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Abstract: In real reflexive Banach spaces, let the GSTDHVI, SHVI, DVIP, VIT, and KKM represent
a generalized system of time-dependent hemivariational inequalities, a system of hemivariational
inequalities, a derived vector inclusion problem, Volterra integral term, and Knaster–Kuratowski–
Mazurkiewicz, respectively, where the GSTDHVI consists of two parts which are of symmetric
structure mutually. By virtue of the surjectivity theorem for pseudo-monotonicity mappings and the
Banach contraction mapping principle, instead of the KKM theorems exploited by other authors in
recent literature for a SHVI, we consider and study a GSTDHVI with VITs. Under quite mild assump-
tions, it is shown that there exists only a solution to the investigated problem via demonstrating that
a DVIP with VIT is solvable.

Keywords: systems of time-dependent generalized hemivariational inequalities; symmetric structure;
pseudo-monotonicity mapping; Clarke’s generalized directional derivative; Banach contraction
mapping principle

MSC: 49K40; 47J20; 49J52

1. Introduction

It is well known that the hemivariational inequality (HVI, for short) involving non-
smooth and nonconvex energy functions was first considered in [1]. It is a significant
extension of variational inequality (VI, for short). As a helpful technique, the HVIs and
their systems have played a crucial role in the study of quite meaningful problems of
mechanics and engineering sciences, e.g., obstacle problems, thermoviscoelastic frictional
contact problems, unilateral contact problems in nonlinear elasticity, etc.; please refer
to [2–6]. Via the Clarke’s generalized directional derivative and the Clarke’s generalized
gradient (appearing in Section 2), various HVIs and systems of HVIs (SHVIs, for short),
e.g., stationary HVIs, evolutionary HVIs, and their systems, etc., have been investigated by
numerous authors in the past more than 30 years; please refer to, e.g., [2–12].

There are two important approaches to studying the solvability to various HVIs in the
recent literature. One approach is closely related to the KKM theorems and fixed point theo-
rems, which are exploited in [9,13–15] to investigate stationary HVIs and stationary SHVIs.
The other is closely related to the surjectivity theorems involving pseudo-monotonicity
of coercive mappings, which are applied in [5,6,16–18] for various stationary HVIs and
evolutionary HVIs; please refer to [18–23]. Unfortunately, as meaningful models for prob-
lems in mechanics and engineering science, the SHVIs, e.g., the stationary SHVIs and
the evolutionary SHVIs, are not investigated extensively via the surjectivity theorems
involving pseudo-monotonicity of coercive mappings. As put forth in [20], the existence
of solutions to the SHVIs in dynamic thermoviscoelasticity has been an open problem.
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In [20], the authors considered a dynamic thermoviscoelastic frictional contact problem
and modeled it via the evolutionary SHVIs. They showed that there exists only a weak
solution to the problem via a surjectivity result for pseudo-monotonicity mappings. Previ-
ously, Panagiotopulos formulated two SHVIs for the behavior of von Karman plates and
linear thermoelastic materials in ([4], Chapter 7.3). Unfortunately, the regular conditions
on the multi-valued terms are very unnatural for the solvability of two SHVIs. In 2015,
Xiao et al. [24] investigated a system of time-dependent hemivariational inequalities (STD-
HVI, for short) with Volterra integral terms (VITs, for short) according to the surjectivity
theorem involving pseudo-monotonicity of coercive mappings, and the Banach contraction
mapping principle. Here, the STDHVI consists of two parts which are of symmetric struc-
ture mutually. Under quite appropriate assumptions, they showed that there exists only a
solution to the considered problem through demonstrating that a derived vector inclusion
problem (DVIP, for short) with VIT is solvable. Subsequently, the authors [12] considered
the well-posedness for a STDHVI without VITs in real reflexive Banach spaces in 2017.

Inspired by the above research works, via the surjectivity theorem involving pseudo-
monotonicity of coercive mappings and the Banach contraction mapping principle, instead
of the KKM theorems exploited by other authors in recent literature for a SHVI, we in-
vestigate a generalized STDHVI (GSTDHVI, for short) with VITs in real reflexive Banach
spaces. Here, the GSTDHVI consists of two parts which are of symmetric structure mu-
tually. Under quite mild assumptions, it is shown that there exists only a solution to the
investigated problem via demonstrating that the DVIP with VIT is solvable. The article is
organized below. We first formulate the considered problem and then present the basic
results and tools in Section 2. The relation between the considered problem and the DVIP
with VIT is established under quite mild conditions in Section 3. It is shown that there
exists only a solution to the investigated problem via the surjectivity theorem involving
pseudo-monotonicity of coercive mappings and the Banach contraction mapping principle
in Section 4. Finally, the concluding remarks are presented in Section 5.

Finally, it is worth pointing out that there are the obvious disadvantages of the method
based on the KKM approach for studying generalized parabolic or evolutionary SHVIs. In
fact, if the operators in the method based on the KKM approach are not the KKM mappings,
there are several possibilities which happen in the demonstrating process, e.g., in particular,
whenever studying generalized parabolic or evolutionary SHVIs. This might leads to no
successful continuation of demonstration. Actually, this is exactly the drawback of the
KKM-based approach.

2. Basic Results and Tools

We first formulate the considered problem in this paper, and then present the useful
concepts and basic tools involving monotonicity mappings, and nonlinear and nonsmooth
analysis; please refer to [6,18,25]. Moreover, we also introduce some new concepts, nota-
tions and conditions, which will be used in the sequel.

For k = 1, 2, let the real reflexive Banach spaces Vk and Xk enjoy dual spaces V∗k and
X∗k , respectively, where Vk is separable. Given T ∈ (0,+∞), let Vk = L2(0, T; Vk) for k = 1, 2.
Then, V∗k = L2(0, T; V∗k ) for k = 1, 2. Unless otherwise specified, the 〈·, ·〉W∗×W indicates
the duality pairing between W and W∗, and the ‖ · ‖W and ‖ · ‖W∗ denote the norms in W
and W∗, respectively, where W ∈ {Vk, Xk,Vk, k = 1, 2}. Inspired by the generalized mixed
variational inequality in [26], we introduce and consider in this paper a GSTDHVI with
VITs formulated below:

Find (p1, p2) ∈ V1 × V2 s.t., for some selections Φl(t, pl(t)) ∈ Φl(t, pl(t)) and Γl(t) ∈
Γl(t), (l = 1, 2),

〈Φ1(t, p1(t)) + Ψ1(t, p2(t)), q1〉V∗1 ×V1 + J◦1 (t, Θ1(p1(t)), Θ2(p2(t)); Θ1q1)

+〈
∫ t

0 Γ1(t− s)p1(s)ds, q1〉V∗1 ×V1 ≥ 〈ϕ1(t), q1〉V∗1 ×V1 , ∀q1 ∈ V1, a.e. t ∈ (0, T),
〈Φ2(t, p2(t)) + Ψ2(t, p1(t)), q2〉V∗2 ×V2 + J◦2 (t, Θ1(p1(t)), Θ2(p2(t)); Θ2q2)

+〈
∫ t

0 Γ2(t− s)p2(s)ds, q2〉V∗2 ×V2 ≥ 〈ϕ2(t), q2〉V∗2 ×V2 , ∀q2 ∈ V2, a.e. t ∈ (0, T),

(1)
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where, for l, k = 1, 2 and k 6= l, Φl : (0, T) × Vl → 2V∗l , Ψl : (0, T) × Vk → V∗l , and
ϕl : (0, T)→ V∗l are mappings with images in V∗l . For l 6= k = 1, 2, Θl : Vl → Xl is a linear
bounded and compact mapping, Γl : (0, T)→ 2L(Vl ,V∗l ) is an operator with images of linear
continuous mappings from Vl to V∗l , and J◦l (t, ω1, ω2; υ) is the partial Clarke’s generalized
directional derivative of locally Lipschitz functional J : (0, T)× X1 × X2 → R w.r.t. the lth
argument at ωl ∈ Xl in the direction υ ∈ Xl for given ωk ∈ Xk.

Recall some basic results and tools. Let the real Banach space E enjoy dual space E∗.
Suppose that h̄ : E→ R is locally Lipschitz, F : E→ E∗ is single-valued, and M : E→ 2E∗

is multi-valued.
Let u, υ ∈ E. Clarke’s generalized directional derivative of h̄ at u ∈ E in υ ∈ E, denoted

by h̄◦(u; υ), is defined by

h̄◦(u; υ) := lim sup
ω→u,τ→0+

h̄(ω + τυ)− h̄(ω)

τ
.

Clarke’s generalized gradient of h̄ at u ∈ E, written by ∂h̄(u), is the set in E∗ formulated
by ∂h̄(u) := {ξ ∈ E∗ : h̄◦(u; υ) ≥ 〈ξ, υ〉, ∀υ ∈ E}. As put forth in [5], in case h̄ : E → R is
convex and continuous, ∂h̄(u) is equal to the subdifferential of h̄ at u in the sense of convex
analysis. In case h̄ is continuously differentiable, one has ∂h̄(u) = {h̄′(u)} ∀u ∈ E, with
h̄′(u) being the Fréchet differential of h̄ at u. For locally Lipschitz functional h̄, it is well
known that the conclusions hold below:

(a) υ 7→ h̄◦(u; υ) is subadditive, positively homogeneous and finite;
(b) (u, υ) 7→ h̄◦(u; υ) is u.s.c. (i.e., upper semicontinuous) on E× E;
(c) ∂h̄(u) is nonempty, bounded, convex and weak∗-compact in E∗;
(d) ∂h̄(u) enjoys the closed graph in E× (w∗-E∗).
Recall that h̄ is referred to as being regular (in the sense of Clarke) at u ∈ E iff
(a) directional derivative h̄′(u, υ) exists for each υ ∈ E;
(b) h̄′(u, υ) = h̄◦(u; υ) for each υ ∈ E, with h̄′(u, υ) being the directional derivative of

h̄ at u ∈ E in υ ∈ E.
Suppose that El is a real Banach space for l = 1, 2, H : E1× E2 → R is locally Lipschitz

on E1 × E2 and H or −H is regular at (p1, p2) ∈ E1 × E2. Then, we recall that the following
relation holds:

∂H(p1, p2) ⊂ ∂1H(p1, p2)× ∂2H(p1, p2),

or
H◦(p1, p2; q1, q2) ≤ H◦1 (p1, p2; p1) + H◦2 (p1, p2; p2) ∀(q1, q2) ∈ E1 × E2.

It is worth pointing out that the converses of the above relationships are generally
not valid.

On the other hand, suppose that E is a real reflexive Banach space. F : E → E∗

is referred to as being pseudomonotone if F is bounded, s.t. lim infn→∞〈Fpn, pn − q〉 ≥
〈Fp, p− q〉 ∀q ∈ E provided pn → p weakly in E and lim supn→∞〈Fpn, pn − q〉 ≤ 0. It is
well known that F is pseudomonotone iff F is bounded s.t. Fpn → Fp weakly in E∗ and
limn→∞〈Fpn, pn− p〉 = 0 whenever pn → p weakly in E and lim supn→∞〈Fpn, pn− p〉 ≤ 0.

Definition 1. M : E→ 2E∗ is referred to as being pseudomonotone iff
(a) Mp is a nonempty convex closed bounded set for every p ∈ E;
(b) M is u.s.c. from each finite-dimensional subspace of E to E∗ equipped with the weak

topology;
(c) if {pn} ⊂ E converging weakly to p and p∗n ∈ Mpn satisfying lim supn→∞〈p∗n, pn −

p〉 ≤ 0, then, ∀q ∈ E, ∃p∗(q) ∈ Mp s.t. 〈p∗(q), p− q〉 ≤ lim infn→∞〈p∗n, pn − p〉.

Definition 2. M : E→ 2E∗ is referred to as being generalized pseudomonotone if for {pn} ⊂ E
and {p∗n} ⊂ E∗ with p∗n ∈ Mpn, the conditions that pn → p weakly in E, p∗n → p∗ weakly in E∗

and lim supn→∞〈p∗n, pn − p〉 ≤ 0, imply that p∗ ∈ Mp and 〈p∗n, pn〉 → 〈p∗, p〉.
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Proposition 1. Let M : E→ 2E∗ be generalized pseudomonotone and bounded. Assume that, for
every p ∈ E, Mp is nonempty, convex, and closed in E∗. Then, M is pseudomonotone.

Definition 3. M : E→ 2E∗ is referred to as being
(a) coercive if ∃c : R+ → R with limr→∞ c(r) = ∞, s.t. c(‖p‖)‖p‖ ≤ 〈p∗, p〉 ∀(p, p∗) ∈

G(M), with G(M) being the graph of M;
(b) coercive with constant α > 0 if α‖p‖2 ≤ 〈p∗, p〉 ∀(p, p∗) ∈ G(M).

Theorem 1. (Surjectivity theorem). If M : E → 2E∗ is coercive and pseudomonotone, then the
range of M is equal to E∗, i.e., R(M) = E∗.

Suppose that (E, ‖ · ‖) is a linear normed space and H is a Hausdorff metric on the
family CB(E) of all nonempty, bounded and closed sets in E, induced by the metric d
according to d(p, q) = ‖p− q‖, which is formulated below

H(K, D) = max{sup
p∈K

inf
q∈D
‖p− q‖, sup

q∈D
inf
p∈K
‖p− q‖} ∀K, D ∈ CB(E).

Let K, D ∈ CB(E). For any ε > 0 and p ∈ K, according to Nadler’s result [27], we
know that ∃q ∈ D s.t.

‖p− q‖ ≤ (1 + ε)H(K, D).

In particular, whenever the sets K, D ⊂ E are compact, for any p ∈ K, we know that
∃q ∈ D s.t.

‖p− q‖ ≤ H(K, D).

It is remarkable that, as an important tool, the Nadler’s result mentioned above ex-
hibits a powerful role in the exploration of well-posedness of generalized mixed variational
inequalities in [26].

Finally, we present the w-H-continuity concept of M : E→ 2E∗ .

Definition 4. M : E→ 2E∗ is referred to as being w-H-continuous if for any net {pα} ⊂ E with
pα → p weakly in E, one hasH(M(pα), M(p))→ 0.

Similarly, one can define the s-H-continuous mapping M on E.

3. DVIP and Hypotheses

In this section, we first introduce a DVIP with VIT on V1 × V2, and establish the
relationship between the DVIP with VIT and GSTDHVI with VITs (i.e., problem (1)). Then,
we impose the restrictions on the mappings for demonstrating that there exists only a
solution to the GSTDHVI with VITs.

Let V = V1 ×V2. We equip V with the norm ‖p‖V := ∑2
k=1 ‖pk‖Vk ∀p = (p1, p2) ∈ V.

According to [25], we know that V is a reflexive Banach space and the duality pairing
between V and V∗ is formulated below:

〈p∗, p〉V∗×V = 〈p∗1 , p1〉V∗1 ×V1 + 〈p
∗
2 , p2〉V∗2 ×V2 , ∀p∗ = (p∗1 , p∗2) ∈ V∗, p = (p1, p2) ∈ V.

Similarly, we can also describe the product space X = X1 × X2 with its dual X∗. For
t ∈ (0, T) and p = (p1, p2) ∈ V, we construct the mappings below:

Φ : (0, t)×V → 2V∗ , Φ(t, p) := (Φ1(t, p1) + Ψ1(t, p2))× (Φ2(t, p2) + Ψ2(t, p1)),
Γ : (0, T)→ 2L(V,V∗), Γ(t)p := Γ1(t)p1 × Γ2(t)p2,
Θ : V → X = X1 × X2, Θp := (Θ1 p1, Θ2 p2),
ϕ : (0, T)→ V∗, ϕ(t) := (ϕ1(t), ϕ2(t)).

(2)

In the rest of this paper, the range of variable t is always assumed to be the a.e.
t ∈ (0, T). For the convenience, we naturally omit the description of the a.e. t ∈ (0, T). We
formulate the DVIP with VIT below:
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Find p ∈ V = L2(0, T; V) and Γ(t) = (Γ1(t), Γ2(t)) ∈ Γ(t) s.t.

ϕ(t) ∈ Φ(t, p(t)) + Θ∗ ◦ ∂J(t, Θ(p(t))) +
∫ t

0
Γ(t− s)p(s)ds, (3)

with Θ∗ being the adjoint operator of Θ. The relations between the GSTDHVI with VITs
and DVIP with VIT are established below.

Lemma 1. If the locally Lipschitz J(t, ·, ·) is regular on X, each solution p = (p1, p2) ∈ V to the
DVIP with VIT is a solution to the GSTDHVI with VITs.

Proof. Suppose that p = (p1, p2) ∈ V solves the problem (3). Then, ∃η(t) ∈ ∂J(t, Θ(p(t))) ⊂
X∗ and ∃Φ(t, p(t)) ∈ Φ(t, p(t)) with{

Φ(t, p(t)) = (Φ1(t, p1(t)) + Ψ1(t, p2(t)), Φ2(t, p2(t)) + Ψ2(t, p1(t))),
Φ1(t, p1(t)) ∈ Φ1(t, p1(t)) and Φ2(t, p2(t)) ∈ Φ2(t, p2(t)),

s.t.

ϕ(t) = Φ(t, p(t)) + Θ∗η(t) +
∫ t

0
Γ(t− s)p(s)ds, in V∗. (4)

For each q1 ∈ V1, by multiplying (4) with q = (q1, θ2), where θ2 is the zero vector of
V2, we have

〈ϕ1(t), q1〉V∗1 ×V1 = 〈Φ1(t, p1(t)) + Ψ1(t, p2(t)), q1〉V∗1 ×V1 + 〈η(t), Θq〉X∗×X

+ 〈
∫ t

0 Γ1(t− s)p1(s)ds, q1〉V∗1 ×V1 .

Thus,

〈ϕ1(t), q1〉V∗1 ×V1

≤ 〈Φ1(t, p1(t)) + Ψ1(t, p2(t)), q1〉V∗1 ×V1 + J◦1 (t, Θ1(p1(t)), Θ2(p2(t)); Θ1q1)

+ 〈
∫ t

0 Γ1(t− s)p1(s)ds, q1〉V∗1 ×V1 .
(5)

By a similar way, for each q2 ∈ V2, one can deduce by multiplying (4) with q = (θ1, q2),
where θ1 is the zero vector of V1 that

〈ϕ2(t), q2〉V∗2 ×V2

≤ 〈Φ2(t, p2(t)) + Ψ2(t, p1(t)), q2〉V∗2 ×V2 + J◦2 (t, Θ1(p1(t)), Θ2(p2(t)); Θ2q2)

+ 〈
∫ t

0 Γ2(t− s)p2(s)ds, q2〉V∗2 ×V2 ,

which, along with (5), ensures that p ∈ V (i.e., p1 ∈ V1, p2 ∈ V2) is a solution to the
GSTDHVI with VITs.

It is remarkable that the inverse of Lemma 1 might be false, i.e., the solution to the
GSTDHVI with VITs might not solve the DVIP with VIT. In what follows, according
to [14], we provide an example to support this assertion. For any (υ1, υ2) ∈ X1 × X2, let
J : (0, T) × X1 × X2 → R be formulated by J(t, υ1, υ2) := φ(t, υ1) + ψ(t, υ2), where the
functionals φ(t, ·) and ψ(t, ·) are regular and locally Lipschitz on X1 and X2, respectively.
Then, it is clear that J(t, ·, ·) is regular and locally Lipschitz on X. Meantime, it is not hard
to verify that the following relations hold:

∂J(t, υ1, υ2) = ∂1 J(t, υ1, υ2)× ∂2 J(t, υ1, υ2), ∀(υ1, υ2) ∈ X, (6)

or, equivalently, for any (υ1, υ2), (ω1, ω2) ∈ X,

J◦(t, υ1, υ2; ω1, ω2) = J◦1 (t, υ1, υ2; ω1) + J◦2 (t, υ1, υ2; ω2). (7)
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It is worth pointing out that, under the regularity assumption of J(t, ·, ·), the above
relationships (6) and (7) are not true in general.

Lemma 2. If the locally Lipschitz J(t, ·, ·) is regular on X and relationship (6) or (7) holds,
p = (p1, p2) ∈ V is a solution to the GSTDHVI with VITs if and only if it is a solution to the
DVIP with VIT.

Proof. By Lemma 1, we know that the sufficiency of this lemma is valid. In what follows,
it is sufficient for us to show its necessity. To this aim, we suppose that p = (p1, p2) ∈ V is
a solution to the GSTDHVI with VITs. Adding the two inequalities in (1) and using the
definitions of the operators in (2), one has

〈Φ(t, p(t)) +
∫ t

0 Γ(t− s)p(s)ds, q〉V∗×V + J◦1 (t, Θ(p(t)); Θ1q1) + J◦2 (t, Θ(p(t)); Θ2q2)
≥ 〈ϕ(t), q〉V∗×V , ∀q = (q1, q2) ∈ V,

with

Φ(t, p(t)) = (Φ1(t, p1(t)) + Ψ1(t, p2(t)), Φ2(t, p2(t)) + Ψ2(t, p1(t)))
∈ (Φ1(t, p1(t)) + Ψ1(t, p2(t))× (Φ2(t, p2(t)) + Ψ2(t, p1(t))
= Φ(t, p(t)).

Using the conditions (6) or (7), we infer that, for any q ∈ V,

〈ϕ(t)−Φ(t, p(t))−
∫ t

0
Γ(t− s)p(s)ds, q〉V∗×V ≤ J◦(t, Θ(p(t)); Θq). (8)

Note that Θ is linear continuous and J(t, ·, ·) is regular. Hence, according to ([6],
Proposition 3.37), we obtain J◦(t, Θ(p(t)); Θq) = (J(t, ·) ◦ Θ)◦(p(t); q) and ∂(J(t, ·) ◦
Θ)(p(t)) = Θ∗ ◦ ∂J(t, Θ(p(t)) for all q ∈ V. Consequently, from (8), we have

ϕ(t) ∈ Φ(t, p(t)) + Θ∗ ◦ ∂J(t, Θ(p(t)) +
∫ t

0 Γ(t− s)p(s)ds
⊂ Φ(t, p(t)) + Θ∗ ◦ ∂J(t, Θ(p(t)) +

∫ t
0 Γ(t− s)p(s)ds.

Thus, p is a solution of the DVIP with VIT.

Next, we impose the restrictions on the mappings Φl , Ψl , Γl (l = 1, 2) and J for
demonstrating that there exists only a solution to the GSTDHVI with VITs.

(HΦ): For l = 1, 2, operator Φl satisfies
(a) Φl(t, ·) : Vl → 2V∗l is w-H-continuous;
(b) Φl(t, ·) : Vl → 2V∗l is bounded and pseudomonotone on Vl ;
(c) Φl(t, ·) : Vl → 2V∗l is coercive with constant αl ;
(d) Φl(t, ·) : Vl → 2V∗l is of strong monotonicity with coefficient βl > 0.

(HΨ): For l, k = 1, 2 with k 6= l, operator Ψl : (0, T)×Vk → V∗l satisfies
(a) Ψl(·, υk) : (0, T)→ V∗l is measurable for any fixed υk ∈ Vk;
(b) Ψl(t, ·) : Vk → V∗l is weakly continuous;
(c) Ψl(t, ·) : Vk → V∗l is bounded;
(d) 〈Ψ1(t, υ2), υ1〉V∗1 ×V1 + 〈Ψ2(t, υ1), υ2〉V∗2 ×V2 = 0 ∀(υ1, υ2) ∈ V1 ×V2.

Lemma 3. If the conditions (HΦ) and (HΨ) hold, then Φ(t, ·) : V → 2V∗ is the bounded mapping
with pseudo-monotonicity.

Proof. Using the hypothesis (HΦ) (b), we deduce that, for l = 1, 2, Φl(t, ·) : Vl → 2V∗l is
pseudomonotone on Vl . By Definition 1 (a), Φl(t, υl) is nonempty, convex, closed, and
bounded in V∗l for any υl ∈ Vl . This ensures that Φ(t, v) = (Φ1(t, υ1) + Ψ1(t, υ2)) ×
(Φ2(t, υ2) + Ψ2(t, υ1)) is nonempty, convex, closed, and bounded in V∗ for any v ∈ V
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with v = (υ1, υ2). We now claim that Φ(t, ·) : V → 2V∗ is bounded. Indeed, we take
Φ(t, v) ∈ Φ(t, v), arbitrarily, with{

Φ(t, v) = (Φ1(t, υ1) + Ψ1(t, υ2), Φ2(t, υ2) + Ψ2(t, υ1)),
Φ1(t, υ1) ∈ Φ1(t, υ1) and Φ2(t, υ2) ∈ Φ2(t, υ2).

Then, it is obvious that

‖Φ(t, v)‖V∗ ≤ ‖Φ1(t, υ1)‖V∗1
+ ‖Ψ1(t, υ2)‖V∗1

+ ‖Φ2(t, υ2)‖V∗2
+ ‖Ψ2(t, υ1)‖V∗2

.

Using the conditions (HΦ) (b) and (HΨ) (c), we deduce that Φ(t, ·) : V → 2V∗ is
bounded. In what follows, according to Proposition 1, in order to attain the pseudo-
monotonicity of the mapping Φ(t, ·), it is sufficient for us to show the generalized pseudo-
monotonicity of Φ(t, ·). In fact, we assume that vn → v weakly in V, Φ(t, vn) ∈ Φ(t, vn)
with Φ(t, vn)→ ξ weakly in V∗ and

0 ≥ lim sup
n→∞

〈Φ(t, vn), vn − v〉V∗×V , (9)

where vn = (υn
1 , υn

2 ), v = (υ1, υ2) and{
Φ(t, vn) = (Φ1(t, υn

1 ) + Ψ1(t, υn
2 ), Φ2(t, υn

2 ) + Ψ2(t, υn
1 )),

Φ1(t, υn
1 ) ∈ Φ1(t, υn

1 ) and Φ2(t, υn
2 ) ∈ Φ2(t, υn

2 ).

Using the condition (HΨ) (b), one infers that Ψ1(t, υn
2 )→ Ψ1(t, υ2) weakly in V∗1 and

Ψ2(t, υn
1 )→ Ψ2(t, υ1) weakly in V∗2 . This, along with the reflexivity of Vl (l = 1, 2), ensures

that
〈Ψ1(t, υn

2 ), υ1〉V∗1 ×V1 → 〈Ψ1(t, υ2), υ1〉V∗1 ×V1 , (10)

and
〈Ψ2(t, υn

1 ), υ2〉V∗2 ×V2 → 〈Ψ2(t, υ1), υ2〉V∗2 ×V2 . (11)

Meantime, using the condition (HΨ) (d), one has

〈Ψ1(t, υn
2 ), υn

1 〉V∗1 ×V1 + 〈Ψ2(t, υn
1 ), υn

2 〉V∗2 ×V2 = 0. (12)

Therefore, combining (9)–(12), we conclude that

0 ≥ lim sup
n→∞

〈Φ(t, vn), vn − v〉V∗×V

= lim sup
n→∞

{〈Φ1(t, υn
1 ), υn

1 − υ1〉V∗1 ×V1 + 〈Φ2(t, υn
2 ), υn

2 − υ2〉V∗2 ×V2

− 〈Ψ1(t, υn
2 ), υ1〉V∗1 ×V1 − 〈Ψ2(t, υn

1 ), υ2〉V∗2 ×V2

+ 〈Ψ1(t, υn
2 ), υn

1 〉V∗1 ×V1 + 〈Ψ2(t, υn
1 ), υn

2 〉V∗2 ×V2}
= lim sup

n→∞
{〈Φ1(t, υn

1 ), υn
1 − υ1〉V∗1 ×V1 + 〈Φ2(t, υn

2 ), υn
2 − υ2〉V∗2 ×V2}.

(13)

Next, let us show that

lim sup
n→∞

〈Φ1(t, υn
1 ), υn

1 − υ1〉V∗1 ×V1 ≤ 0, (14)

and
lim sup

n→∞
〈Φ2(t, υn

2 ), υn
2 − υ2〉V∗2 ×V2 ≤ 0. (15)

Indeed, we conversely assume that the above claim is not valid. Then, there is at least
one false inequality. We may suppose that (14) is false. Then, there exists d > 0 and a
subsequence of {υn

1} that is still written by {υn
1}, s.t.

lim
n→∞
〈Φ1(t, υn

1 ), υn
1 − υ1〉V∗1 ×V1 = d > 0. (16)
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Thus, it follows from (13) and (16) that

lim sup
n→∞

〈Φ2(t, υn
2 ), υn

2 − υ2〉V∗2 ×V2 ≤ −d < 0. (17)

Therefore, from (17) and the pseudomonotonicity of Φ2(t, ·), we have

lim inf
n→∞

〈Φ2(t, υn
2 ), υn

2 − υ2〉V∗2 ×V2 ≥ 0,

which contradicts (17). Hence, (14) and (15) both are true.
Furthermore, using the reflexivity of V1 and (HΦ) (b), we know that Φ1(t, ·) : V1 →

2V∗1 is weakly compact-valued. In addition, from Nadler’s result [27], it follows that
∃ζn

1 ∈ Φ1(t, υ1) s.t.

‖Φ1(t, υn
1 )− ζn

1‖ ≤ (1 +
1
n
)H(Φ1(t, υn

1 ), Φ1(t, υ1)).

Since υn
1 → υ1 weakly in V1, we deduce from the hypothesis (HΦ) (0) that as n→ ∞,

‖Φ1(t, υn
1 )− ζn

1‖V∗1
≤ (1 +

1
n
)H(Φ1(t, υn

1 ), Φ1(t, υ1))→ 0. (18)

Since Φ1(t, υ1) is weakly compact, we may assume that ∃Φ1(t, υ1) ∈ Φ1(t, υ1) s.t.
ζn

1 → Φ1(t, υ1) weakly in V∗1 . This, along with (18), yields

Φ1(t, υn
1 )→ Φ1(t, υ1) weakly in V∗1 . (19)

In addition, by the pseudo-monotonicity of Φ1(t, ·), we obtain from (14) that

lim
n→∞
〈Φ1(t, υn

1 ), υn
1 − υ1〉V∗1 ×V1 = 0. (20)

The similar conclusion that

Φ2(t, υn
2 )→ Φ2(t, υ2) weakly in V∗2 (21)

and
lim

n→∞
〈Φ2(t, υn

2 ), υn
2 − υ2〉V∗2 ×V2 = 0 (22)

holds due to the w-H-continuity and pseudo-monotonicity of Φ2(t, ·). Therefore, we can
conclude by (19), (21), Φ(t, vn) ⇀ ξ and the weak continuity of Ψl(t, ·) (l = 1, 2) that

Φ(t, vn) = (Φ1(t, υn
1 ) + Ψ1(t, υn

2 ), Φ2(t, υn
2 ) + Ψ2(t, υn

1 ))
⇀ ξ = (Φ1(t, υ1) + Ψ1(t, υ2), Φ2(t, υ2) + Ψ2(t, υ1)) = Φ(t, v)
∈ (Φ1(t, υ1) + Ψ1(t, υ2))× (Φ2(t, υ2) + Ψ2(t, υ1)) = Φ(t, v).

(23)

The above notation ⇀ represents the weak convergence in V∗. In addition, combining
(10)–(12), (20), and (22) guarantees that limn→∞〈Φ(t, vn), vn − v〉V∗×V = 0. Hence, from
(23), we get

lim
n→∞
〈Φ(t, vn), vn〉V∗×V = 〈ξ, v〉V∗×V .

Consequently, in terms of Definition 2, Φ(t, ·) is of generalized pseudomonotonicity.

Lemma 4. If the conditions (HΦ) (c) and (HΨ) (d) hold, then the operator Φ(t, ·) is of coercivity
with constant α = min{α1, α2}/2. In addition, if the conditions (HΦ) (d) and (HΨ) (d) hold, then
the operator Φ(t, ·) is of strong monotonicity with coefficient β = min{β1, β2}/2.
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Proof. For any v, w ∈ V with v = (υ1, υ2), w = (ω1, ω2), we take Φ(t, v) ∈ Φ(t, v) and
Φ(t, w) ∈ Φ(t, w) arbitrarily, with{

Φ(t, v) = (Φ1(t, υ1) + Ψ1(t, υ2), Φ2(t, υ2) + Ψ2(t, υ1)),
Φ1(t, υ1) ∈ Φ1(t, υ1) and Φ2(t, υ2) ∈ Φ2(t, υ2),

and {
Φ(t, w) = (Φ1(t, ω1) + Ψ1(t, ω2), Φ2(t, ω2) + ΨΨ2(t, ω1)),
Φ1(t, ω1) ∈ Φ1(t, ω1) and Φ2(t, ω2) ∈ Φ2(t, ω2).

We first show that Φ(t, ·) is coercive. Indeed, it is clear that, under the conditions
(HΦ) (c) and (HΨ) (d), the operator Φ(t, ·) : V → 2V∗ is coercive with constant α owing to
the inequality below:

〈Φ(t, v), v〉V∗×V = 〈Φ1(t, υ1) + Ψ1(t, υ2), υ1〉V∗1 ×V1 + 〈Φ2(t, υ2) + Ψ2(t, υ1), υ2〉V∗2 ×V2

≥ α1‖υ1‖2
V1

+ α2‖υ2‖2
V2
≥ α‖v‖2

V .

Secondly, we show the strong monotonicity of Φ(t, ·). In fact, from the strong mono-
tonicity of Φl(t, ·) (l = 1, 2) and the condition (HΨ) (d), we have

〈Φ(t, v)−Φ(t, w), v−w〉V∗×V
= 〈Φ1(t, υ1)−Φ1(t, ω1), υ1 −ω1〉V∗1 ×V1 + 〈Φ2(t, υ2)−Φ2(t, ω2), υ2 −ω2〉V∗2 ×V2

+ 〈Ψ1(t, υ2), υ1〉V∗1 ×V1 + 〈Ψ2(t, υ1), υ2〉V∗2 ×V2 − 〈Ψ1(t, υ2), ω1〉V∗1 ×V1

− 〈Ψ2(t, ω1), υ2〉V∗2 ×V2 − 〈Ψ1(t, ω2), υ1〉V∗1 ×V1 − 〈Ψ2(t, υ1), ω2〉V∗2 ×V2

+ 〈Ψ1(t, ω2), ω1〉V∗1 ×V1 + 〈Ψ2(t, ω1), ω2〉V∗2 ×V2

≥ β1‖υ1 −ω1‖2
V1

+ β2‖υ2 −ω2‖2
V2

≥ β‖v−w‖2
V .

Therefore, we attain the strong monotonicity of Φ(t, ·) with constant β.

(HΓ): For l = 1, 2, the operator Γl : (0, T)→ 2L(Vl ,V∗l ) satisfies
(a) Γl is s-H-continuous with compact values in L(Vl , V∗l );
(b) each Γl : (0, T) → L(Vl , V∗l ) with Γl(t) ∈ Γl(t) ∀t ∈ (0, T), is such that Γl ∈

L2(0, T;L(Vl , V∗l )).
(HJ): J : (0, T)× X1 × X2 → R is locally Lipschitz, s.t.
(a) J(·, p1, p2) is measurable on (0, T) for all (p1, p2) ∈ X1 × X2;
(b) for p2 ∈ X2, ∃`1, τ1 ≥ 0 s.t.

‖η1‖X∗1
≤ `1 + τ1‖p1‖X1 , ∀p1 ∈ X1, η1 ∈ ∂1 J(t, p1, p2); (24)

(c) for p1 ∈ X1, ∃`2, τ2 ≥ 0 s.t.

‖η2‖X∗2
≤ `2 + τ2‖p2‖X2 , ∀p2 ∈ X2, η2 ∈ ∂2 J(t, p1, p2); (25)

(d) for p2 ∈ X2, ∂1 J(t, ·, p2) is of relaxed monotonicity on X1 that is, ∃m1 > 0 s.t.,
∀p1, q1 ∈ X1, η1 ∈ ∂1 J(t, p1, p2) and ∀ξ1 ∈ ∂1 J(t, q1, p2),

〈η1 − ξ1, p1 − q1〉X∗1×X1 ≥ −m1‖p1 − q1‖2
X1

; (26)

(e) for p1 ∈ X1, ∂2 J(t, p1, ·) is of relaxed monotonicity on X2 that is, ∃m2 > 0 s.t.,
∀p2, q2 ∈ X2, η2 ∈ ∂2 J(t, p1, p2) and ∀ξ2 ∈ ∂2 J(t, p1, q2),

〈η2 − ξ2, p2 − q2〉X∗2×X2 ≥ −m2‖p2 − q2‖2
X2

. (27)
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Lemma 5 (see [24], Lemma 3.5). Let the locally Lipschitz J(t, ·, ·) be regular on X. If conditions
(HJ) (b) and (HJ) (c) hold, then ∂J(t, ·, ·) is bounded on X and

‖η‖X∗ ≤ `+ τ‖p‖X , ∀p = (p1, p2) ∈ X, η ∈ ∂J(t, p1, p2), (28)

with ` = `1 + `2 and τ = max{τ1, τ2}. In addition, if conditions (HJ) (d) and (HJ) (e) hold, then
∂J(t, ·, ·) is of relaxed monotonicity on X with coefficient m = max{m1, m2}.

4. Main Results

Under quite mild assumptions, we will show that there exists only a solution to the
GSTDHVI with VITs via an approach of an auxiliary vector inclusion problem (AVIP, for
short) and by the Banach contraction mapping principle. It is worth mentioning that the
techniques for the demonstrations of the following theorems had previously been applied
in [6] for the subdifferential inclusion problems.

We now define the AVIP, which is formulated below:
Find p ∈ V s.t.

ϕ(t) ∈ Φ(t, p(t)) + Θ∗ ◦ ∂J(t, Θ(p(t))). (29)

The important result for the AVIP is stated and proven below that will be applied for
demonstrating that there exists only a solution to the GSTDHVI with VITs.

Theorem 2. Assume that Φl : (0, T)× Vl → 2V∗l and Ψl : (0, T)× Vk → V∗l are operators
with images in V∗l for l, k = 1, 2 and k 6= l. Let Θl : Vl → Xl be a linear bounded and compact
operator, J : (0, T)× X1 × X2 → R be regular and locally Lipschitz, and ϕl ∈ Vl for l = 1, 2. If
the conditions (HΦ), (HΨ), and (HJ) are valid, there exists only a solution p to the AVIP provided

α > d‖Θ‖2 and β > m‖Θ‖2, (30)

with ‖Θ‖ being the norm of Θ in (2). In addition, the solution p satisfies

‖p‖V ≤ γ(1 + ‖ϕ‖V∗) for some γ > 0. (31)

Proof. The proof of Theorem 2 is divided into two steps.
Step 1. We show the existence and uniqueness of solutions to the AVIP in V . In fact,

we construct a multi-valued mapping M : V → 2V∗ below:

M(v) := Φ(t, v) + Θ∗ ◦ ∂J(t, Θv), ∀v ∈ V.

Next, we derive the assertions on mapping M, successively.
(P1) M is of pseudomonotonicity on V.
First, according to Lemmas 3 and 5, we know that mapping Φ(t, ·) is bounded and

pseudomonotone, and mapping ∂J(t, ·, ·) is of boundedness. Since Θ is a linear and
bounded operator, M is bounded on V. In addition, it is clear that M has nonempty, closed,
and convex values in V∗ because ∂J(t, ·, ·) has nonempty, closed and convex values in
X∗. Thus, in view of Proposition 1, it is sufficient for us to show the generalized pseudo-
monotonicity of M to attain the pseudo-monotonicity of M. In fact, assume that vn → v
weakly in V, ξn ∈ M(vn) with ξn → ξ weakly in V∗, and

lim sup
n→∞

〈ξn, vn − v〉V∗×V ≤ 0. (32)

Then, Θvn → Θv in X and there exist Φ(t, vn) ∈ Φ(t, vn) and ηn ∈ ∂J(t, Θvn) ⊂ X∗,
which are bounded in V∗ and in X∗, respectively, by the boundedness of mappings Φ(t, ·)
and ∂J(t, ·, ·), s.t.

ξn = Φ(t, vn) + Θ∗ηn. (33)
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We might assume, using the closedness of ∂J(t, ·, ·) that ηn → η weakly with η ∈
∂J(t, Θv) ⊂ X∗. Meantime, noticing the compactness of Θ∗, we deduce that Θ∗ηn →
Θ∗η ∈ Θ∗ ◦ ∂J(t, Θv) and

lim
n→∞
〈Θ∗ηn, vn − v〉V∗×V = 0. (34)

Hence, combining (32)–(34) ensures that lim supn→∞〈Φ(t, vn), vn − v〉V∗×V ≤ 0. In
the same inference way as the proof of Lemma 3, it is easy to check that Φ(t, vn)→ Φ(t, v)
weakly in V∗ for some Φ(t, v) ∈ Φ(t, v) and limn→∞〈Φ(t, vn), vn− v〉V∗×V = 0. Therefore,
ξn = Φ(t, vn) + Θ∗ηn → Φ(t, v) + Θ∗η = ξ ∈ M(v) weakly in V∗ and

lim
n→∞
〈ξn, vn − v〉V∗×V = lim

n→∞
〈Φ(t, vn) + Θ∗ηn, vn − v〉V∗×V = 0.

Consequently,

lim
n→∞
〈ξn, vn〉V∗×V = lim

n→∞
〈ξn, vn − v + v〉V∗×V = 〈ξ, v〉V∗×V .

Thus, M is generalized pseudomonotone on V.
(P2) M is coercive on V.
Suppose that v ∈ V and ξ ∈ M(v). It is clear that ∃Φ(t, v) ∈ Φ(t, v) and ∃η ∈

∂J(t, Θv) s.t. ξ = Φ(t, v) + Θ∗η. Using Lemmas 4 and 5, we know that

〈ξ, v〉V∗×V = 〈Φ(t, v), v〉V∗×V + 〈Θ∗η, v〉V∗×V
≥ α‖v‖2

V − ‖η‖X∗‖Θ‖‖v‖V
≥ (α− d‖Θ‖2)‖v‖2

V − c‖Θ‖‖v‖V .
(35)

This along with d‖Θ‖2 < α leads to the coercivity of M on V with c(t) = (α −
d‖Θ‖2)t− c‖Θ‖.

On the other hand, by the properties (P1) and (P2), we know that M is of surjectivity.
Thus, ∃pt ∈ V (due to its dependence on t), s.t. ϕ(t) ∈ M(pt) = Φ(t, pt) + Θ∗ ◦ ∂J(t, Θpt).
This ensures the existence of solutions to the AVIP. To show the uniqueness of solutions to
the AVIP, one supposes on the contrary that the AVIP enjoys two distinguished solutions
p1

t and p2
t in V. Then, ∃Φ(t, pl

t) ∈ Φ(t, pl
t) ⊂ V∗ and ∃ηl ∈ ∂J(t, Θpl

t) ⊂ X∗ for l = 1, 2, s.t.

Φ(t, p1
t ) + Θ∗η1 = ϕ(t), (36)

and
Φ(t, p2

t ) + Θ∗η2 = ϕ(t). (37)

Subtracting (37) via (36) and multiplying the associated result by p1
t − p2

t , we obtain that

〈Φ(t, p1
t )−Φ(t, p2

t ), p1
t − p2

t 〉V∗×V + 〈Θ∗η1 −Θ∗η2, p1
t − p2

t 〉V∗×V = 0. (38)

Using Lemmas 4 and 5, one gets (β − m‖Θ‖2)‖p1
t − p2

t ‖2
V ≤ 0. Thus, from the

condition β > m‖Θ‖2, we have p1
t = p2

t , which arrives at the contradiction. Thus, we
get the uniqueness of solution pt to the AVIP in V. In addition, by the coercivity of
mapping M and in the same inference way as the proof of (35), it is easy to verify that
(α− d‖Θ‖2)‖pt‖V ≤ c‖Θ‖+ ‖ϕ(t)‖V∗ . Consequently, ∃γ̄ > 0 s.t.

‖pt‖V ≤ γ̄(1 + ‖ϕ(t)‖V∗). (39)

Step 2. We show that there exists only a solution to the AVIP (29) and the estimation
(31) holds. In the same inference way as the proof of ([6], Theorem 4.11), it is easy to check
that the function p : t 7→ pt ∈ V, where pt is only a solution in V to the AVIP for each t, is
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measurable and p ∈ V . Hence, there exists only a solution to the AVIP. In addition, from
the estimation (39), it is clear that ∃γ > 0 s.t.

‖p‖2
V =

∫ T

0
‖p(t)‖2

Vdt ≤
∫ T

0
(γ̃(1 + ‖ϕ(t)‖V∗))

2dt ≤ (γ(1 + ‖ϕ‖V∗))2,

which leads to the estimation (31).

By virtue of Theorem 2, we show below that there exists only a solution to the
GSTDHVIP with VITs.

Theorem 3. Suppose that the hypothesis (HΓ) holds and all conditions in Theorem 2 are valid.
Then, there exists at least one solution p ∈ V to the GSTDHVI with VITs. In addition, if the above
equality (6) or (7) holds, then there is only a solution to the GSTDHVI with VITs.

Proof. Using Lemma 1, we can show the existence of solutions to the DVIP with VIT,
which hence leads to the existence of solutions to the GSTDHVI with VITs. Meantime,
using Lemma 2, we know the uniqueness of solutions to the DVIP with VIT, which hence
leads to the uniqueness of solutions to the GSTDHVI with VITs. In the same inference way
as the proof of ([6], Theorem 4.13), we could obtain the desired conclusion by using the
Banach contraction mapping principle. Therefore, we omit the details of proof here.

Next, let the GTDHVI indicate the generalized time-dependent hemivariational in-
equality. We first provide a particular example for Theorem 3. Put V1 = V2 = W, X1 =
X2 = Y, and set Φ1 = Φ2 = Φ̄, Θ1 = Θ2 = Θ̄, Γ1 = Γ2 = Γ̄, and ϕ1 = ϕ2 = ϕ̄. Assume
further that Ψ1 = Ψ2 is a zero operator, where its images are always zero vector θ ∈ W∗

and J is chosen as in (6) with φ = ψ = j on Y by J(t, y1, y2) := j(t, y1) + j(t, y2) ∀y1, y2 ∈ Y.
Then, the GSTDHVI with VITs reverts to the GTDHVI with VIT below:

Find w ∈ L2(0, T; W) s.t. for some Φ̄(t, w(t)) ∈ Φ̄(t, w(t)) and Γ̄(t) ∈ Γ(t),

〈Φ̄(t, w(t)), v〉W∗×W + j◦(t, Θ̄(w(t)); Θ̄v) + 〈
∫ t

0 Γ̄(t− s)w(s)ds, v〉W∗×W
≥ 〈ϕ̄(t), v〉W∗×W , ∀v ∈W.

(40)

Utilizing Theorem 3, one can readily obtain the result below that there exists only a
solution to the GTDHVI with VIT.

Theorem 4. Suppose that W and Y are reflexive Banach spaces such that W is separable.
Assume that Φ̄ : (0, T)×W → 2W∗ is an operator with images in W∗, Θ̄ : W → Y is a

linear bounded mapping with compactness, Γ̄ : (0, T)→ 2L(W,W∗) is an operator with images of
linear continuous mappings of W into W∗, and j : (0, T)× Y → R is of regularity and of local
Lipschitz continuity. Let the following conditions on the mappings in the GTDHVI with VIT
be valid:

(a) Φ̄(t, ·) : W → 2W∗ is w-H-continuous;
(b) Φ̄(t, ·) : W → 2W∗ is of boundedness, of pseudo-monotonicity, of coercivity with constant

α > 0 and of strong monotonicity with coefficient β > 0;
(c) j(·, x) : (0, T)→ R is measurable for each x ∈ Y;
(d) ∃`, τ ≥ 0 s.t. ‖η‖Y∗ ≤ `+ τ‖y‖Y ∀y ∈ Y, η ∈ ∂j(t, y);
(e) ∂j(t, ·) is of relaxed monotonicity, that is, ∃m > 0 s.t. ∀y1, y2 ∈ Y,

〈η1 − η2, y1 − y2〉Y∗×Y ≥ −m‖y1 − y2‖2
Y ∀η1 ∈ ∂j(t, y1), η2 ∈ ∂j(t, y2);

(f) Γ̄ is s-H-continuous with compact-values in L(W, W∗);
(g) the mapping Γ̄ ∈ L2(0, T;L(W, W∗)) and ϕ̄ ∈ L2(0, T; W).
Then, there exists only a solution to the GTDHVI with VIT provided α > d‖Θ̄‖2 and

β > m‖Θ̄‖2.
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Remark 1. The GSTDHVI with VITs and the corresponding DVIP with VIT are more general and
more advantageous than the STDHVI with VITs and the corresponding DVIP with VIT in Xiao et
al. [24], respectively. Theorem 2 on the AVIP exhibits a powerful role in the proof of the conclusion
that only a solution to the GSTDHVI with VITs exists. In the proof of Theorem 2, to demonstrate
that only a solution to the AVIP without VIT exists, we introduce the new notion of w-H-continuity
(resp., s-H-continuity) for multi-valued operators and impose new mild restrictions on multi-valued
operators Φl and Γl (l = 1, 2), e.g., the hypotheses (a)–(d) in (HΦ) and hypotheses (a)–(b) in
(HΓ). In the proof of Lemma 3, we make use of Proposition 1 to derive the pseudo-monotonicity of
multi-valued operator Φ(t, ·). However, there is an assumption of boundedness for multi-valued
operators in Proposition 1. Note that the pseudo-monotonicity of multi-valued operator Φl(t, ·)
can not guarantee its boundedness. Meantime, we make use of Nadler’s result [27] and the w-H-
continuity and pseudo-monotonicity of Φl(t, ·), to obtain the generalized pseudo-monotonicity of
Φ(t, ·). Without doubt, the approach of the proof of Theorem 2 is very different from that of the proof
in ([24], Theorem 2). All in all, Theorems 2–4 extend, improve, and develop Theorems 2–4 in [24]
to a great extent, respectively. In addition, whenever Θ̄ = Θ ◦ i, with Θ being linear bounded and
i being the compact embedding mapping in the time-dependent subdifferential inclusion problem
of [6], Theorem 4.3 in [24] reverts to Theorem 4.13 in [6].

5. Conclusions

In this paper, under quite mild assumptions, it is shown that there exists only a
solution to the GSTDHVI with VITs via demonstrating that there exists only a solution
to the corresponding DVIP with VIT. Our results generalize, improve, and develop the
corresponding ones in very recent literature. It is worth pointing out that, inspired by the
problem put forward in [20], Xiao et al. [24] introduced and studied the STDHVI with
VITs, and showed that only a solution to the STDHVI with VITs under quite appropriate
conditions exists.

Put forth as the above, a particular case of our main theorem is an extension of ([24],
Theorem 4) for the solvability of the TDHVI with VIT. However, a special case of the one
in [24] is also an extension of ([6], Theorem 4.13) for the solvability of a time-dependent
subdifferential inclusion with VIT. An HVI is referred to as parabolic or evolutionary HVI
if it involves the time derivative of unknown function. To the extent of our knowledge,
it would be very meaningful and quite valuable to explore under what conditions the
theorems in this article are still valid for a generalized parabolic or evolutionary SHVIs
with VITs.
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