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Abstract: IR-drop is a fundamental constraint by almost all integrated circuits (ICs) physical designs,
and many iterations of timing engineer change order (ECO), IR-drop ECO, or other ECO are needed
before design signoff. However, IR-drop analysis usually takes a long time and wastes so many
resources. In this work, we develop a fast dynamic IR-drop predictor based on a machine learning
technique, XGBoost, and the prediction method can be applied to vector-based and vectorless IR-
drop analysis simultaneously. Correlation coefficient is often used to characterize the symmetry of
prediction data and golden data, and our experiments show that the prediction correlation coefficient
is more than 0.96 and the average error is no more than 1.3 mV for two industry designs, which are of
2.4 million and 3.7 million instances, respectively, and that the analysis is speeded up over 4.3 times
compared with the IR-drop analysis by commercial tool, Redhawk.

Keywords: IR-drop (IRD); machine learning; engineer change order (ECO); XGBoost

1. Introduction

With technologies scaling down continuously, IR-drop, especially dynamic IR-drop,
has brought about great concern for very large-scale integration (VLSI) physical designers
and testers [1–4]. Lower voltage supply makes the signal slower [5] and IR-drop makes the
cell delay larger [6], then decreasing the circuit performance or leading to timing failure
or even increasing yield loss. Therefore, IR-drop signoff has become a significant step
of physical design before tapping out. However, IR-drop analysis was often conducted
by simulation-based commercial electronic design automation (EDA) tools, which were
known to be accurate but very time-consuming. For a concrete industrial design, each
iteration takes hours. Because no designer can hardly fix all IR-drop violations during
one iteration, there needs to be dozens of ECO iterations to fix IR-drop violations, timing
violations as well as design rule violations.

Figure 1 has shown the traditional IR-drop signoff flow for industrial design. The
imported design data in one IR-drop analysis were very similar with that in the next
IR-drop analysis because one ECO iteration only changes several to dozens of thousands of
cells and nets, which is often less than 1% of the total design. Therefore, machine learning
is suitable for predicting the IR-drop value of those ECO cells and then accelerates the
flow runtime.

Until now, machine learning has been explored in IR-drop analysis. Linear regression
is one of the simplest machine learning models. It was used to predict the IR-drop of
each instance for at-speed scan test [6], for the power in scan-based testing is of great
concern. The support vector machine (SVM) is another important machine learning model
which was used to predict IR-drop [7,8]. The two kinds of algorithms were useful in
some special designs and test fields, in which the IR-drop behaves in a linear relationship
with the input features. Convolutional neural network (CNN) is a widespread machine
learning model used in many research fields, especially image and voice recognition,
and it was used for IR-drop prediction as well [9,10] because an IR-drop map can be
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expressed as a figure. Regression tree is another widespread used machine learning model
for many industrial application fields and it was also used for IR-drop estimation [10–13].
XGBoost [14], a gradient boosting regression tree, was proposed in 2016, which is proved
to be behaving perfectly in most non-image application fields. In addition, XGBoost has
achieved amazing results compared with other decision trees or even with some deep
learning algorithms [10,15], and it has been used for IR-drop prediction as well [11–13].
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Figure 1. Traditional IR-drop signoff flow in physical design.

A major weakness shared by most of the previous works was that they focused on
vector-based analysis but ignored vectorless IR-drop. On one hand, vector-based analysis
depends on simulation patterns from value change dump (VCD) files, thus vector-based
analysis is also called VCD-based analysis. However, while vectorless analysis does not
need VCD files for dynamic IR-drop analysis, the physical designer is often unable to obtain
accurate power simulation patterns in the early and middle stage of the design process,
therefore vectorless analysis is more desirable for power analysis especially in the early
stage of the design process. On another hand, the IR-drop from vectorless analysis and
vector-based analysis is not the same, and vector-based analysis cannot cover all application
scenarios, thus the physical designer needs to analyze vectorless and vector-based dynamic
IR-drop before tapping out.

To overcome this shortcoming, in this paper we have proposed a machine learning
method based on the XGBoost framework which can provide a simultaneous prediction
of vectorless IR-drop and vector-based IR-drop. We put more emphasis on simultaneous
prediction in our experiments, considering industrial demand and its higher difficulty and
usability. The proposed method in this work addresses these challenges by its innovative
pre-processed features and XGBoost algorithm. In addition, our experiment results also
show that there is no need to update the machine learning model after each iteration of
timing ECO or other ECO; it would be better to be updated for industrial designs after
10~30 thousands of ECO actions. Therefore, we can accelerate the design process with
the proposed technique to cut down iteration time and we just run commercial IR-drop
analysis tools when updating the machine learning model and signoff.

The rest of this paper is organized as follows. Section 2 shows the proposed technique.
Section 3 presents the experiment setup. Section 4 shows experimental results based on
two industry designs. Finally, Section 5 concludes this paper.

2. Proposed Technique
2.1. Proposed Flow

The proposed IR-drop signoff flow is shown in Figure 2. In the early stage of physical
design, dynamic IR-drop analysis should be conducted using commercial EDA tools such
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as Redhawk [16]. Then, based on the design data and power data from IR-drop analysis,
some features should be extracted for each cell to train a machine learning model. Later,
as the design is improved gradually, the IR-drop prediction can be carried out with the
trained model, and then the designer can use the prediction data to fix IR-drop violations
after each iteration of timing ECO or IR-drop ECO.
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Figure 2. The proposed IR-drop signoff flow in physical design.

In the middle stage of physical design, the register transfer level (RTL) netlist and
design floorplan are fixed, and then when the design data is also stable, the physical
designer is recommended to run IR-drop analysis with commercial tool to update the
trained model, leading to improved predicting accuracy in the later stage. Before signoff, if
all predicted IR-drop violations by machine learning are fixed, the designer should perform
IR-drop analysis with a commercial tool as well to check whether all real IR-drop violations
are truly fixed. If there are true violations, the designer should update the trained model
and repeat the aforementioned steps.

2.2. Nature Feature Extraction

Excessive IR-drop is caused by either larger resistance or larger current according to
Ohm’s Law, therefore an excellent design is of suitable power delivery network (PDN) and
suitable local current density. PDN with uniform power grid means uniform resistance
distribution in general. However, many designs need a non-uniform power grid, thus
the resistance distribution is not uniform anymore and the pull-up resistance and pull-
down resistance of each cell should be considered. The pull-up resistance and pull-down
resistance are named Rpu and Rpd, respectively, and they can be extracted by a commercial
tool such as Redhawk.

Current is a more critical factor related to IR-drop, but the current of each cell or each
instance is not a constant value for the equivalent resistance of each cell, or each instance is
not constant. The current of each cell is composed of static current and dynamic current;
the static current is constant and is also called leakage current (Il), while the dynamic
current (Idyn) varies as a signal switches. The scaled dynamic current (SIdyn) is impacted by
the signal toggle rate (Tog), and it is calculated by Idyn × Tog, and scaled total current (SIA)
is calculated by SIdyn + Il. SIA and Il are both extracted as input features. In addition, the
peak current (Ip) has a significant effect on dynamic IR-drop so it must be extracted as a
feature as well.

Since cell power consumption is proportional to cell current, cell power is taken into
account as an input feature. There are three types of power consumptions, called leakage
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power (Pl), internal power (Pi), and switching power (Ps), respectively. The leakage power
Pl is consumed by unintended leakage, the internal power Pi is the power dissipated
by internal parasitic capacitance of each cell, and the switching power Ps is the power
dissipated by the output load capacitance of each cell. During dynamic IR-drop analysis,
the internal power and switching power is scaled by toggle rate, and the toggle rate should
be extracted as a feature as well. Since the toggle rate varies as VCD files vary, the scaled Pi
(SPi) and scaled Ps (SPs) are calculated by Pi × Tog and Ps × Tog, and the total scaled power
(SPA) is calculated by SPi + SPs + Pl. SPi, SPs, Pl, and SPA are all extracted as input features.

The switching power is related with the output load capacitance and the transitions of
all input signals. If a cell is moved to another location during ECO iteration, the drive load
of the cell is changed but we cannot obtain an updated switching power based on static
timing analysis (STA) data. Thus, the output load capacitance (CL) should be extracted as
an input feature. Besides, the number of input pins of each cell is not the same, and then the
transitions of input signals are inconvenient as input features, and we do not consider it.

During each timing ECO or other ECO action, the location of some instance may be
changed, and the cell type of some instance may be changed, thus some instance may be
inserted or removed. Therefore, the x, y coordinate of a cell instance and the cell type of
a cell instance should be extracted as input features. The cell type often includes three
factors: the function such as AND or OR, the drive strength, and the voltage threshold
(VT) type. Because most ECO actions only change the VT type and drive strength with the
function keeping the same, the cell type can be split into three features: cell function (CF),
drive strength (DS), and VT type (VTT). In total, all nature features extracted are shown in
Table 1.

Table 1. Specifications of the extracted nature features from each instance itself.

Nature Features Specifications

x, y The x, y coordinate of an instance on layout design
CF The code that represents the cell function of an instance
DS The drive strength of an instance

VTT The voltage threshold type of an instance
Rpu The effective pull-up resistance of an instance
Rpd The effective pull-down resistance of an instance
CL The output load capacitance of an instance
Tog The signal toggle rate of an instance
Il The leakage current of an instance

SIA The total of scaled dynamic current and leakage current of an instance
Ip The peak current of an instance
Pl The leakage power of an instance

SPi The scaled internal power of an instance
SPs The scaled switching power of an instance
SPA The scaled total power of an instance

2.3. Neighboring Feature Construction

The IR-drop of an instance is also impacted by its neighbor cells, as shown in Figure 3.
The IR-drop of inst_A may be larger than that of inst_B though the total power of inst_A
is less than inst_B for the cell density of inst_A is larger. Therefore, the power features of
the neighboring cell should be considered. The cell density is not uniform everywhere, so
we use 11 × 11 grids to construct the same number of neighboring features for each cell.
Figure 3 illustrates smaller version (3 × 7) grids, where the coordinate of the center grid is the
coordinate of the target cell. The SPA of the grid is the sum of the product of the SPA of each
instance and its occupied area ratio related with this grid. For inst_A in Figure 3, it lies across
two grids, 30% area of inst_A is in the left grid and 70% area of inst_A in the right grid, and
10% area of inst_B locates at the same grid with inst_A. Therefore, the SPA of the left grid and
the right grid is 0.3 × SPA(inst_A) and 0.7 × SPA(inst_A) + 0.1 × SPA(inst_B) respectively.
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sum of the product of the SPA of each instance and its occupied area ratio related with this grid. A
total of 30% area of inst_A is in grid1, 10% area of inst_B is in grid2, so the SPA of grid1, grid2, and
grid3 is 0.3 × SPA(inst_A), 0.7 × SPA(inst_A)+ 0.1 × SPA(inst_B), 0.9 × SPA(inst_B), respectively.

In addition, there exist multi-row standard cells in commercial bulk FinFET technology,
such as inst_C shown in Figure 3. The power calculation is similar to those single-row cells.
The height of each grid is equal to the height of a standard cell row and the width of each
grid is several or decades times of one site’s width. In this work, the height of each grid
is 0.3 um, and the width of each grid is 1.28 um, which is 20 times of the one site’s width.
The selection of grid numbers depends on experience, and it can be varied with the change
of technology.

Toggle rate Tog is also used to build neighboring features to improve prediction
accuracy and its calculation is the same as that for SPA.

The density of the scaled total current SIA and the peak current Ip should also be
considered, and they are extracted using 11 × 11 grids as well. However, the relationship
between IRD with current is not the same as that between IRD with power assumption.
As shown in Figure 4, the IRD of inst1 is proportional to the sum of I1_up, I1_down, I2_up,
and I3_down. For simplicity, we suppose that the effect of I1_up and I1_down is the same
and that they are the half of the current of inst1. For Ip and SIA of inst1 in Figure 4, we
can achieve Ip

′ and SIA
′ of inst1, which are Ip1 + (Ip2 + Ip3)/2, and SIA1 + (SIA2 + SIA3)/2,

respectively. For neighboring features about peak current and total current, we also use
11 × 11 grids, and the same calculation method is adopted, but the parameters Ip and SIA
are replaced by Ip

′and SIA
′.
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Figure 4. The relationship between IRD of an instance and the current of related instances. IRD
of inst1 is composed of IRD_vdd1 and IRD_vss1. IRD_vdd1 is related with the pull-up current of
inst1 and inst2, i.e., I1_up and I2_up. IRD_vss1 is related with the pull-down current of inst1 and
inst2, i.e., I1_down and I2_down. Therefore, the IRD of inst1 can be supposed to be proportional to
(I1_up + I1_down + I2_up + I3_down).

Totally, there are 484 (11 × 11 × 4) neighboring features extracted as well as 16 nature
features. Totally, there are 500 features in total for each cell.
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2.4. Design Matrix Construction

Many designs have large amounts of instances, for example, several million or dozens
of millions. If all instances are considered simultaneously, the design matrix is too large. In
order to mitigate the training scale, many researchers are inclined to partition the floorplan
and then select parts of IRD critical partitions to construct a training model, such as
in [10–13]. This method can really save training time, but the cell IRD in other unselected
partitions is not completely considered. Besides, during hold ECO, hold buffers are inserted
almost everywhere and there are ECO actions in each partition. Then the partition method
will overlook part of IRD prediction of ECO cells or other cells neighboring the ECO cells.
Therefore, in this work, we divide the floorplan into several partitions so that there exists
0.4–1 million instances in each partition. For each partition, we combine the top selection
with random selection to construct the design matrix.

For vectorless and VCD-based dynamic IRD prediction, the top selection means
selecting 120,000 instances of which the IR-drop is the worst in the partition and the
random selection means selecting another 180,000 instances randomly in the partition. By
this method, we use 40% samples to characterize the worst IR-drop cells and 60% samples
to characterize other cells in each partition, and then the IRD value from zero to the worst
are all considered. In total, 300,000 samples are selected to construct a design matrix for
each partition, 40% samples are from the top selection and 60% samples are from a random
selection. The selection number is determined based on experience. Besides, for those
blocks or partitions with less than 300,000 instances, all instances can be selected into the
design matrix.

2.5. Training Model

We use XGBoost as the machine learning models. A given dataset is of form D = (xi, yi),
where |D| = N, xi∈Rm, yi∈R, N is the total number of cells, m is the feature dimension, xi is
just the input features of the ith instance, and yi is just the golden IRD value of ith instance
provided by commercial tools such as Redhawk. The XGBoost ensembles K additive
functions to achieve the predicted IRD value by Formula (1).

ỹi = Φ(x) =
K

∑
k=1

fk(xi), fk ∈ F (1)

where F is the space of regression trees and fk is kth tree function. The goal is to minimize
the following objective function shown in Formula (2).

L(Φ) = ∑i l(yi, ỹi) + ∑k Ω( fk) (2)

where each l(yi, ỹi) is a differentiable convex loss function that characterizes the difference
between the predicted IRD ỹi and the golden IRD yi. In our application, it is defined by
mean square error (MSE). Ω( fk) is a regularization term that penalizes the complexity of
the tree structure and prevents overfitting.

3. Experiments Setup

Two industry design blocks, DesignA and DesignB, have been evaluated by our
proposed method. The voltage supply for both designs is 0.75 V, and the profiles of these
two circuits are shown in Table 2. The second column shows the dynamic analysis mode
where one VCD is available for DesignA while two VCDs are available for DesignB. For
both designs, the golden IRD values are provided by Redhawk, the mean IRD and the
max IRD values are shown in the fourth and fifth column, respectively. The number of
IRD violations means an IRD value larger than 8% of the voltage supply in dynamic mode,
which is shown in the sixth column.
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Table 2. The profiles of evaluated circuit designs, i.e., DesignA and DesignB.

Circuit Design DesignA DesignB

Power Analysis Mode Vectorless VCD Vectorless VCD1 VCD2

Number of cell instance 2.4 million 2.4 million 3.7 million 3.7 million 3.7 million
Mean IRD (mV) 15.31 2.19 16.84 3.54 8.42
Max IRD (mV) 55.7 165.2 73.5 90.9 91.4

Number of IRD violations 0 576 9 28 173

We use correlation coefficient (CC), Mean Absolute Error (MAE), Max Error (MaxE),
Root Mean Square Error (RMSE), and Normalized Root Mean Square Error (NRMSE) to
evaluate the performance of our method and which are defined in following equations. CC
is defined in Equation (3) and it is a number between 0 and 1, where 1 means completely
correlated. MAE and MaxE are defined in Equations (4) and (5), RMSE and NRMSE are
defined in Equations (6) and (7).

CC =

N
∑

i=1
(yi −mean(y))(ỹi −mean(ỹ))√

N
∑

i=1
(yi −mean(y))2 N

∑
i=1

(ỹi −mean(ỹ))2

(3)

MAE =

N
∑

i=1
||yi − ỹi||

N
(4)

MaxE = maxi∈[1,N](yi − ỹi) (5)

RMSE =

√√√√√ N
∑

i=1
(yi − ỹi)

2

N
(6)

NRMSE =
RMSE

mean(y)
× 100% (7)

4. Results
4.1. IR-Drop Prediction before ECO

The design data can be from any design database in which the routing is finished. In
this work, the data are from the database where placement and routing (PR) are finished
and no ECO action is carried out. For DesignA and DesignB, there are four partitions
shown in Figure 5. The training data are generated by top selection and random selection
described in the context, the training data numbers are 300 k, which is about 1/4–2/3
of total cell instances in each partition in DesignA and DesignB, respectively. We also
select the total instances in each partition to construct one group of testing data to validate
whether our model can successfully predict all IRD values, and the results are shown in
Tables 3 and 4.

As shown in Table 3, the MAE is less than 0.42 mV and the CC is larger than 0.982 for
VCD-based dynamic mode in each partition for DesignA. The MAE is less than 0.847 mV
and the CC is larger than 0.974 for vectorless dynamic mode in each partition.

As shown in Table 4, the MAE is less than 1116 mV and the CC is larger than 0.961 for
VCD1-based dynamic mode in each partition for DesignB. The MAE is less than 1.26 mV
and the CC is larger than 0.960 for vectorless dynamic mode in each partition.
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Figure 5. The partition for DesignA and DesignB: (a) there are 4 partitions in DesignA, which is recoded as P1–P4; (b) there
are 4 partitions in DesignB, which is recoded as P1–P4 as well.

Table 3. The prediction results of DesignA before ECO.

Partitions Power Analysis Mode Inst Numbers Mean IRD (mV) CC MAE (mV) MaxE (mV) RMSE

P1
vectorless 545,772 15.97 0.976 0.845 15.49 1.14

VCD 545,772 1.69 0.982 0.267 7.10 0.38

P2
vectorless 444,511 14.69 0.982 0.784 16.03 1.07

VCD 444,511 1.81 0.986 0.291 8.95 0.43

P3
vectorless 590,385 16.03 0.974 0.847 16.55 1.14

VCD 590,385 2.74 0.988 0.420 14.14 0.59

P4
vectorless 460,383 14.22 0.979 0.807 14.89 1.11

VCD 360,383 2.43 0.992 0.333 10.88 0.49

Table 4. The prediction results of DesignB before ECO.

Partitions Power Analysis Mode Inst Numbers Mean IRD (mV) CC MAE (mV) MaxE (mV) RMSE

P1
vectorless 1,177,525 16.37 0.960 1260 21.53 1.67

VCD1 1,177,525 1.70 0.976 0.312 14.29 0.48
VCD2 1,177,525 11.38 0.972 1116 21.44 1.57

P2
vectorless 947,562 14.13 0.960 1087 21.92 1.47

VCD1 947,562 2.01 0.987 0.276 18.09 0.45
VCD2 947,562 4.13 0.961 0.777 22.17 1.17

P3
vectorless 782,721 16.81 0.963 1176 23.44 1.58

VCD1 782,721 6.87 0.978 0.766 23.12 1.12
VCD2 782,721 9.63 0.980 1077 26.09 1.58

P4
vectorless 807,029 20.42 0.981 1092 19.81 1.47

VCD1 807,029 4.87 0.974 0.652 23.79 0.96
VCD2 807,029 7.84 0.965 0.923 25.60 1.31

Figure 6 shows the correlation between the predicted IRD and the golden IRD for
DesignA. Figure 6a–d is the result for VCD-based dynamic mode while Figure 6e–h is
for vectorless dynamic mode. The results show high correlation of our prediction in both
dynamic modes. For vectorless dynamic mode, as shown in Figure 6e–h, the correlation of
the prediction for low IRD cells is smaller than that for high IRD cells. This is due to the
selection for low IRD cells being far less than 70%. However, the designer does focus on
the prediction of high IRD and IRD violations. The limited loss of prediction accuracy of
low IRD has no effect on the prediction of high IRD and we would rather accelerate the
training process by this method.
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Figure 6. The predicted IR-drop versus golden IR-drop for DesignA before ECO, (a) for Partition 1
with VCD-based dynamic mode, (b) for Partition 2 with VCD-based dynamic mode, (c) for Partition 3
with VCD-based dynamic mode, (d) for Partition 4 with VCD-based dynamic mode, (e) for Partition 1
with vectorless dynamic mode, (f) for Partition 2 with vectorless dynamic mode, (g) for Partition 3
with vectorless dynamic mode, (h) for Partition 4 with vectorless dynamic mode.

Because the cell numbers in each partition of DesignB are much larger than that of
DesignA, the CC and MAE are often larger than DesignA in each partition, that is to say,
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the prediction accuracy of DesignB is decreased slightly due to the larger design volume.
However, as shown in Figure 7, the correlation of high IRD values is high though the
correlation of low IRD values is decreased due to the larger design volume, which means
the proposed method can be competent at the prediction accuracy of high IRD values and
IRD violations.
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Figure 7. The predicted IR-drop versus golden IR-drop for DesignB before ECO, (a) for Partition 1
with VCD-based dynamic mode, (b) for Partition 2 with VCD-based dynamic mode, (c) for Partition 3
with VCD-based dynamic mode, (d) for Partition 4 with VCD-based dynamic mode, (e) for Partition 1
with vectorless dynamic mode, (f) for Partition 2 with vectorless dynamic mode, (g) for Partition 3
with vectorless dynamic mode, (h) for Partition 4 with vectorless dynamic mode.
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Figure 8 shows the error distribution of predicted IRD for DesignA and DesignB.
The Y-axis is the number of cell instances, and the X-axis of the figure is golden IRD
minus predicted IRD. The left part of each figure in Figure 8 shows the overpredicted cell
instances while the right part of each figure shows the underpredicted cell instances. Most
of the prediction (>99%) errors are smaller than ±5 mV for DesignA and DesignB for all
dynamic modes.

Figure 8. The error distribution of the prediction before ECO, (a) for DesignA with VCD-based
dynamic mode, (b) for DesignA with vectorless dynamic mode, (c) for DesignB with dynamic
mode with VCD1, (d) for DesignB with dynamic mode with VCD2, (e) DesignB with vectorless
dynamic mode.

4.2. IR-Drop Prediction after ECO

Several iterations of ECO actions have been completed on the design database of
DesignA and DesignB, respectively. The ECO actions include sizing-up or sizing-down
cells, inserting buffer, removing buffer, VT-swapping and moving cells, aiming to fix timing,
and fixing some IR-drop violations. Totally, there are 10,057 and 91,916 ECO actions for
DesignA and DesignB, respectively. We used the trained XGBoost model to predict the
IR-drop of the cell instances in ECO database and we obtained the golden IR-drop of all
cells from Redhawk.
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The comparison of the predicted IRD with the golden IRD is shown in Tables 5 and 6.
As shown in Table 5, the CC is larger than 0.901 and 0.971 for VCD-based and vectorless
mode, respectively, and the MAE is less than 1189 mV and 0.888 mV for VCD-based and
vectorless mode, respectively. As shown in Table 6, the CC is larger than 0.915 and 0.882
for VCD-based and vectorless mode, respectively, and the MAE is less than 1955 mV and
2370 mV for VCD-based and vectorless mode, respectively. Compared with the predicted
results shown in Tables 3 and 4, the CC is decreased slightly, MAE is increased, and MaxE
is also increased. That is to say, the prediction accuracy is decreased slightly due to dozens
of thousands of ECO actions.

Table 5. The prediction results of DesignA after ECO.

Partitions Power Analysis Mode Inst Numbers Mean IRD (mV) CC MAE (mV) MaxE (mV) RMSE

P1
vectorless 545,795 16.03 0.973 0.888 16.63 1.19

VCD 545,795 1.74 0.970 0.320 20.53 0.52

P2
vectorless 444,543 14.75 0.980 0.835 18.86 1.14

VCD 444,543 1.80 0.979 0.324 13.3 0.53

P3
vectorless 590,410 16.10 0.971 0.882 20.97 1.19

VCD 590,410 3.98 0.904 1189 22.45 1.88

P4
vectorless 460,400 14.12 0.975 0.887 16.30 1.20

VCD 460,400 2.08 0.901 0.882 20.02 0.98

Table 6. The prediction results of DesignB after ECO.

Partitions Power Analysis Mode Inst Numbers Mean IRD (mV) CC MAE (mV) MaxE (mV) RMSE

P1
vectorless 1,185,523 16.25 0.882 2.347 32.91 2.99

VCD1 1,185,523 1.69 0.962 0.379 31.04 0.66
VCD2 1,185,523 11.80 0.915 1955 35.96 2.88

P2
vectorless 959,577 14.15 0.908 2010 28.90 2.66

VCD1 959,577 1.79 0.964 0.404 30.57 0.78
VCD2 959,577 4.46 0.945 0.887 34.47 1.36

P3
vectorless 812,582 16.90 0.910 2370 36.53 3.11

VCD1 812,582 7.12 0.963 1091 37.70 1.68
VCD2 812,582 11.01 0.970 1700 39.91 3.08

P4
vectorless 829,071 20.63 0.929 2256 36.19 2.95

VCD1 829,071 5.07 0.935 1049 30.80 1.73
VCD2 829,071 5.48 0.921 1485 39.50 1.49

Figure 9 shows the difference between the predicted IRD with the golden IRD after
ECO. For DesignA, after 10,057 ECO actions, the difference between the predicted high
IRD and the golden high IRD is increased, especially in VCD-based dynamic mode. For
DesignB, after more than 90,000 ECO actions, the difference between the predicted high
IRD and the golden high IRD is increased as well, especially in dynamic analysis with
VCD2. That is to say, the prediction accuracy of high IRD values and IRD violations is
decreased after ECO.

However, as shown in Tables 5 and 6, the CC for most cases is still larger than 0.9
and the MAE is less than 1.2 mV and 2.4 mV for DesignA and DesignB, respectively. In
addition, the MaxE is less than 21 mV and 40 mV for DesignA and DesignB, respectively,
which means the prediction accuracy is still high.

In order to illustrate the prediction effect more clearly, the IRD maps are shown in
Figures 10 and 11. Figure 10a is the predicted IRD map of DesignA in VCD-based dynamic
mode, Figure 10b is the corresponding golden IRD map, and they are nearly the same.
Figure 10c,d is the predicted IRD map and the golden IRD map of DesignA in vectorless
dynamic mode, and they are nearly the same as well. Figure 11a,b is the predicted IRD
map and the golden IRD map of DesignB in VCD1-based dynamic mode, which are nearly
the same. Figure 11c,d is the predicted IRD map and golden IRD map of DesignB in
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VCD2-based dynamic mode, which are also nearly the same. Figure 11e,f is the predicted
IRD map and golden IRD map of DesignB in vectorless dynamic mode, which are nearly
the same as well. Therefore, the prediction by the proposed model is also successful after
dozens of thousands of ECO actions.
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Figure 9. The predicted IR-drop versus golden IR-drop after ECO, (a) for DesignA with VCD-based
dynamic mode, (b) for DesignA with vectorless dynamic mode, (c) for DesignB with dynamic
mode with VCD1, (d) for DesignB with dynamic mode with VCD2, (e) for DesignB with vectorless
dynamic mode.
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Figure 10. (a) The predicted IR-drop map for DesignA after ECO with VCD-based dynamic mode,
(b) the golden IR-drop map for DesignA after ECO with VCD-based dynamic mode, (c) the predicted
IR-drop map for DesignA after ECO with vectorless dynamic mode, (d) the golden IR-drop map for
DesignA after ECO with vectorless dynamic mode.

Symmetry 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 

(a) (b)

(c) (d)

DesignA (VCD) predicted

DesignA (vectorless) predicted

DesignA (VCD) golden

DesignA (vectorless) golden

 

Figure 10. (a) The predicted IR-drop map for DesignA after ECO with VCD-based dynamic mode, 

(b) the golden IR-drop map for DesignA after ECO with VCD-based dynamic mode, (c) the pre-

dicted IR-drop map for DesignA after ECO with vectorless dynamic mode, (d) the golden IR-drop 

map for DesignA after ECO with vectorless dynamic mode. 

DesignB (VCD1) predicted

(a)

(c)

DesignB (VCD2) predicted

(e)

DesignB (vectorless) predicted

(b)

DesignB (VCD1) golden

(d)

DesignB (VCD2) golden

(f)

DesignB (vectorless) golden

 

Figure 11. (a) The predicted IR-drop map for DesignB after ECO with dynamic mode with VCD1, 

(b) the golden IR-drop map for DesignB after ECO with dynamic mode with VCD1, (c) the pre-

dicted IR-drop map for DesignB after ECO with dynamic mode with VCD2, (d) the golden IR-

drop map for DesignB after ECO with dynamic mode with VCD2, (e) the predicted IR-drop map 

for DesignB after ECO with vectorless dynamic mode, (f) the golden IR-drop map for DesignB 

after ECO with vectorless dynamic mode. 

In order to validate whether the true IR-drop violations are predicted correctly fur-

thermore, two more evaluation metrics, Precision and Recall, are introduced. Predicted IR 

pass (PP) means those cells of which the predicted IRD is less than 60 mV (=8% × 750 mV), 

Predicted IR Fail (PF) means those cells of which the predicted IRD is larger than 60 mV. 

Golden IR pass (GP) means those cells who’s golden IRD is less than 60 mV while Golden 

IR Fail (GF) means those cells who’s golden IRD is larger than 60 mV. Then, Precision and 

Recall are defined as follows. 

Figure 11. (a) The predicted IR-drop map for DesignB after ECO with dynamic mode with VCD1,
(b) the golden IR-drop map for DesignB after ECO with dynamic mode with VCD1, (c) the predicted
IR-drop map for DesignB after ECO with dynamic mode with VCD2, (d) the golden IR-drop map
for DesignB after ECO with dynamic mode with VCD2, (e) the predicted IR-drop map for DesignB
after ECO with vectorless dynamic mode, (f) the golden IR-drop map for DesignB after ECO with
vectorless dynamic mode.
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In order to validate whether the true IR-drop violations are predicted correctly furthermore,
two more evaluation metrics, Precision and Recall, are introduced. Predicted IR pass (PP) means
those cells of which the predicted IRD is less than 60 mV (=8%× 750 mV), Predicted IR Fail
(PF) means those cells of which the predicted IRD is larger than 60 mV. Golden IR pass (GP)
means those cells who’s golden IRD is less than 60 mV while Golden IR Fail (GF) means those
cells who’s golden IRD is larger than 60 mV. Then, Precision and Recall are defined as follows.

TruePositive (TP) = PF ∩ GF
TrueNegative (TN) = PP ∩ GP
FalseNegative (FN) = PF ∩ GP
FalseNegative (FN) = PP ∩ GF

 (8)

 Precision = |TP|
|TP|+|FP|

Recall = |TP|
|TP|+|FN|

 (9)

For DesignA and DesignB, the Precision and Recall is shown in Table 7. For DesignA,
no IRD violation exists in vectorless dynamic mode, and the Precision and Recall is 0.95 and
0.98, respectively, in VCD-based dynamic mode, which means that 95% of the predicted
IRD violations are really IRD violations, and that 98% of IRD violations are successfully
identified. For DesignB, the Precision is larger than 0.794 for three dynamic modes, which
means more than 79.4% of the predicted IRD violations are really IRD violations, and the
Recall is over 0.382, which means more than 38.2% of IRD violations can be identified
successfully. The Recall of DesignB is small because the ECO actions are more than 90,000,
and then the training model should be updated based on the ECO database for DesignB to
promote Recall for next ECO actions. From this view, maybe after 10,000 to 20,000 ECO
actions, the training model should be updated.

Table 7. The Precision and Recall of two designs after ECO.

Circuit Design MAE (mV) MaxE (mV) CC RMSE TP TN FP FN Precision Recall

DesignA (vectorlsess) 0.875 20.97 0.975 1.181 0 2041148 0 0 NAN NAN
DesignA (VCD) 0.643 22.45 0.925 1.209 246 2040884 13 5 0.950 0.980

DesignB (vectorlsess) 2.247 36.53 0.916 2.925 13 3786717 2 21 0.867 0.382
DesignB (VCD1) 0.739 37.70 0.954 1.410 27 3786678 7 41 0.794 0.397
DesignB (VCD2) 1.526 39.91 0.952 2.488 2137 3781511 143 2962 0.937 0.419

4.3. Runtime Comparison

The experiments are performed on an Intel Xeon Processor W-2245, and the runtime
of the work is shown in Table 8. For DesignA, we spend 21–24 min to construct the training
matrix, and the training time is about 30–31 min, thus the total training time is about
52~54 min. All instances in the design are taken into account during the predicting matrix
construction so that this process cost over 1 h. The predicting time is less than 1 min. If we
use Redhawk to run dynamic IRD analysis, we need about 5.5 h and 6.6 h for DesignA and
DesignB, respectively. After one or several iterations of ECO, we should reconstruct the
predicting matrix, then obtain the predicted IRD values of all instances with the training
model, which cost about 1.18 h and 1.5 h, respectively. Therefore, the dynamic IRD analysis
is speeded up over 4.3 times for both designs.

Table 8. The runtime comparison of two designs.

Circuit Design DesignA
(Vectorless)

DesignA
(VCD)

DesignB
(Vectorless)

DesignB
(VCD1)

DesignB
(VCD2)

Constructing training matrix 23 min 22 s 21 min 49 s 24 min 7 s 22 min 31 s 22 min 43 s
Training 30 min 11 s 30 min 7 s 30 min 12 s 30 min 8 s 30 min 9 s

Constructing predicting matrix 1 h 11 min 1 h 9 min 1 h 36 min 1 h 27 min 1 h 27 min
Predicting 31 s 30 s 39 s 38 s 38 s

IRD analysis by Redhawk 5 h 41 min 5 h 35 min 6 h 57 min 6 h 34 min 6 h 44 min
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5. Conclusions

A machine-learning-based dynamic IRD predictor was proposed to speed up IRD
analysis for ECO over 4.3 times. We proposed the construction approach of a design matrix
based on partition, top selection, and random selection, which is the trade-off of prediction
accuracy and training time. The extracted features take geometry size, power, and physical
information of instances into account. The experiments show that the prediction CC is
more than 0.96 and MAE is less than 1.3 mV on the 2.4 million-cells and 3.7 million-cells
industry designs in all dynamic modes. Precision and Recall for IRD violations after over
10,000 ECO actions in DesignA are 0.95 and 0.98, and Precision for IRD violations after
over 90,000 ECO actions in DesignB is still more than 0.79. We think it is suitable for the
designer to update the machine learning model after 10~30 thousand ECO actions, and our
directions for ongoing work include: (i) improving the speed of our method, (ii) improving
the accuracy of the prediction by optimizing feature extraction, and (iii) and extracting
feature for power-mesh, allowing the machine learning model to be more suitable for
non-uniform PDN.
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