λ4t + δ1), δ21 = δ2 −
δ1, λ = α + iβ and δj, α, β are real constants. For the spin matrix S, we have

S =

(
S3 S−

S+ −S3

)
= Φ−1

0 σ3Φ0 =

(
|φ01|2 − |φ02|2 −2φ∗01φ∗02
−2φ01φ02 |φ02|2 − |φ01|2

)
. (122)

For the components of the spin matrix S, we obtain the following expressions:

S3 =
|φ01|2 − |φ02|2

det Φ0
, S+ = −2φ01φ02

det Φ0
. (123)
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Substituting the expressions for the functions φoj into the Formula (123), we obtain
the 1-soliton solution of the spin system (72) as

S3 =
|c1|2e−2χ1 − |c2|2e2χ1

|c1|2e−2χ1 + |c2|2e2χ1
, S+ = − 2c1c2eiδ21

|c1|2e−2χ1 + |c2|2e2χ1
(124)

or

S3 = − tanh(2χ1) = 1− e2χ1

|c1| cosh(2χ1)
, S+ = − ei(δ21+ε1+ε2)

cosh(2χ1)
, S− = S+∗, (125)

where cj = |cj|eiεj . Thus, using the gauge equivalence between the local CLLE and the
local dHFE, we have constructed the 1-soliton solution of the dHFE.

6. Soliton Surface

In this section, our aim is to present the soliton surfaces induced by the local CLLE and
its equivalent spin system. To do that, let us recall that the position vector r = (r1, r2, r3) of
the soliton surface satisfies the certain two equations. In terms of the matrix form of the
position vector

r = r1σ1 + r2σ2 + r3σ3 =

(
r3 r−

r+ −r3

)
these two equations have the following forms:

rx = Φ−1UλΦ, (126)

rt = Φ−1VλΦ, (127)

where U, V are the Lax pair of the corresponding integrable nonlinear differential equation.
Therefore, we obtain the well-known Sym–Tafel formula

r = Φ−1Φλ =

(
r3 r−

r+ −r3

)
. (128)

Using the following expressions

Φλ =

(
φ1λ −φ∗2λ
φ2λ φ∗1λ

)
, Φ−1 =

1
det Φ

(
φ∗1 φ∗2
−φ2 φ1

)
, det Φ = |φ1|2 + |φ2|2, (129)

we finally have

r =
1

det Φ

(
φ∗1 φ1λ + φ∗2 φ2λ −φ∗1 φ∗2λ + φ∗2 φ∗1λ
−φ2φ1λ + φ1φ2λ φ2φ∗2λ + φ1φ∗1λ

)
. (130)

Thus, for the components of the position vector r = (r1, r2, r3), we obtain

r+ = r1 + ir2 =
−φ2φ1λ + φ1φ2λ

det Φ
, r− =

φ∗1 φ∗2λ + φ∗2 φ∗1λ

det Φ
, r3 =

φ∗1 φ1λ + φ∗2 φ2λ

det Φ
. (131)

or

r1 =
−φ2φ1λ + φ1φ2λ − φ∗1 φ∗2λ + φ∗2 φ∗1λ

2 det Φ
, (132)

r2 =
−φ2φ1λ + φ1φ2λ + φ∗1 φ∗2λ − φ∗2 φ∗1λ

2i det Φ
, (133)

r3 =
φ∗1 φ1λ + φ∗2 φ2λ

det Φ
. (134)
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Let us now we construct the soliton surface corresponding to the 1-soliton solution of
the dHFE (72) which we presented in the previous section. In this case, the components of
the position vector are given by (132)–(134), where

φ1 = c1e−χ, φ2 = c2eχ, φ∗1 = c∗1e−χ∗ , φ∗2 = c∗2eχ∗ (135)

φ1λ = −2i(λx + 4λ3t)φ01, φ2λ = 2i(λx + 4λ3t)φ01 (136)

φ∗1λ = 2i(λ∗x + 4λ∗3t)φ∗01, φ∗2λ = −2i(λ∗x + 4λ∗3t)φ∗01. (137)

Thus, in this section, we have presented the soliton surface given by the position
vector r corresponding to the 1-soliton solution of the dHFE.

7. Nonlocal Versions of the Nonlinear Schrödinger-Type Equations and Related
Integrable Spin Systems

In the previous sections, we have considered the local NLSE, local CLLE, and their
spin counterparts, the HFE (3) and the dHFE (72). In this section we are going to study
the nonlocal nonlinear Schrödinger-type equations and their spin equivalents namely the
nonlocal Heisenberg ferromagnet type equations.

7.1. The Nonlocal NLSE and Nonlocal HFE

Let us start from the nonlocal NLSE in more general form as (see, for example,
in [7–29])

νqt − qxx + q2r = 0, (138)

νrt + rxx − r2q = 0, (139)

where ν = α + iβ is a complex number in general, and α, β are real constants. Now, we
introduce the following reduction:

r(t, x) = kq∗(ε1t, ε2x), (140)

where ε2
j = 1 and k = ±1. In this case, the generalized NLSE (138) and (139) takes the form

νqt(t, x)− qxx(t, x) + kq2(t, x)q∗(ε1t, ε2x) = 0, (141)

where ν∗ = −ε1ν. This equation admits the following four reductions:
(i) ε1 = ε2 = 1 (standard (local) case):

iβqt(t, x)− qxx(t, x) + kq2(t, x)q∗(t, x) = 0. (142)

(ii) ε1 = −1, ε2 = 1 (T-symmetric case):

αqt(t, x)− qxx(t, x) + kq2(t, x)q∗(−t, x) = 0. (143)

(iii) ε1 = 1, ε2 = −1 (S-symmetric case):

βqt(t, x)− qxx(t, x) + kq2(t, x)q∗(t,−x) = 0. (144)

(iv) ε1 = −1, ε2 = −1 (ST-symmetric case):

αqt(t, x)− qxx(t, x) + kq2(t, x)q∗(−t,−x) = 0. (145)

Similarly, we can consider the reduction r = kq(ε1t, ε2x) with k ∈ R and a suitable
adaptation of the two parameters α and β. In this case, we have the following equation:

νqt(t, x)− qxx(t, x) + kq2(t, x)q(ε1t, ε2x) = 0. (146)
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that gives us a new four equations. Note that we must add also the equations for the func-
tions q(−t, x), q(t,−x), q(−t,−x), respectively. We do not present them here, as they are
obtained from (138)–(146) by t→ −t; x → −x; (t→ −t, x → −x) reflections respectively.
As all of these equations contain fields that depend simultaneously on x and −x, and/or t
and−t, they are referred to as nonlocal. However, in what follows, we will exclusively focus
on the complex parity extended version corresponding to the choice r(x, t) = kq∗(−x, t).
The other cases can be investigated in the same lines, but we will not considered here.
Note that all of these nonlocal NLS equations have the focusing (k = 1) and defocusing
(k = −1) cases. All these equations are integrable that is they possess Lax pairs, recursion
operators, n-soliton solutions, infinite number integrals of motion, and so on.

It is well known that the gauge equivalent counterpart of the nonlocal NLSE (146) is
the following nonlocal HFE [24]:

St = S ∧ Sxx, (147)

where S = (S1, S2, S3) is the complex-valued vector. The complex-valued spin vector S
induced that the unit vectors ej become also complex-valued. This means that the curvature
κ(t, x), the torsion τ(t, x) and ωj are complex-valued functions [30–57]. As result in the
nonlocal case, we will lost the isomorphism su(2) ≈ so(3). But all geometrical formalism
presented in Section 2 will works also in the nonlocal case, at least, for the examples which
we consider in this paper.

As in the nonlocal case the spin vector S is no longer real and is the complex-valued
vector function, we may decompose it as S = m + il. Now, m and l are already real valued
vector functions which satisfy the following relations:

m2 − l2 = 1, m · l = 0. (148)

As result instead of the HFE (147) we obtain the following set of coupled equations
for the real valued vector functions m and l [24]:

mt = m ∧mxx − l ∧ lxx, (149)

lt = m ∧ lxx + l ∧mxx. (150)

7.2. The Nonlocal CLLE and Nonlocal Derivative HFE

The nonlocal CLLE we write in the form

iqt + qxx + 2rqqx = 0, (151)

irt − rxx − 2rqrx = 0. (152)

As in the previous subsection, we can consider the different reductions as

r = kq∗(ε1x, ε2t), r = kq(ε1x, ε2t) (153)

or

r = kq∗(−x, t), r = kq∗(x,−t), r = kq∗(−x,−t), (154)

r = kq(−x, t), r = kq(x,−t), r = kq(−x,−t), (155)

where k = ±1 and ε2
j = 1. Using the standard procedure, we can show that the gauge

equivalent spin system corresponding to the CLLE has the form

iSt +
1
2
[S, Sxx]−

i
4β2 S2

xSx = 0. (156)

which is in fact an integrable generalized nonlocal dHFE. Its Lax representation is given
by (73) and (74). To find the geometrical equivalent spin system of the nonlocal CLLE (151)
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and (152), we use the same geometrical formalism as in the Section 2. However, here
we must note that in contrast to the local case, in our nonlocal case, in the Serret–Frenet
Equations (6) and (7), the curvature κ(t, x), the torsion τ(t, x), σ(t, x), and ωj(t, x) are
complex-valued functions [57]. As results, in the nonlocal case, the spin matrix S is
not Hermitian and has PT-symmetry S(t, x) = σ3S+(t,−x)σ3. The corresponding spin
vector S(t, x) = (S1(t, x), S2(t, x), S3(t, x)) is complex-valued vector. At the same time, the
geometrical equivalent of the nonlocal CLLE is given by

e3t + e3 × e3xx −
(

2λ2 − 1
8λ2 e2

3x

)
e3x = 0. (157)

As rq = − 1
4β2 S2

x = − 1
8β2 tr(S2

x) and after the identification S ≡ e3, this equation takes
the form

St + S× S3xx −
1

4β2 S2
xSx = 0. (158)

As we mentioned above, in the nonlocal case, the spin matrix S(t, x) is not Hermitian.
However, we can decompose it as the sum of a Hermitian matrix and a skew-Hermitain
matrix as

S = M + iL, (159)

where
M =

1
2
(S+ + S), L =

i
2
(S+ − S). (160)

Next, we use the standard Pauli matrix representation of these matrices: M = m1σ1 +
m2σ2 + m3σ3, L = l1σ1 + l2σ2 + l3σ3, where m = (m1, m2, m3) and l = (l1, l2, l3) are real
valued vector functions. From S = m + il and S2 = 1 we obtain

m2 − l2 = 1, m · l = 0. (161)

Therefore, and from Equation (149) and (150), we get the following set of the vector
equations:

mt + m ∧mxx − l ∧ lxx −
1

4λ2 [(m
2
x − l2)mx − 2(mx · lx)lx] = 0, (162)

lt + m ∧ lxx + l ∧mxx −
1

4λ2 [(m
2
x − l2)lx − 2(mx · lx)mx] = 0. (163)

This is one of forms of the desired nonlocal dHFE. This coupled generalized dHFE is
gauge and geometrical equivalent spin system corresponding to the nonlocal CLLE (151)
and (152).

8. Conclusions

In this paper, we have developed a method for establishing geometric equivalence
based on the isomorphism of the Lie algebras su(2) ≈ so(3). The advantage of this
geometrical method in comparison with the other approach, for example, the Lakshmanan
method is that here in our case, the identification condition S ≡ e1 is not required in
advance, and the equation of motion for e3 (43), which gives the general form of spin
systems for constant values of λ, is derived in a natural way. The form of a particular spin
system differs depending on the accepted value of κ. Moreover, note that in [1], where
consider case σ = 0, κ 6= 0, τ 6= 0 and the connection between the solution of geometrically
equivalent equations is given by the Hasimota transformation (5). In our case, in this study
with σ 6= 0, κ = 0, τ 6= 0 and solutions of NLSE (1) and HFE (3) are related by the formula
q = 1

2 (σ− iτ). One of main results of this paper is the extension of the geometrical method
for the local integrable equations to the nonlocal ones. We have shown that for the nonlocal
equations, at least, for the nonlocal NLSE, the nonlocal CLLE and their related equivalent
nonlocal spin systems (nonlocal Heisenberg ferromagnet type equations) the considered
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geometrical formalism works and fruitful. We have constructed two new integrable spin
systems which are equivalent to the local and nonlocal versions of the NLSE and CLLE.
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