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Abstract: Kinesin-1 is a motor protein that can step processively on microtubule by hydrolyz-
ing ATP molecules, playing an essential role in intracellular transports. To better understand the
mechanochemical coupling of the motor stepping cycle, numerous structural, biochemical, single
molecule, theoretical modeling and numerical simulation studies have been undertaken for the
kinesin-1 motor. Recently, a novel ultraresolution optical trapping method was employed to study
the mechanics of the kinesin-1 motor and new results were supplemented to its stepping dynamics.
In this commentary, the new single molecule results are explained well theoretically with one of the
models presented in the literature for the mechanochemical coupling of the kinesin-1 motor. With the
model, various prior experimental results for dynamics of different families of N-terminal kinesin
motors have also been explained quantitatively.

Keywords: molecular motor; kinesin; mechanochemical coupling mechanism

1. Introduction

Kinesin-1 molecular motor is the firstly discovered member of kinesin superfamily
that can be classified into 14 subfamilies and an ungrouped subfamily called orphan ki-
nesins [1,2]. Kinesin-1 has been studied thoroughly and can be regarded as the model
system to study the mechanism of the mechanochemical coupling of the kinesin superfam-
ily. Kinesin-1 can step processively on microtubules (MTs) by hydrolyzing ATP molecules,
which is responsible for cargo transports in cells. To explore the molecular mechanism of
the processive stepping of the kinesin-1, plenty of researches on its structure, its interaction
with MT, its motor dynamics, etc., have been undertaken. For example, it was shown struc-
turally that kinesin-1 is composed of two identical N-terminal motor domains (also called
heads) connected together by a common coiled-coil stalk via the two flexible neck linkers
(NLs) (with each NL having 14 residues) [3]. The dimer walks on MT in an asymmetric
hand-over-hand way, with a step size of about 8 nm, the tubulin repeat period of a MT
filament [4,5]. The load dependencies of the motor’s velocity, run length, ratio of forward
to backward steps, dissociation rate, etc., have been well determined [6–13]. Accordingly,
numerous models have been proposed to explain the available experimental results [14–22].
Nevertheless, the detailed mechanism of the mechanochemical coupling of the kinesin-1 is
still undetermined.

Recently, Sudhakar et al. [23] developed germanium nanospheres with diameter of
about 70 nm as optical trapping probes to study the stepping dynamics of truncated rat
kinesin-1 motor, which enhances greatly the spatiotemporal resolution that is limited
by using traditional micrometer-sized spheres. Puzzlingly, they found that each 8-nm
mechanical step consists of two 4-nm substeps, with the dwell time for the second substep
being much shorter than that for the first one. Instead of dissociation from MT, the slip of
the motor on MT was observed under high backward loads, which occurs always during
the dwell period before the second substep. In this commentary, these new single molecule
results measured by Sudhakar et al. [23] are explained well by the theoretical analysis
based on one of the models presented in the literature for the mechanochemical coupling
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of kinesin-1 motors [24]. As shown before [18,24–30], this model can explain quantitatively
diverse experimental results about the load dependency of the stepping dynamics for
various families of N-terminal kinesin motors.

2. The Model

Firstly, we describe the major elements, on the basis of which the model is established.
(1) The kinesin head in empty, ATP and ADP.Pi states has a strong interaction with MT
whereas in ADP state has a weak interaction, as shown by experimental data [31–33]. The
strong interaction between the kinesin head and tubulin induces large conformational
changes of the tubulin whereas the weak interaction has little effect on the conformation of
the tubulin, as indicated by structural and all-atom molecular dynamics (AAMD) simu-
lation data [34,35]. The head in ADP state has a much smaller affinity (denoted by Ew1)
for the tubulin having the large conformational changes than the affinity (denoted by Ew2)
for the tubulin having no large conformational changes, as shown by AAMD simulation
data [35]. This, thus, implies that after Pi release from the ADP.Pi-head bound to MT a
short time period tr (of the order of 10 µs [25]) is present when the ADP-head has a much
smaller affinity Ew1 for the local tubulin and in time tr, with the changed conformation of
the local tubulin returning to the normally unchanged one, the affinity of the ADP-head for
the local tubulin changes to Ew2 (see Figure 1). (2) In ADP and empty states, the head has
an open nucleotide-binding pocket (NBP) and a conformation, with the NL being incapable
of docking onto the head, as indicated by structural and experimental results [36–39], and
the head having a high binding energy to the partner ADP-head (with the relative position
and orientation of the two heads being shown in Figure 2), as shown by AAMD simulation
data [40]. In ATP and ADP.Pi states, NBP closing and a large conformational change of the
head can take place, with the NL becoming capable of docking onto the head, as indicated
by structural and experimental results [36–39], and the binding energy of the head to the
partner ADP-head being reduced significantly, as shown by AAMD simulation data [40].
When NL is in the minus-end orientation, the interference of NL prohibits the closing of
NBP and thus the large conformational change of the ATP-head. (3) The head with its NL
in the plus-end orientation has a much higher rate of ATP hydrolysis and Pi release than
the head with its NL not in the plus-end orientation. This can be explained as follows. The
NL not in the plus-end orientation has little interaction with the head, while the NL in
the plus-end orientation has a large interaction with the head, enhancing significantly the
rate of ATP hydrolysis and Pi release. This is in line with the biochemical data showing
that the head with mutation or deletion of its NL has a much smaller ATPase rate than the
wild-type case while the mutation or deletion has no influence on ADP-release rate [41],
because after ATP binding the NL docks rapidly in the plus-end orientation.

In the main text, we consider the case of saturating ATP and backward load on the
stalk of the kinesin dimer (the case of non-saturating ATP is considered in Supplementary
Materials). As at saturating ATP after ADP release from a head ATP can bind instantly,
the nucleotide-free state of the head is not required to consider. As the head in both ATP
and ADP.Pi states has the high binding energy to MT and has the similar conformation,
for simplicity, we consider ATP hydrolysis and Pi release as one step of ATP transition to
ADP. The pathway for the mechanochemical coupling of the kinesin dimer is schematically
shown in Figure 3 [24].
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Figure 1. Schematic illustrations of the interaction potential of kinesin head with a MT filament in 
an ATPase cycle. (a) Potential of the strong interaction of the head in nucleotide-free, ATP and 
ADP.Pi states with MT. The symbol φ represents nucleotide free. The strong interaction induces 
large conformational changes of the local tubulin. (b) Potential of the weak interaction of the head 
with MT within time tr after Pi release, when the local tubulin still has the large conformational 
changes. (c) Potential of the weak interaction of the ADP-head with MT in time tr after Pi release, 
when the local tubulin returns to the normally unchanged conformation. Top panels in (a–c) show 
schematically the position of the head on the MT filament. 

 
Figure 2. The INT state of kinesin homodimer before the occurrence of the large conformational change of the MT-bound 
head induced by ATP binding, with the two heads having a high affinity. (a) Schematic diagram of the position of the 
detached ADP-head relative to the MT-bound head. (b) Position and orientation of the detached ADP-head relative to the 
MT-bound head determined from prior AAMD simulations [40], where the coiled-coil stalk and NLs are drawn 
schematically. 

In the main text, we consider the case of saturating ATP and backward load on the 
stalk of the kinesin dimer (the case of non-saturating ATP is considered in 
Supplementary Materials). As at saturating ATP after ADP release from a head ATP can 
bind instantly, the nucleotide-free state of the head is not required to consider. As the 
head in both ATP and ADP.Pi states has the high binding energy to MT and has the 

Figure 1. Schematic illustrations of the interaction potential of kinesin head with a MT filament
in an ATPase cycle. (a) Potential of the strong interaction of the head in nucleotide-free, ATP and
ADP.Pi states with MT. The symbol φ represents nucleotide free. The strong interaction induces large
conformational changes of the local tubulin. (b) Potential of the weak interaction of the head with
MT within time tr after Pi release, when the local tubulin still has the large conformational changes.
(c) Potential of the weak interaction of the ADP-head with MT in time tr after Pi release, when the local
tubulin returns to the normally unchanged conformation. Top panels in (a–c) show schematically the
position of the head on the MT filament.
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Figure 2. The INT state of kinesin homodimer before the occurrence of the large conformational change of the MT-
bound head induced by ATP binding, with the two heads having a high affinity. (a) Schematic diagram of the position
of the detached ADP-head relative to the MT-bound head. (b) Position and orientation of the detached ADP-head
relative to the MT-bound head determined from prior AAMD simulations [40], where the coiled-coil stalk and NLs are
drawn schematically.
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Figure 3. The model for mechanochemical coupling of kinesin homodimer. (a–o) The pathway illustrating kinesin walking,
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ADP-release rate of the MT-bound head. The arrow thickness is approximately proportional to the magnitude of the state
transition rate or probability under a low backward load.

We begin with both heads in ATP state, the trailing and leading ones binding strongly
to tubulins II and III, respectively, on a MT filament (Figure 3a). First, consider ATP
transition to ADP of the trailing head. Within tr the trailing head detaches readily from
tubulin II by overcoming pretty small affinity Ew1 and then diffuses forward. After the
detached ADP-head diffusing to the position of the front MT-bound head, the strong
interaction between them drives the detached head to move and rotate further to make its
α6-helix’s N-terminus (to which the NL is connected) be biased in the plus-end position
relative to that of the MT-bound head (see Figure 2b) [40]. This state with the two heads
having the stable strong interaction is called intermediate (INT) state (Figure 3b, which
is the same as Figure 2). Thus, the movement of the rear ADP-head from tubulin II to
INT position drives the nano- or micro-sphere attached to the stalk to move forward by
a substep of size d1. In the INT state, with no NL interference, the closing of NBP and
the large conformational change of the MT-bound ATP-head happen rapidly, reducing its
binding energy to the partner ADP-head and inducing its NL docking (Figure 3c). Then,
the ADP-head can diffuse either forward or backward. The forward diffusion makes
the ADP-head bind to the front tubulin IV with affinity Ew2 (Figure 3d). The backward
diffusion makes the ADP-head bind to the rear tubulin II with affinity Ew2 by overcoming
the energy of the NL docking and the conformational change of the leading ATP-head
(Figure 3e) (noting that the affinity of tubulin II for ADP-head has changed to Ew2 in
time tr). The transition from Figure 3c,d occurs with probability PE and accordingly the
transition from Figure 3c–e occurs with probability 1–PE. The binding of the ADP-head to
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MT triggers the release of ADP, followed instantly by ATP binding (Figure 3a,f). Figure 3f
is the same as Figure 3a except that the dimer took a forward step.

In Figure 3b, before the reduction of the binding energy of the two heads, ATP
transition to ADP of the MT-bound head can occur occasionally (Figure 3g). The ADP-head
then has pretty small affinity Ew1 for tubulin III for the short time period tr (termed as
Period I), during which the motor can readily dissociate from MT or slip to the adjacent
tubulin by overcoming Ew1. After slipping to the adjacent tubulin, the ADP-head has
affinity Ew2 for the tubulin. In Figure 3d, before ADP release from the leading head, ATP
transition to ADP of the trailing head can also occur. Then, the trailing head detaches
readily from tubulin III by overcoming Ew1 and moves to INT position (Figure 3h). In
Figure 3h, the two heads have the high binding energy and the head has weak affinity Ew2
for MT. The period in this state is termed as Period II, during which the dimer has a large
probability to dissociate from MT or slip on MT. If the motor has not dissociated until ADP
release from the MT-bound head, after ATP binding (Figure 3i, where no slip was shown)
the system becomes the same as Figure 3b except that the dimer was moved. In Figure 3e,
before ADP release from the trailing head, ATP transition to ADP of the leading head can
also occur, with the leading head diffusing to INT position (Figure 3j). During Period II
of Figure 3j, the motor has a large probability to dissociate from MT or slip on MT. If the
motor has not dissociated until ADP release from the MT-bound head, after ATP binding
(Figure 3k, where no slip was shown) the system becomes the same as Figure 3b except
that dimer was moved.

Second, consider in Figure 3a ATP transition to ADP of the leading head. The leading
head detaches readily from tubulin III by overcoming pretty small affinity Ew1 and then
diffuses backward (Figure 3l). From Figure 3l, the detached ADP-head can either rebind
to tubulin III with affinity Ew2 in time tr (Figure 3m) or bind to tubulin I with affinity
Ew2 by overcoming the energy of the NL docking and the conformational change of the
ATP-head (Figure 3n). Since tr is very short, the transition from Figure 3l–m or to Figure 3n
has approximately the same probability PE or probability 1–PE as the transition from
Figure 3c,d or to Figure 3e. The binding of the ADP-head to MT triggers the release of ADP,
followed instantly by ATP binding (Figure 3a,o). Figure 3o is the same as Figure 3a except
that the motor took a backward step.

In Figure 3m, before ADP release from the leading head ATP transition to ADP can
also occur in the trailing head, with the trailing head diffusing to INT position and the
motor being in Period II. In Figure 3n, before ADP release from the trailing head ATP
transition to ADP can also occur in the leading head, with the leading head diffusing to
INT position and the motor being in Period II. During Period II, the motor has a large
probability to dissociate from MT or slip on MT.

3. Stepping Dynamics

As shown before [18,24–27,42], with the above model various single molecule data about
velocity, run length, forward to backward stepping ratio, dissociation rate, mechanochemical
coupling ratio, asymmetric or limping stepping, etc., for both wild-type kinesin-1 homod-
imers and the corresponding mutant ones with extension of their NLs can be explained
quantitatively and consistently. In particular, the puzzling experimental results showing
that under no load the wild-type human kinesin-1 consumes about one ATP per mechanical
step whereas the mutant one consumes about 3.5 ATPs per mechanical step were explained
well [25,26]. The puzzling single molecule data showing that the run length of Drosophila
kinesin-1 is very asymmetrical under the forward and backward loads on the stalk, with
the run length for a moderate forward load being much smaller than for the backward load
of the similar magnitude, were explained well [18,24,27]. The puzzling single molecule
results showing that the dissociation rate of Drosophila kinesin-1 from MT under the back-
ward load exhibits the characteristic of slip-catch-slip bonds were explained well [18,24,27].
In the following, based on the model we explain the recent experimental results about
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substeps and/or one-head-bound (1HB) and two-heads-bound (2HB) states of kinesin-1 in
the stepping cycle.

We firstly present the expression for effective probability PE (see Figure 3) as the
function of the load. Due to the flexibility, NL cannot support the compressive force on the
two ends and can solely support the stretching force. Consequently, the backward load on
the stalk can only act on the NL of the head in the leading position. Hence, during diffusion
of the detached head from the rear tubulin to the front MT-bound head, the backward load
on the stalk acts mainly on the NL of the leading MT-bound head. The load thus would
nearly have no effect on this diffusion. Then, during the further movement and rotation of
the detached head to the finally stable INT state, the load on the stalk acts mainly on the
NL of the detached head. Due to the strong interaction between the two heads, after the
detached head reaching the front MT-bound head the detached head would have nearly
100% probability to transit to INT state even under a large backward load. Thus, under
any load after the trailing head detaching from the rear tubulin it would have a nearly
100% probability to transit to INT state. From the INT state, the rate for the detached head
to diffuse forward and then bind to the front tubulin can be approximately expressed as
kF = (1/t0) exp

(
−βFd(+)

)
, where 1/t0 is the rate under no load, F is the backward load,

d(+) is the characteristic distance and β−1 = kBT is Boltzmann constant times the absolute
temperature. From the INT state, the rate for the detached head to diffuse backward and
then bind to the rear tubulin can be approximately expressed as kR = (1/t0) exp(βED),
where ED is the free energy change of the NL docking and large conformational change of
the head in ATP state. The above expression for kR is under the following consideration.
After the reduction of the binding energy of the two heads, firstly the backward load drives
the rapid clockwise rotation of the detached head (see Figure 2) and then the detached head
diffuses backward. During the latter diffusion, the load acts mainly on NL of the MT-bound
head. PE can be calculated by PE = kF/(kF + kR). Substituting above expressions for kF
and kR into above expression for PE, we have:

PE =
exp(βED) exp

(
−βFd(+)

)
exp(βED) exp

(
−βFd(+)

)
+ 1

. (1)

Let k(+) stand for the rate of ATP transition to ADP in the head (e.g., the trailing head)
with its NL in the forward orientation and k(–) stand for the rate of ATP transition to ADP
in the head (e.g., the leading head) with its NL not in the forward orientation. As stated
before [18,24–27], to be in line with the available experimental results [43–46], k(+) and k(–)

are independent of the force on the two NLs. The available biochemical results indicated
that ADP release is a non-rate-limiting step of the ATPase activity of the kinesin-1 head
bound to MT [43]. Moreover, the dwell time in INT state is much smaller than the total
dwell time between two steps [23]. Thus, from the pathway of Figure 3 the velocity of the
motor can be approximately written as:

v =
[

PEk(+) − (1 − PE)k(−)
]
d, (2)

where d = 8 nm is the step size equal to the tubulin repeat period in a MT filament. From
Equation (2) it is seen that if PEk(+) > (1 − PE)k(−) the motor moves forward (toward the
plus end) and if PEk(+) < (1 − PE)k(−) the motor moves backward (toward the minus end).
Thus, the moving direction of the dimer is determined by two factors. One factor is the
relative magnitude between k(+) and k(–), depending on the NL orientation. The other one
is PE that is dictated by energy ED (see Equation (1)), with NL docking increasing PE.

From Equations (1) and (2) it is noted that to calculate the load dependency of velocity,
values of four parameters k(+), k(–), ED and d(+) are required. As mentioned above, k(–) << k(+).
Here, we fix k(–) = 1 s−1 (Table 1). By adjusting values of the other three parameters, with
k(+) = 117 ± 4 s−1, ED = (1 ± 0.1) kBT and d(+) = 3.1 ± 0.2 nm (Table 1), the single molecule
data about the load dependency of velocity for the truncated rat kinesin-1 measured by
Sudhakar et al. [23] can be reproduced quantitatively (Figure 4a). Notice that the ATPase
rate of the motor, k(+) + k(–) = 118 s−1, is in line with the biochemical results [43,47]. The
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small value of ED = 1 kBT is consistent with the experimental results indicating that the free
energy change of the NL docking is smaller than 1 kBT [48] and the AAMD simulations
showing that the energy change of the large conformational change of the head induced
by the binding of ATP is only about 1 kBT [49]. In addition, from the structural data
determined from the AAMD simulations (Figure 2b), it is noted that the movement of
the detached ADP-head from the rear tubulin to INT position would drive the optically-
trapped nanosphere attached to the stalk to move a distance of about 4 nm, giving the size of
the first substep d1 ≈ 4 nm. Thus, the second substep also has a size of d2 = d − d1 ≈ 4 nm.
These agree with the single molecule results of Sudhakar et al. [23].

Table 1. Values of parameters for truncated rat kinesin-1 under the experimental condition of
Sudhakar et al. [23].

Parameter k(+) k(−) ED d(+) kNL t0

(s−1) (s−1) (kBT) (nm) (s−1) (ms)

value 117 ± 4 1 1 ± 0.1 3.1 ± 0.2 1500 0.24 ± 0.03
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Since in the INT state, the large conformational change of the MT-bound ATP-head
induces both the reduction of its binding energy to the partner ADP-head and its NL
docking, it is expected that the rate of the reduction of the binding energy is nearly the
same as that of the NL docking, with both rates being denoted by kNL. Thus, the dwell
time for the backward Substep 2 can be written as τ2 = 1/kNL + t0 exp(βED). The dwell
time for the forward Substep 2 can be written as:

τ2 =
1

kNL
+ t0 exp

(
βFd(+)

)
. (3)

As conducted in the previous work [24], we take kNL = 1500 s−1 (see Table 1), which
is in line with the biochemical results indicating that the rate constant of NL docking is
larger than 800 s−1 [50]. Using Equation (3) and adjusting value of t0 = 0.24 ± 0.03 ms
(Table 1), the single molecule results about the load dependency of dwell time for the
forward Substep 2 of the truncated rat kinesin-1 measured by Sudhakar et al. [23] can be
reproduced quantitatively (Figure 4b). The value of t0 = 240 µs is reasonable by considering
that the diffusion of the detached head requires overcoming both the large drag force on
the 70-nm sphere [23] and the large elastic force arising from NL stretching [25].

In the single molecule assays of Sudhakar et al. [23], due to the rapid and large
fluctuations the short dwells of the motor in INT state under the backward load F < 2 pN are
unable to distinguish. As shown above, we have ED = 1 kBT and d(+) = 3.1 nm (Table 1) for
the truncated rat kinesin-1 under the experimental conditions of Sudhakar et al. [23]. Thus,
the dwell time for the backward Substep 2 under any backward load is equal to the dwell
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time for the forward Substep 2 under the backward load F = ED/d(+) = 1.33 pN, which
is smaller than 2 pN. Hence, the short dwells of the motor in INT state for the backward
Substep 2 under any backward load are unable to distinguish in the experiments [23].
Accordingly, under any backward load, the measured dwell time τ1 for the forward
Substep 1 can be calculated by:

τ1 =
1

k(+)PE
. (4)

Using Equation (4) and parameter values presented in Table 1, the calculated results
about the load dependency of dwell time for the forward Substep 1 are also consistent with
the single molecule results of Sudhakar et al. [23] (Figure 4c).

In addition, it is seen from the pathway (Figure 3) that only in INT state can the motor
has a weak affinity to MT and thus has a large probability to dissociate from MT or slip
on MT. This implies that the dissociation or slip of the motor can occur mainly during
the dwell period for Substep 2, which is also in line with the single molecule results of
Sudhakar et al. [23]. Moreover, from the interaction potential of ADP-head with a MT
filament (Figure 1c), it is seen evidently that the motor would slip in discrete steps of
size d = 8 nm, also in line with the single molecule results of Sudhakar et al. [23]. The
origin that the slip was usually observed in the optical trapping experiments of Sudhakar
et al. [23] whereas the dissociation was usually observed in the traditional optical trapping
experiments [12,13] can be explained as follows. In the former experiments, a 70-nm sphere
was used whereas in the latter experiments a micrometer-sized sphere was used. Thus, the
magnitude of the vertical component of the load relative to that of the horizontal component
for the former case is much smaller than that for the latter case [42]. Hence, under the large
backward load, for the former case the motor would have a larger probability to move
along the MT filament (leading to slip) than that to move in the vertical direction (leading
to dissociation), whereas for the latter case the motor would have a smaller probability to
move along the MT filament (leading to slip) than that to move in the vertical direction
(leading to dissociation).

To further verify the model, we provide predicted results about the load dependency
of the mechanochemical coupling efficiency, which is defined as the reciprocal of the mean
number of ATPs consumed per step (including both forward and backward steps). The
number can be written as:

N =
k(+) + k(−)

PEk(+) + (1 − PE)k(−)
. (5)

Using Equation (5) and parameter values presented in Table 1, the predicted results
are shown in Figure 5. It is seen that N ≈ 1.37 under near zero load, which is close to the
prior experimental results [51–53]. The number of ATP molecules hydrolyzed per step rises
significantly with the increase in the backward load.

Up to now, we have only focused on saturating ATP. The studies at non-saturating
ATP are given in Supplementary Materials. With the pathway of kinesin stepping at non-
saturating ATP (Figure S1), the contradictory single molecule results about the dependency
of lifetime of 1HB state and that of 2HB state in the stepping cycle on ATP concentration
observed by different research groups can be explained quantitatively (Figures S2 and S3).
For example, the single molecule results measured by Isojima et al. [54] for cysteine-light
human kinesin-1 showed that the lifetime of 1HB state increases significantly with the
decrease of ATP concentration whereas the lifetime of 2HB state changes insensitively
with the change of ATP concentration (Figure S2). By contrast, the single molecule results
measured by Mickolajczyk et al. [55] for truncated Drosophila kinesin-1 showed that the
lifetime of 2HB state increases greatly with the decrease of ATP concentration whereas the
lifetime of 1HB state has a small increase with the decrease of ATP concentration (Figure S3).
The contradictory results for the ATP-concentration dependency of the lifetime of 1HB
and that of 2HB are due to different values of the high binding energy between the MT-
bound nucleotide-free head and the partner ADP-head, which are in turn due to different
kinesin-1 species and different buffer conditions used in different assays. Moreover, the
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single molecule results of Sudhakar et al. [23] about the dependencies of velocity, dwell
time for the forward Substep 1 and dwell time for the forward Substep 2 on the backward
load at low ATP concentration (10 µM) for the truncated rat kinesin-1 motor can also be
reproduced well (Figure S4).
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4. Concluding Remarks

The recent single molecule results of Sudhakar et al. about stepping mechanics [23]
and the single molecule results about lifetimes of 1HB and 2HB states in the stepping
cycle [23,54,55] for kinesin-1 motors are explained well with the model shown schemati-
cally in Figure 3. In prior studies, with the model various experimental results for both
wild-type kinesin-1 motors and the mutant ones with extension of their NLs were ex-
plained quantitatively and consistently [18,24–27,42]. Moreover, with the model, the single
molecule results for other families of N-terminal kinesin motors such as kinesin-2, kinesin-3,
kinesin-5, kinesin-8, kinesin-12, orphan kinesin PAKRP2, etc., were also explained well
and consistently [27–30]. All of these support strongly the model, deepening greatly our
understanding of the mechanism of mechanochemical coupling of the N-terminal kinesin
motors. To further verify the model it is hoped to test the predicted results (Figure 5) by
future experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/sym13101799/s1, Figure S1: schematic illustrations of kinesin stepping at non-saturating
ATP, Figure S2: dynamics of cysteine-light human kinesin-1 under the experimental condition of
Isojima et al. [54], Figure S3: dynamics of truncated Drosophila kinesin-1 under the experimental
condition of Mickolajczyk et al. [55], Figure S4: dynamics of truncated rat kinesin-1 under at 10 µM
ATP under the experimental condition of Sudhakar et al. [23].
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