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Abstract: In this paper, we prove new versions of Stone Duality. The main version is the following:
the category of Kolmogorov locally small spaces and bounded continuous mappings is equivalent
to the category of spectral spaces with decent lumps and with bornologies in the lattices of (quasi-)
compact open sets as objects and spectral mappings respecting those decent lumps and satisfying
a boundedness condition as morphisms. Furthermore, it is dually equivalent to the category of
bounded distributive lattices with bornologies and with decent lumps of prime filters as objects and
homomorphisms of bounded lattices respecting those decent lumps and satisfying a domination
condition as morphisms. This helps to understand Kolmogorov locally small spaces and morphisms
between them. We comment also on spectralifications of topological spaces.
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1. Introduction

Stone Duality is one of the most important dualities in mathematics, and equivalences
or dualities between categories are a form of symmetry on the category theory level.
Stone Duality is very widely known for Boolean algebras, and a little less known for
bounded distributive lattices. In fact, M. H. Stone’s two fundamental papers [1,2] described
duality (at least on the object level) between generalized Boolean algebras (or Boolean
rings) and Hausdorff locally compact Boolean spaces, where usual Boolean algebras (or
unital Boolean rings) correspond to Hausdorff compact Boolean spaces. He achieved a
beautiful theory of ideals in Boolean rings and a beautiful theory of representations of
Boolean rings in powersets. The case of distributive lattices was considered by M. H.
Stone in [3]. Many versions of this duality exist (see, for example, [4] or [5] for further
literature), including versions of Priestley Duality proved by H. Priestley in [6] with
many consequences developed in [7]. Stone Duality for bounded distributive lattices in
the category theory language, while considered already in a much broader context in
monographs by G. Grätzer [8] and P. T. Johnstone [9], has been presented in detail in a
recent monograph by M. Dickmann, N. Schwartz and M. Tressl [10] on spectral spaces.

Algebraic and analytic geometry and model theory use Stone Duality for bounded
distributive lattices. In real algebraic and analytic geometry the spectral topology (also
called the Harrison topology) on the real spectrum is most important (see [11–13]). In
complex algebraic and analytic geometry, the spectral topology on the Zariski spectrum
is similarly important (see [14] or [15], Chapter II). On the other hand, model theory uses
the constructible topology (also called the patch topology) more often ([16,17]), sometimes
allowing retopologization to the spectral topology (as in the case of the o-minimal spectrum,
see [18]).

The purpose of this study is to extend the method of taking the real spectrum or its
analogues to the case of infinite gluings of the small spaces considered in real algebraic
or analytic geometry or in model theory (where small spaces are quite often unnamed,
see [12], Definition 7.1.14 or [11], p. 12) and to make another step in building general
topology for locally small spaces, which can be considered as topological spaces with
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additional structure. New versions of Stone Duality are proved: for small spaces, for locally
small spaces with usual morphisms (bounded continuous mappings) and for locally small
spaces with bounded strongly continuous mappings as morphisms. In each of the cases,
the Kolmogorov separation axiom (T0) is assumed.

Locally small spaces may be understood to be a special kind ([19]) of generalized
topological spaces in the sense of Delfs and Knebusch ([20]) introduced in 1985, which in
turn may be seen as a special form of categories with Grothendieck topologies (see [20],
p. 2, [21]) or sets with G-topologies of [22]. Locally small spaces were implicitly used in
o-minimal homotopy theory ([20,23]), including a context of locally definable manifolds
(see [23,24], for example). The possibility of gluing together infinitely many pieces is
essential in these issues. A simpler language for locally small spaces was introduced
and used in [19,25]; compare also [26]. We continue developing the theory of locally
small spaces in this simple language, analogical to the language of Lugojan’s generalized
topology ([27]) or Császár’s generalized topology ([28]), where a family of subsets of the
underlying set is satisfying some, but not all, conditions for a topology.

The main result of the paper reads as follows: the category of Kolmogorov locally
small spaces and bounded continuous mappings is equivalent to the category of spectral
spaces with distinguished decent lumps and with bornologies in the lattices of (quasi)
compact open sets as objects and spectral mappings respecting those decent lumps and
satisfying a boundedness condition as morphisms and is dually equivalent to the category
of bounded distributive lattices with bornologies and with decent lumps of prime filters as
objects and homomorphisms of bounded lattices satisfying a domination condition and
respecting those decent lumps as morphisms. Bornologies on sets were used in [19,21,25]
and bornologies in bounded lattices are defined in this paper. As a consequence, spectrali-
fications of a Kolmogorov topological space may be constructed by choosing lattice bases
of the topology.

Small spaces are a special case of locally small spaces, with some compactness flavour.
While we meet small spaces as these underlying definable spaces over structures with
topologies, we meet locally small spaces as those underlying analogical locally definable
spaces ([19,25]). We show that a Kolmogorov small space is essentially a patch dense
subset of a spectral space. More precisely: the category of Kolmogorov small spaces and
continuous mappings is equivalent to the category of spectral spaces with distinguished
patch dense subsets and spectral mappings respecting those patch dense subsets and is
dually equivalent to the category of bounded distributive lattices with distinguished patch
dense sets of prime filters and homomorphisms of bounded lattices respecting those patch
dense sets.

We have another version of Stone Duality: for Kolmogorov locally small spaces with
bounded strongly continuous mappings. This category is equivalent to the category of
up-spectral spaces with distinguished patch dense subsets as objects and strongly spectral
mappings respecting those patch dense subsets as morphisms and is dually equivalent to
the category of distributive lattices with zeros and distinguished patch dense sets of prime
filters as objects and lattice homomorphisms respecting zeros and those patch dense sets
and satisfying a condition of domination as morphisms.

These new versions of Stone Duality give more understanding of objects and mor-
phisms of the categories we introduce. In particular, a Kolmogorov locally small space is
essentially a patch dense subset of a spectral (or up-spectral) space. Bounded continuous
mappings are restrictions of spectral mappings.

The paper is organized in the following way: Section 2 introduces categories SS0 and
LSS0, Section 3 deals with SpecD and SpecBD, Section 4 introduces LatD and LatBD.
Section 5 gives the main theorem for LSS0 and a version for SS0. Section 6 introduces the
categories uSpec and uSpecs. Section 7 deals with ZLat and establishes a dual equivalency
between uSpecs and ZLat. Section 8 provides Stone Duality for LSSs

0. Section 9 deals with
spectralifications of Kolmogorov spaces.
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Regarding the set-theoretic axiomatics for this paper, we follow Saunders Mac Lane’s
version of Zermelo–Fraenkel axioms with the axiom of choice plus the existence of a set
which is a universe ([29], p. 23).

We shall freely use the notation for family intersection and family difference, compati-
ble with [19,21,25,26]:

U∩1 V = {U ∩V | U ∈ U, V ∈ V}, U \1 V = {U \V | U ∈ U, V ∈ V}.

2. The Categories SS0 and LSS0

This section gives the basic concepts connected with small and locally small spaces in
the simplified language introduced in [19] and distinguishes the Kolmogorov spaces.

Definition 1 ([19], Definition 2.1). A locally small space is a pair (X,LX), where X is any set
and LX ⊆ P(X) satisfies the following conditions:

(LS1) ∅ ∈ LX ,
(LS2) if A, B ∈ LX , then A ∩ B, A ∪ B ∈ LX ,
(LS3) ∀x ∈ X ∃Ax ∈ LX x ∈ Ax (i.e.,

⋃
LX = X).

Elements of LX are called small open subsets (or smops) of X.

Definition 2 ([19], Definition 2.21). A small space is such a locally small space (X,LX) that
X ∈ LX .

Definition 3. A locally small space (X,LX) will be called T0 (or Kolmogorov) if the family LX
separates points ([10], Remainder 1.1.4), which means that for x, y ∈ X the following condition
is satisfied:

if x ∈ A ⇐⇒ y ∈ A for each A ∈ LX , then x = y.

Definition 4 ([19], Definition 2.9). If (X,LX) is a locally small space, then the topology Lwo
X =

τ(LX), generated by LX in P(X), is called the family of weakly open sets in (X,LX).

Fact 1. For a small space (X,LX), the following conditions are equivalent:

(1) (X,LX) is T0,
(2) the topological space (X,Lwo

X ) is T0.

Example 1. (1) The small spaces Rom = (R,Lom), Rrom = (R,Lrom), Rslom = (R,Lslom),
Rst = (R, τnat) from ([19], Example 2.14), compare ([26], Definition 1.2), have the natural
topology τnat on R as the topology of weakly open sets, so they are Kolmogorov small spaces. In the
above, we have:

(i) Lom = the family of all finite unions of open intervals,
(ii) Lrom = the family of all finite unions of open intervals with rational numbers or infinities

as endpoints,
(iii) Lslom = the family of all locally finite (in the traditional sense) unions of bounded open intervals.

(2) The space (R,Liom), where Liom is the family of all finite unions of open intervals with
integers or infinities as ends, is not Kolmogorov.

Definition 5 ([19]). For a locally small space (X,LX), we define the family of open sets as

Lo
X = {M ⊆ X | M ∩1 LX ⊆ LX}.

Remark 1. The family Lo
X is a bounded sublattice of P(X) containing LX . The open sets are those

subsets of X that are “compatible with” smops.

Example 2. Consider the following families of subsets of the set R of real numbers:

(i) Llom = the family of all finite unions of bounded open intervals,
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(ii) Lo
lom = Lslom = the family of all locally finite unions of bounded open intervals.

(iii) Llrom = the family of all finite unions of bounded open intervals with rational endpoints,
(iv) Lo

lrom = the family of all locally finite unions of open intervals with rational endpoints.

Then Rlom = (R,Llom) and Rlrom = (R,Llrom) are Kolmogorov locally small spaces (com-
pare ([19], Example 2.14) and ([26], Definition 1.2)) that are not small. On the other hand,
(R,Lo

lom) and (R,Lo
lrom) are small.

Definition 6. Assume (X,LX) and (Y,LY) are locally small spaces. Then a mapping f : X →
Y is:

(a) bounded ([19], Definition 2.40) if LX refines f−1(LY), which means that each A ∈ LX

admits B ∈ LY such that A ⊆ f−1(B),
(b) continuous ([19], Definition 2.40) if f−1(LY) ∩1 LX ⊆ LX (i.e., f−1(LY) ⊆ Lo

X),
(c) strongly continuous if f−1(LY) ⊆ LX .

Definition 7. We consider the following categories:

(a) the category LSS of locally small spaces and their bounded continuous mappings ([19],
Remark 2.46),

(b) the full subcategory LSS0 in LSS of T0 locally small spaces,
(c) the full subcategory SS in LSS of small spaces ([19], Remark 2.48),
(d) the full subcategory SS0 in LSS of T0 small spaces.

3. The Categories SpecD and SpecBD

This section restates the classical Stone Duality and introduces two categories of
spectral spaces with additional data needed in the main statements on the equivalency
of categories.

Definition 8. For any topological space X = (X, τX), we consider the following families of subsets:

(a) the family CO(X) of (not necessarily Hausdorff) compact open subsets of X,
(b) the family ICO(X) of intersection compact open subsets of X. (An open subset Y of X is

intersection compact open if for every compact open set V their intersection V ∩ Y is
compact, see [14,30].)

Definition 9. A spectral space is a topological space X = (X, τX) satisfying the following
conditions (compare ([10], Definition 1.1.5)):

(S1) X ∈ CO(X),
(S2) CO(X) is a basis of τX ,
(S3) CO(X) ∩1 CO(X) ⊆ CO(X),
(S4) (X, τX) is T0,
(S5) (X, τX) is sober (this means for us: each non-empty irreducible closed set is the closure of a

one-point set).

Hochster ([14]) proved that every spectral space is homeomorphic to the Zariski
spectrum of some commutative unital ring.

Definition 10. A mapping g : X → Y between spectral spaces is spectral if the preimage of any
compact open subset of Y is a compact open subset of X, shortly: g−1(CO(Y)) ⊆ CO(X), see ([10],
Definition 1.2.2). We have the category Spec of spectral spaces and spectral mappings.

Remark 2 (The classical Stone Duality). The category Lat of bounded distributive lattices
with homomorphisms of bounded lattices is dually equivalent to the category Spec. While ([10],
Chapter 3) uses contravariant functors and homomorphisms into a two-element lattice, we restate
Stone Duality using covariant functors and prime filters. Namely, we have:

1. The functor Sp : Latop → Spec is given by:
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(a) Sp(L) = (PF(L), τ(L̃)) for L = (L,∨,∧, 0, 1) a bounded distributive lattice, where
PF(L) is the set of all prime filters in L with topology τ(L̃) on PF(L) generated by
the family L̃, where L̃ = {ã | a ∈ L} ⊆ P(PF(L)) and ã = {F ∈ PF(L) | a ∈ F},

(b) Sp(hop) = h• for a homomorphism of bounded lattices h : L → M where, for G ∈
PF(M), we have

h•(G) = {a ∈ L | h(a) ∈ G} ∈ PF(L).

2. The functor Co : Spec→ Latop is given by:

(a) Co(X) = CO(X) with obvious lattice operations on CO(X),
(b) Co(g) = (Lg)op, where Lg : CO(Y)→ CO(X) is defined by

(Lg)(W) = g−1(W) for a spectral g : X → Y and W ∈ CO(Y).

Then the compositions SpCo, CoSp are naturally isomorphic to the identity functors IdSpec,
IdLatop , respectively. Consequences of the classical Stone Duality ([10], 3.2.5) include:

(i) the fact that each bounded distributive lattice L = (L,∨,∧, 0, 1) is isomorphic to the lattice
(L̃,∪,∩, ∅,PF(L)) of subsets of PF(L) and

(ii) the equality L̃ = CO(PF(L)).

Definition 11. An object of SpecD is a pair ((X, τX), Xd) where (X, τX) is a spectral space and
Xd is a subset of X satisfying:

∀U, V ∈ CO(X) U 6= V =⇒ U ∩ Xd 6= V ∩ Xd.

Then Xd is called a decent subset of X.
A morphism of SpecD between ((X, τX), Xd) and ((Y, τY), Yd) is a spectral mapping

g : X → Y between spectral spaces (X, τX) and (Y, τY) that respects the decent subset, that is,
g(Xd) ⊆ Yd.

Fact 2. If Xd is a decent subset of a spectral space (X, τX), then the lattice (CO(X),∪,∩, ∅, X) is
isomorphic to the lattice (CO(X)d,∪,∩, ∅, Xd), where

CO(X)d = CO(X) ∩1 Xd = {U ∩ Xd | U ∈ CO(X)}.

Remark 3. If ((X, τX), Xd) is an object of SpecD, then, by ([10], 3.2.8), both the spaces
PF(CO(X)) and PF(CO(X)d) with their spectral topologies are homeomorphic to (X, τX).
A point x ∈ X corresponds to

x̂ = {V ∈ CO(X) | x ∈ V} in PF(CO(X)) and to

x̂d = {U ∈ CO(X)d | x ∈ U} in PF(CO(X)d), respectively.

Definition 12 ([10], Proposition 1.3.13). Let (X, τX) be a spectral space. Then the patch topol-
ogy (or the constructible topology) on X is the topology that has the family CO(X) \1 CO(X) as
a basis.

Proposition 1. For a spectral space (X, τX) and Xd ⊆ X, the following conditions are equivalent:

(1) Xd is patch dense,
(2) Xd is decent.

Proof. If the set Xd is decent in (X, τX) and U is a non-empty patch open set in (X, τX),
then we may assume U = A \ B with A, B ∈ CO(X). Since U = A4(A ∩ B) is non-empty,
A and A ∩ B are different in CO(X), so A ∩ Xd and A ∩ B ∩ Xd are different in CO(X)d.
This means (A \ B) ∩ Xd is non-empty. Hence Xd is patch dense.
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If Xd is patch dense in (X, τX) and A, B are different members of CO(X), then A4B is
a non-empty patch open set. Hence Xd intersects A4B and A∩ Xd is different from B∩ Xd
in CO(X)d. This means Xd is decent in (X, τX).

Example 3. The real spectrum of R[X], often denoted by R̃ (see 7.1.4 b and 7.2.6 in [12]), can be
up to a homeomorphism described in the following way: it contains points r−, r, r+ for each real
number r, the infinities −∞,+∞ and admits the obvious linear order. As a basis of the topology
on R̃, we take the family B containing: finite intervals [r+, s−] = (̃r, s) for r, s ∈ R, r < s and

infinite intervals [−∞, s−] = ˜(−∞, s), [r+,+∞] = ˜(r,+∞) for any r, s ∈ R.
Then CO(R̃) is the family of finite unions of basic sets and the topological space (R̃, τ(B)) is

spectral. The set R of real numbers is decent in this spectral space, so ((R̃, τ(B)),R) is an object
of SpecD. (The operation ·̃ mentioned in this example is an isomorphism between the Boolean
algebra of semialgebraic sets in R and the Boolean algebra of constructible sets in R̃, see ([12],
Proposition 7.2.3)).

Any semialgebraic mapping g : R→ R (i.e., g has a semialgebraic graph) extends (uniquely)

to a maping g̃ : R̃→ R̃ satisfying the condition g̃−1(T̃) = g̃−1(T) for any semialgebraic T ⊆ R,
as in ([12], Proposition 7.2.8), which means that g̃ : ((R̃, τ(B)),R) → ((R̃, τ(B)),R) is a
morphism of SpecD.

Definition 13. A bornology in a bounded lattice (L,∨,∧, 0, 1) is an ideal B ⊆ L such that∨
B = 1.

Definition 14. An object of SpecBD is a system ((X, τX), COs(X), Xd) where (X, τX) is a
spectral space, COs(X) is a bornology in the bounded lattice CO(X) and Xd satisfies the follow-
ing conditions:

(1) Xd ⊆
⋃

COs(X),
(2) Rd : CO(X) 3 A 7→ A ∩ Xd ∈ CO(X)d is an isomorphism of lattices,
(3) CO(X)d = (COs(X)d)

o ⊆ P(Xd).

Such Xd will be called a decent lump of X.
A morphism from ((X, τX), COs(X), Xd) to ((Y, τY), COs(Y), Yd) in SpecBD is such a

spectral mapping between spectral spaces g : (X, τX)→ (Y, τY) that:

(a) satisfies the condition of boundedness

∀A ∈ COs(X) ∃B ∈ COs(Y) g(A) ⊆ B,

(b) respects the decent lump: g(Xd) ⊆ Yd.

Example 4. Each of the spectral spaces PF(Lo
lom), PF(L

o
lrom) decomposes into two parts: prime

filters may or may not intersect Llom, Llrom, respectively. Those elements of PF(Lo
lom) that intersect

Llom correspond bijectively to the elements of PF(Llom). The latter set may be topologically
identified with an open set in PF(Lo

lom) or an open set
⋃

r,s∈R[r+, s−] = R̃ \ {−∞,+∞} in R̃,
using the notation of Example 3. On the other hand, PF(Lo

lom) has uncountably many prime filters
that do not intersect Llom (some of them may be constructed using ultrafilters on the set of natural
numbers). Similar facts hold true for PF(Lo

lrom).

4. The Categories LatD and LatBD

This section introduces two categories of bounded distributive lattices with additional
data appearing in the main statements on the equivalency of categories.

Definition 15. Objects of LatD are pairs (L, DL) with L =(L,∨,∧, 0, 1) a bounded distributive
lattice and DL ⊆ PF(L) satisfying

∀a, b ∈ L a 6= b =⇒ ãd 6= b̃d (where ãd = {F ∈ DL | a ∈ F} = ã ∩DL).
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Then DL is called a decent set of prime filters on L.
Morphisms of LatD are such homomorphisms of bounded lattices h : L → M that

h•(DM) ⊆ DL.

Fact 3. If DL is a decent set of prime filters of (L,∨,∧, 0, 1), then the bounded lattice (L̃d,∪,∩, ∅, DL),
where L̃d = {ãd | a ∈ L}, is isomorphic to (L,∨,∧, 0, 1).

Moreover, L̃d = CO(PF(L)) ∩1 DL.

Definition 16. An object of LatBD is a system (L, Ls, DL) with L = (L,∨,∧, 0, 1) a bounded
distributive lattice, Ls a bornology in L and DL satisfying the conditions:

(1) DL ⊆
⋃

L̃s ⊆ PF(L),
(2) ∀a, b ∈ L a 6= b =⇒ ãd 6= b̃d, where ãd = {F ∈ DL | a ∈ F},
(3) L̃ ∩1 DL = (L̃s ∩1 DL)

o ⊆ P(DL).

Such DL will be called a decent lump of prime filters on L.
A morphism of LatBD from (L, Ls, DL) to (M, Ms, DM) is such a homomorphism of

bounded lattices h : L→ M that:

(a) satisfies the condition of domination ∀a ∈ Ms ∃b ∈ Ls a ∨ h(b) = h(b),
(b) respects the decent lump of prime filters: h•(DM) ⊆ DL.

5. Stone Duality for LSS0 and SS0

This section presents the main new version of Stone Duality for locally small spaces
(Theorem 1) and its restricted version for small spaces (Theorem 2).

Proposition 2. Assume (X,LX) is a locally small space. Then

LX ∼= L̃X ∩1 X̂ and Lo
X
∼= L̃o

X ∩1 X̂ = (̃LX)
o ∩1 X̂ = (̃LX ∩1 X̂)o ⊆ P(X̂),

where L̃X = {Ã | A ∈ LX}, Ã = {F ∈ PF(Lo
X) | A ∈ F},

X̂ = {x̂ | x ∈ X} ⊆ PF(Lo
X), and x̂ = {W ∈ Lo

X | x ∈W}.

Proof. It is clear that L̃o
X ∩1 X̂ ⊆ (̃LX)

o ∩1 X̂ ⊆ (̃LX ∩1 X̂)o. Moreover, the Boolean
algebras P(X) and P(X̂) are isomorphic, where the sublattice L̃o

X ∩1 X̂ corresponds to
Lo

X and the sublattice L̃X ∩1 X̂ corresponds to LX. That is why LX ∼= L̃X ∩1 X̂ and
Lo

X
∼= L̃o

X ∩1 X̂ = (̃LX ∩1 X̂)o ⊆ P(X̂).

Theorem 1. The categories LSS0, LatBDop and SpecBD are equivalent.

Proof. Step 1: Defining functor R̄ : SpecBD→ LSS0.
We define the restriction functor R̄ : SpecBD→ LSS0 by formulas

R̄((X, τX), COs(X), Xd) = (Xd, COs(X)d), R̄(g) = gd,

where gd : Xd → Yd is the restriction of g : X → Y in the domain and in the codomain to
the decent lumps. It is clear that COs(X)d is a sublattice of P(Xd) with zero that covers
Xd. Now CO(X) separates points of X since it is a basis of the topology τX. Hence both
CO(X)d and COs(X)d separate points of Xd.

For a morphism g : X → Y in SpecBD, we have

g−1
d (COs(Y)d) ⊆ g−1(CO(Y)d) ∩1 Xd ⊆ CO(X)d ⊆ (COs(X)d)

o

by (3) of Definition 14, so gd : (Xd, COs(X)d)→ (Yd, COs(Y)d) is continuous. That gd is a
bounded mapping between locally small spaces follows from g satisfying the condition of
boundedness. Since the rest of the conditions are obvious, R̄ is indeed a functor.
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Step 2: Defining functor S̄ : LatBDop → SpecBD.
We define the spectrum functor S̄ : LatBDop → SpecBD by

S̄(L, Ls, DL) = ((PF(L), τ(L̃)), L̃s, DL), S̄(hop) = h•,

where τ(L̃) is as in Remark 2 and hop in LatBDop is the morphism h in LatBD inverted. The
lattice COs(PF(L)) = L̃s is a bornology in CO(PF(L)). Moreover, we have an isomorphism
of lattices

CO(PF(L)) = L̃ 3 ã 7→ ãd ∈ L̃d = CO(PF(L)) ∩1 DL

and DL ⊆
⋃

L̃s, by Definition 16. Now (3) of Definition 14 follows from (3) of Definition 16,
so DL is a decent lump.

For a morphism h : L → M of LatBD we have (h•)−1(b̃) = {G ∈ PF(M) | b ∈
h•G} = h̃(b) for b ∈ L. This means (h•)−1(L̃) ⊆ M̃, so h• : PF(M) → PF(L) is spectral,
satisfies the condition of boundedness and respects the decent lump: h•(DM) ⊆ DL. Since
the rest of the conditions are obvious, S̄ is indeed a functor.
Step 3: Defining functor Ā : LSS0 → LatBDop.

We define the algebraization functor Ā : LSS0 → LatBDop by

Ā(X,LX) = (Lo
X ,LX , X̂), Ā( f ) = (Lo f )op,

where Lo
X = (Lo

X,∪,∩, ∅, X) is a bounded distributive lattice, X̂ = X̂(Lo
X) = {x̂ | x ∈

X} ⊆ PF(Lo
X) with x̂ = {A ∈ Lo

X | x ∈ A}, and, for a strictly continuous mapping
f : (X,LX) → (Y,LY), the mapping Lo f : Lo

Y → Lo
X is defined by (Lo f )(W) = f−1(W)

for W ∈ Lo
Y.

The lattice LX is a bornology in Lo
X by the definition of Lo

X . Since X ⊆ ⋃
LX , we have

X̂ ⊆ ⋃
L̃X . For A 6= B ∈ LX , there exists x ∈ A4B, so x̂ ∈ (Ã4B̃)∩ X̂ and Ã∩ X̂ 6= B̃∩ X̂.

By the proof of Proposition 2, (Lo
X,LX, X̂) satisfies (3) of Definition 16 and X̂(Lo

X) is a
decent lump of prime filters on Lo

X .
Moreover, Lo f : Lo

Y → Lo
X is a morphism in LatBD as a homomorphism of bounded

lattices satisfying

(Lo f )•(x̂) = {W ∈ Lo
Y | x ∈ f−1(W)} = f̂ (x), so (Lo f )•(X̂) ⊆ Ŷ,

with the domination condition being the boundedness of the strictly continuous mapping
f . Since the rest of the conditions are obvious, Ā is indeed a functor.
Step 4: The functor R̄S̄Ā is naturally isomorphic to IdLSS0 .

We have R̄S̄Ā(X,LX) = R̄S̄(Lo
X,LX, X̂) = R̄(PF(Lo

X), L̃X, X̂) = (X̂, L̃X
d
), where

L̃X
d
= L̃X ∩1 X̂, and, for a morphism f : (X,LX)→ (Y,LY) in LSS0, we have R̄S̄Ā( f ) =

((Lo f )•)d.
Define a natural transformation η from R̄S̄Ā to IdLSS0 by

ηX(X̂, L̃X
d
)→ (X,LX), where ηX(x̂) = x.

Then f ◦ ηX(x̂) = ηY ◦ ((Lo f )•)d(x̂) = f (x) for x̂ ∈ X̂ and, by the obvious isomor-
phism between P(X) and P(X̂) (compare Proposition 2), each ηX is an isomorphism in
LSS0, so η is truly a natural isomorphism.
Step 5: The functor S̄ĀR̄ is naturally isomorphic to IdSpecBD.

We have S̄ĀR̄((X, τX), COs(X), Xd) = S̄Ā(Xd, COs(X)d) = S̄((COs(X)d)
o, COs(X)d,

X̂d
d
) = (PF((COs(X)d)

o), ˜COs(X)d, X̂d
d
),

with the topology τ(C̃O(X)d) on PF((COs(X)d)
o) since, by Definition 14, we have

(COs(X)d)
o = CO(X)d. Here we put X̂d

d
= {x̂d | x ∈ Xd} and x̂d = {V ∩ Xd | x ∈ V ∈

CO(X)} ∈ PF(CO(X)d) for x ∈ X. For a morphism g : X → Y in SpecBD, we have
S̄ĀR̄(g) = (Logd)

•.
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Define a natural transformation θ from S̄ĀR̄ to IdSpecBD by

θX : (PF(CO(X)d), ˜COs(X)d, X̂d
d
)→ (X, COs(X), Xd) with θX(x̂d) = x.

Notice that (Logd)
•(x̂d) = {W ∩ Yd | g(x) ∈ W ∈ CO(Y)} = ĝ(x)

d
for x ∈ X.

This means g ◦ θX = θY ◦ (Logd)
• and each θX satisfies θX(X̂d

d
) = Xd and θX(Ãd) =

θX({x̂d ∈ PF(CO(X)d) | x ∈ A}) = A for A ∈ CO(X), so θ−1
X (CO(X)) = C̃O(X)d and

θ−1
X (COs(X)) = ˜COs(X)d. Hence θ is truly a natural isomorphism.

Step 6: The functor ĀR̄S̄ is naturally isomorphic to IdLatBDop .
We get ĀR̄S̄(L, Ls, DL) = ĀR̄((PF(L), τ(L̃)), L̃s, DL) = Ā(DL, L̃s ∩1 DL) = ((L̃s ∩1

DL)
o, L̃s ∩1 DL, D̂L

d
). Here D̂L

d
= {F̂d | F ∈ DL}, where F̂d = {ãd ∈ L̃d | F ∈ ãd},

ãd = {F ∈ DL | a ∈ F}. By Definition 16, we have (L̃s ∩1 DL)
o = L̃ ∩1 DL, shortly:

(L̃s
d
)o = L̃d. For a morphism h : L→ M in LatBD, we have ĀR̄S̄(hop) = (Lo(h•)d)

op.
Define a natural transformation κop from ĀR̄S̄ to IdLatBDop by putting κ

op
L : (L̃d,

L̃s
d
, D̂L

d
)→ (L, Ls, DL) in LatBDop to be the map

κL : (L, Ls, DL)→ (L̃d, L̃s
d
, D̂L

d
) given by κL(a) = ãd.

We are to check that κ
op
L ◦ ĀR̄S̄(hop) = hop ◦ κ

op
M or κM ◦ h = Lo(h•)d ◦ κL. Now

(Lo(h•)d ◦ κL)(a) = (h•)−1
d (ãd) = {G ∈ DM | h(a) ∈ G} = h̃(a)

d
= (κM ◦ h)(a). Each κL :

L→ L̃d is an isomorphism of bounded lattices satisfying κ•L(D̂L
d
) = DL and κL(Ls) = L̃s

d
,

so κop is truly a natural isomorphism.

Example 5. The sine mapping sin : Rlom → Rlom is bounded continuous but not strongly
continuous. Consequently, S̄Ā(sin) = (Lo sin)• : PF(Lo

lom)→ PF(Lo
lom) is a spectral mapping

between spectral spaces but (Lo sin)(Llom) is not contained in Llom, so Ā does not provide an
endomorphism of the lattice Llom.

Theorem 2. The categories SS0, LatDop and SpecD are equivalent.

Proof. In the proof of Theorem 1, we restrict to the case Lo
X = LX, Ls = L and COs(X) =

CO(X).

Corollary 1. Any bounded continuous mapping between Kolmogorov locally small spaces is a
restriction of a spectral mapping between spectral spaces to some patch dense subsets.

6. The Categories uSpec and uSpecs

This section collects main facts about up-spectral spaces, gives an equivalency result
for the category of up-spectral spaces with spectral mappings (Theorem 5) and distin-
guishes the category of up-spectral spaces with strongly spectral mappings.

Definition 17. For a topological space (X, τX), we denote:

SO(X) = {U ∈ τX | U has spectral subspace topology}.

Definition 18. A topological space (X, τX) is strongly locally spectral if it satisfies the follow-
ing conditions:

(1) it is locally spectral ([14,30]): SO(X) covers X,
(2) it is semispectral ([14,30]): CO(X) ∩1 CO(X) ⊆ CO(X).
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Proposition 3. For any strongly locally spectral space (X, τX), we have

CO(X) = SO(X).

Proof. Obviously, SO(X) ⊆ CO(X). Let A ∈ CO(X). Then A is covered by a finite family
W1, ..., Wn of spectral open sets. Since a finite union of spectral spaces glued together along
compact open subsets is spectral, the set W1 ∪ ... ∪Wn is spectral and its compact open
subset A belongs to SO(X).

Proposition 4. In a strongly locally spectral space (X, τX), we have

CO(X)o = ICO(X) ⊆ P(X).

Proof. If V ∈ CO(X)o, then V is a union of compact open sets since CO(X) covers X.
Hence V ∈ τX and V satisfies the definition of a member of ICO(X).

If V ∈ ICO(X) and A is any member of CO(X), then V ∩ A ∈ CO(X). This means
V ∈ CO(X)o.

Proposition 5. A strongly locally spectral space on a set X may be equivalently defined by:

(a) the topology τX ,
(b) the family of compact open subsets CO(X),
(c) the family of spectral open subsets SO(X),
(d) the family of intersection compact open subsets ICO(X).

Proof. Elements of CO(X) = SO(X) are the compact elements of τX . Elements of ICO(X)
are the sets compatible with those of CO(X). Elements of τX are the unions of subfamilies
of ICO(X). Each of the considered families induces all the other.

Remark 4. Hochster proved ([14], Proposition 16) that being strongly locally spectral is equivalent to:

(a) being the underlying space of some scheme,
(b) being homeomorphic with an open subspace of a spectral space.

Remark 5. It is also known that a topological space is strongly locally spectral if and only if it is:

(a) almost-spectral, see ([31], Theorem 7), which means that it is the prime spectrum of a
commutative ring or the prime spectrum of a distributive lattice with zero.

(b) up-spectral, see ([31], Theorem 8), which means that it satisfies all conditions of Definition
9 but (S1).

Because of the above, strongly locally spectral spaces will be called up-spectral from
now on.

Definition 19. For L a distributive lattice with zero and a ∈ L, we set

D(a) = {p ∈ PI(L) | a /∈ p}

where PI(L) is the set of all prime ideals in L.

Below, we restate in a modern language two theorems of M. H. Stone published in
1938. They give another description of up-spectral spaces.

Theorem 3 ([3], Theorem 15). Let (L,∨,∧, 0) be a distributive lattice with zero. Then the sets

D(I) = {p ∈ PI(L) | I 6⊆ p}, where I is an ideal in L,
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form a T0 topology on PI(L) with a basis

{D(a) | a ∈ L} = CO(PI(L))

closed under finite intersections and satisfying the condition
(?) for a closed set F and a subfamily C ⊆ CO(PI(L)) centered on F (this means: for any finite
family C1, ..., Cn of members of C the set F ∩ C1 ∩ ...∩ Cn is nonempty), the intersection F ∩⋂

C

is nonempty.

Theorem 4 ([3], Theorem 16). Let (X, τX) be a topological T0-space where CO(X) is a basis of
the topology closed under finite intersections and satisfying the condition (?) from the previous
theorem. Then:

(1) (CO(X),∪,∩, ∅) is a distributive lattice with zero,
(2) Ψ : I(CO(X)) 3 I 7→ ⋃

I ∈ τX is an isomorphism of lattices, where I(CO(X)) is the lattice
of all ideals in CO(X),

(3) for each p ∈ PI(CO(X)) there exists a unique xp ∈ X such that⋃
p = int(X \ {xp}),

(4) the mapping H : PI(CO(X)) 3 p 7→ xp ∈ X is a homeomorphism, where the topology in
PI(CO(X)) is defined as in Theorem 3.

Proposition 6. For a topological space (X, τX), the following conditions are equivalent:

(1) (X, τX) is up-spectral,
(2) (X, τX) satisfies the conditions in the assumption of Theorem 4.

Proof. (1) =⇒ (2) Since the other conditions are obvious, we prove (?). One may assume
F 6= ∅ and ∅ 6= C ⊆ CO(X) is centered on F. Choose C ∈ C. Then F ∩ C is patch compact
and members of C∩1 C are patch closed in C. Since finite subfamilies of C∩1 C meet F ∩ C,
the set F ∩⋂

C is nonempty.
(2) =⇒ (1) Assume V is a proper irreducible open subset of X. Then I(V) = {A ∈
CO(X) | A ⊆ V} is a prime ideal in CO(X). By (3) of Theorem 4, there exists a unique
xV such that

⋃
I(V) = V = int(X \ {xV}). Hence X as well as all members of CO(X) are

sober. The other conditions are obvious.

Definition 20. A subset Xd ⊆ X in a up-spectral space (X, τX) will be called decent if any of the
two equivalent conditions is satisfied:

(1) for A, B ∈ CO(X) if A 6= B, then A ∩ Xd 6= B ∩ Xd,
(2) Rd : CO(X) 3 A 7→ A ∩ Xd ∈ CO(X)d is an isomorphism of lattices.

Definition 21 (cf. [14,30]). The patch topology of an up-spectral space (X, τX) is the topology
on X with a basis CO(X) \1 CO(X).

Proposition 7. In an up-spectral space (X, τX) the decent subsets are exactly the patch dense subsets.

Proof. The same as the proof of Proposition 1.

Example 6. The spaces (PF(Llom), τ(L̃lom)) and (PF(Llrom), τ(L̃lrom)) are up-spectral and are
homeomorphic to open patch dense subspaces in the respective spectral spaces (PF(Lo

lom), τ(L̃o
lom))

and (PF(Lo
lom), τ(L̃o

lom)) that are known from Example 4.

Definition 22. A mapping g : (X, τX) → (Y, τY) between up-spectral spaces will be called
spectral if the following conditions are satisfied:

(1) g is bounded: g(CO(X)) refines CO(Y),



Symmetry 2021, 13, 1791 12 of 17

(2) g is s-continuous: g−1(ICO(Y)) ⊆ ICO(X).

Remark 6. In [30], all mappings satisfying (2) are called spectral, but this condition is too weak
in our context of up-spectral spaces.

The following proposition gives a better understanding of spectral maps between
up-spectral spaces.

Proposition 8. If g : (X, τX) → (YτY) is a mapping between up-spectral spaces, then the
following conditions are equivalent:

(1) g is spectral,
(2) g is bounded and locally spectral (i.e., for any A ∈ CO(X), B ∈ CO(Y) such that g(A) ⊆ B,

the restriction gB
A : A→ B is a spectral mapping between spectral spaces).

Proof. (1) =⇒ (2) If g is spectral and A, B are as in the statement, then

CO(A) = ICO(A), CO(B) = ICO(B) ⊆ ICO(Y).

Now (gB
A)
−1(CO(B)) ⊆ ICO(X) ∩1 A ⊆ CO(A), so g is locally spectral.

(2) =⇒ (1) If g is bounded and locally spectral, then, for D ∈ ICO(Y) and A ∈ CO(X),
we have

g−1(D) ∩ A = (gB
A)
−1(D ∩ B) ∈ CO(X),

with some B ∈ CO(Y) such that g(A) ⊆ B. This means g is s-continuous.

Definition 23. By uSpec we shall denote the category of up-spectral spaces and spectral mappings
between them.

Definition 24. By SpecB we shall denote the full subcategory in SpecBD generated by objects
((Y, τY), COs(Y), Yd) satisfying Yd =

⋃
COs(Y).

Theorem 5. The categories uSpec and SpecB are equivalent.

Proof. Let LSS0(uSpec) be the full subcategory of LSS0 generated by those objects
(X,LX) whose topology τ(LX) is up-spectral and whose family of smops LX coincides
with the compact open subsets in this topology.

We have a concrete isomorphism of constructs (see [32]) Ī : uSpec→ LSS0(uSpec)
given by the formula Ī(X, τX) = (X, CO(X)); notice that the spectral mappings between up-
spectral spaces are exactly the continuous bounded mappings between the corresponding
objects of LSS0(uSpec).

We show, using Theorem 1, that the functor S̄Ā transforms LSS0(uSpec) into
SpecB. If (X, CO(X)) is an object of LSS0(uSpec), then it embeds into the spectral space

PF(ICO(X)) with topology τ( ˜ICO(X)), the distinguished bornology C̃O(X) and the

distinguished decent lump X̂. Obviously X̂ ⊆ ⋃
C̃O(X), so we are to show

⋃
C̃O(X) ⊆ X̂.

Let F ∈ B̃ with B ∈ CO(X). Then F ∩ CO(B) ∈ PF(CO(B)). Since B is spectral, there
exists x ∈ B such that x̂B = {A ∈ CO(B) : x ∈ A} = F ∩ CO(B). Then F = x̂ ∈ X̂. (If
C ∈ F4x̂, then C ∩ B ∈ (F ∩ CO(B))4 x̂B. Contradiction.) Since both subcategories are
full, we are done.

Applying the restriction functor R̄ to some object ((Y, τY), COs(Y),
⋃

COs(Y)) of
SpecB, we get the up-spectral space with the induced topology whose family of com-
pact open sets is equal to

CO(Y) ∩ P(
⋃

COs(Y)) = CO(Y) ∩1 COs(Y) = COs(Y),
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so (
⋃

COs(Y), COs(Y)) is an object of LSS0(uSpec). Again, there is no problem with mor-
phisms since both subcategories are full. This means R̄ transforms SpecB into LSS0(uSpec).

We get a pair of functors S̄Ā Ī : uSpec→ SpecB and Ī−1R̄ : SpecB→ uSpec giving
an equivalence between uSpec and SpecB.

Corollary 2. Each spectral mapping between up-spectral spaces is a restriction of a spectral
mapping between spectral spaces to some open patch dense subsets.

Definition 25. A mapping g : (X, τX)→ (Y, τY) between up-spectral spaces is strongly spectral
if the following conditions are satisfied:

(1) g is bounded,
(2) g is strongly continuous: g−1(CO(Y)) ⊆ CO(X).

Definition 26. By uSpecs we shall denote the category of up-spectral spaces and strongly spectral
mappings between them.

7. The Category ZLat

This section introduces the category of distributive lattices with zeros and dominating
homomorphisms between them as well as it states a version of Stone Duality for this
category (Theorem 6).

Definition 27. For a homomorphism of lattices h : L→ M, we say that:

(1) h is dominating or satisfies the condition of domination, if

∀a ∈ M ∃b ∈ L a ∨ h(b) = h(b),

(2) h is proper ([31]) if the preimage of any prime ideal in M is a prime ideal in L.

The following fact follows from the proof of Lemma 4 in [31].

Fact 4. Each proper homomorphism between distributive lattices with zeros respects the zero.

Example 7. Not each proper and respecting the zero lattice homomorphism is dominating: take
LidR : Llom → Lslom.

Proposition 9. Each dominating and respecting the zero homomorphism between distributive
lattices with zeros is proper.

Proof. Let h : L→ M be such a homomorphism and I be a prime ideal in M. Then h−1(I)
contains the zero. Assume a ∈ M \ I. Then h(b) ≥ a for some b ∈ L. However, h(b) /∈ I, so
h−1(I) is a proper subset of L. A standard checking proves that the conditions

(i) b1 ∈ h−1(I) and b2 ∈ h−1(I) if and only if b1 ∨ b2 ∈ h−1(I),
(ii) b1 ∈ h−1(I) or b2 ∈ h−1(I) if and only if b1 ∧ b2 ∈ h−1(I)

for a prime ideal are satisfied.

Definition 28. By ZLat we denote the category of distributive lattices with zeros and dominating
and respecting zeros homomorphisms of lattices.

Theorem 6. The categories uSpecs and ZLat are dually equivalent.

Proof. Step 1: Defining functor Ĉo : uSpecs → ZLatop.
For an object (X, τX) of uSpecs, we set Ĉo(X, τX) = (CO(X),∪,∩, ∅). For a morphism

g : (X, τX) → (Y, τY) of uSpecs, we set Ĉo(g) = (Lg)op : CO(X) → CO(Y), where
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(Lg)(W) = g−1(W) for W ∈ CO(Y) defines a morphism Lg of ZLat. Hence Ĉo is a well
defined functor.
Step 2: Defining functor Ŝp : ZLatop → uSpecs.

For an object L = (L,∨,∧, 0) of ZLat, we put Ŝp(L) = (PF(L), τ(L̃)), where L̃ = {ã |
a ∈ L}, which is an up-spectral space by Theorem 3. For a morphism h : L→ M of ZLat,
we set Ŝp(hop) = h•, which is a strongly spectral mapping.

Boundedness of h•: since h•(h̃(L)) refines L̃ and h̃(L) = {h̃(a) | a ∈ L} dominates in
M̃, hence h•(M̃) refines L̃.

Strong continuity of h•: for any ã ∈ CO(PF(L)) = {ã | a ∈ L} (see Theorem 3), we
have (h•)−1(ã) = h̃(a) ∈ CO(PF(M)).

Hence Ŝp is a well-defined functor.
Step 3: The functor ĈoŜp is naturally isomorphic to IdZLatop .

Define a natural transformation α from IdZLatop to ĈoŜp by αM(a) = ã ∈ M̃ for any
object M of ZLat. Then each αM : M→ M̃ is an isomorphism of ZLat (injectivity follows
from ([3], Theorem 6)). For a morphism h : L→ M in ZLat, one has (αM ◦ h)(a) = h̃(a) =
(h•)−1(ã) = (Lh• ◦ αL)(a), so αL ◦ hop = (Lh•)op ◦ αM. Hence α is a natural isomorphism.
Step 4: The functor ŜpĈo is naturally isomorphic to IduSpecs .

Define a natural transformation β from IduSpecs to ŜpĈo by βX(x) = x̂ for any object
(X, τX) of uSpecs, where x̂ = {V ∈ CO(X) | x ∈ V}. (We have X̂ = {x̂ | x ∈ X} =
PF(CO(X)) by the dual of Theorem 4). For a morphism g : (X, τX) → (Y, τY) of uSpecs,
we have (βY ◦ g)(x) = ĝ(x) = (Lg)•(x̂) = ((Lg)• ◦ βX)(x) for x ∈ X. Now βX is an
isomorphism, since βX(CO(X)) = CO(X̂), where CO(X̂) = {Ã | A ∈ CO(X)} and
Ã = {x̂ | x ∈ A}. Hence β is a natural isomorphism.

Remark 7. The co-equivalence mentioned in the above theorem is a restriction of the co-equivalence
from Corollary 4 of [31] between the category of up-spectral spaces and their strongly continuous
mappings (denoted there US) and the category of distributive lattices with zeros and proper
homomorphisms between them (denoted there D0).

8. Stone Duality for LSSs
0

This section presents a version of Stone Duality for locally small spaces with bounded
strongly continuous mappings (Theorem 7).

Definition 29. The category uSpecDs has

(1) pairs ((X, τX), Xd) where (X, τX) is an up-spectral space and Xd is a distinguished decent
subset of X as objects,

(2) strongly spectral mappings respecting the decent subsets as morphisms.

Definition 30. The category ZLatD has

(1) pairs (L, DL) where L is a distributive lattice with zero and DL is a distinguished decent set
of prime filters in PF(L) as objects,

(2) homomorphisms of lattices with zeros respecting the decent sets of prime filters and satisfying
the condition of domination as morphisms.

Definition 31. The category LSSs
0 is a subcategory of LSS0 with the same objects and bounded

strongly continuous mappings as morphisms.

Example 8. Let π : Rlom t Rlom → Rlom be the natural projection from the disjoint union of
two copies of the real locally o-minimal line to the real locally o-minimal line. This finite covering
mapping is a morphism of LSSs

0 that is not an isomorphism.

Theorem 7. The categories LSSs
0, ZLatDop and uSpecDs are equivalent.
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Proof. Similar to the proof of Theorem 1, using Theorem 6 instead of the classical Stone
Duality, with no necessity to mention explicitly the ambient bounded lattice Lo

X of LX,
with an object L of ZLat playing the role of Ls and CO(X)d playing the role of COs(X)d in
Theorem 1, restricting to the appropriate classes of morphisms.

Example 9. The mapping (Lπ)• : PF(Llom ⊕ Llom)→ PF(Llom), where π : Rlom tRlom →
Rlom is as in Example 8, is the natural projection from the disjoint union of two copies of PF(Llom)
to PF(Llom). It is a strongly spectral mapping between up-spectral spaces. Moreover, R̂(Llom) is a
patch dense set in PF(Llom) and R̂tR(Llom ⊕Llom) is a patch dense set in PF(Llom ⊕Llom).
The morphism (Lπ)• of uSpecDs corresponds to the morphism π of LSSs

0 and may be understood
as an extention of π.

9. Spectralifications

This section introduces a notion of a spectralification of a topological space and
discusses it in connection with similar notions and from the point of view of the main new
version of Stone Duality.

Definition 32. By a spectralification of a topological space (X, τX) we shall understand a pair
(e, (Y, τY)) where (Y, τY) is a spectral topological space, e : (X, τX) → (Y, τY) is a topological
embedding and e(X) is a patch dense set in (Y, τY).

Remark 8. The morphism e will often be treated as containing information about the space (Y, τY)
and called a spectralification. On the other hand, when the embedding e is obvious, we shall say that
the topological space Y = (Y, τY) is a spectralification of X = (X, τX). We can also treat (X, τX)
as a topological subspace of (Y, τY).

Remark 9. Since a spectral map between spectral spaces is continuous in the patch topologies, any
spectralification (e, (Y, τY)) in our sense has the following uniqueness property: for any spectral
mappings g1, g2 from (Y, τY) to some spectral space (Z, τZ) if g1 ◦ e = g2 ◦ e, then g1 = g2.

Remark 10. (1) When the Hochster spectralification (see ([14], Theorem 8)) exists, which takes
place when this space is semispectral, T0 and ICO sets form a basis of the topology, then it is a
spectralification in our sense.
(2) When the H-spectralification (see [30]) of a hemispectral space exists, which takes place when this
space is T0 and ICO sets form a basis of the topology ([30], Lemma 3.7), then it is a spectralification
in our sense.
(3) When X is T0, then the spectral reflection SX : X → S(X) (see ([10], Chapter 11)) is a
spectralification in our sense.

The tilde operator known in semialgebraic geometry ([12], Chapter 7) gives examples
of spectralifications. Other examples appear as spaces of types in model theory ([18],
p. 112).

Example 10. The space (R̃, τ(B)) from Example 3 is a spectralification of the real line (with
the natural topology), homeomorphic to (PF(Lom), τ(L̃om)). The corresponding patch (or: con-
structible) topology on the same set R̃ gives an example of a Hausdorff spectralification of the discrete
real line. This latter spectralification is homeomorphic to the space of types of the ordered field of
reals with the usual topology on this space.

Example 11. Consider Lrom from Example 1. The points of PF(Lrom) are:

r̂ = {A ∈ Lrom | r ∈ A} for r ∈ R,

q̂− = {A ∈ Lrom | (l, q) ⊆ A for some l < q} for q ∈ Q,
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q̂+ = {A ∈ Lrom | (q, l) ⊆ A for some l > q} for q ∈ Q,

−̂∞ = {A ∈ Lrom | (−∞, l) ⊆ A for some l ∈ Q},

+̂∞ = {A ∈ Lrom | (l,+∞) ⊆ A for some l ∈ Q}.

Here L̃rom = {Ã | A ∈ Lrom}, Ã = {F ∈ PF(Lrom) | A ∈ F}. We can see that
(PF(Lrom), τ(L̃rom)) is another spectralification of the real line with the natural topology, homeo-
morphic to the space of types over Q of the theory Th(R,<) with the spectral (Harrison) topology
(compare ([10], Section 14.2)), obtained without using the language of model theory.

Example 12. For the patch topology on the “same” set of points as in the previous example, one takes
as the new LX the Boolean algebra Brom generated by Lrom. This changes the topology on R: the
rational points become isolated. The space (PF(Brom), τ(B̃rom)) is a Hausdorff spectralification of
this modified real line, and is identified with the (usual in model theory, compare ([17], Section 4.2))
space of types over Q of the theory Th(R,<).

Proposition 10. For a topological space, being T0 is equivalent to admitting a spectralification.

Proof. For (X, τX) a T0 topological space, choose a basis LX of τX that is a sublattice con-
taining ∅. By Step 4 of the proof of Theorem 1, (X, τX) embeds into the spectral space
(PF(Lo

X), τ(L̃X)) with the image X̂ of the embedding patch dense in (PF(Lo
X), τ(L̃X)).

Since a subspace of a T0 space is T0, only T0 topological spaces can have spectralifications.

Remark 11. The proposition above allows producing many spectralifications of a Kolmogorov topo-
logical space (X, τX) by taking many different bases LX of the topology τX. That is why it is more
versatile than Theorem 11.1.3(ii) of [10] concerning the spectral reflection of a Kolmogorov topological
space. By Theorem 11.1.3(x) of [10], only localic spectral spaces are codomains of spectral reflections,
while any spectral spaces are codomains of spectralifications obtained by using Theorem 1.

10. Conclusions

Several goals have been achieved. The categories of Kolmogorov small and locally
small spaces were introduced (Definition 7). We proved new versions of Stone Duality
(Theorems 1, 2, 6 and 7) and gave an equivalent description of the category of up-spectral
spaces and their spectral mappings (Theorem 5), giving new instances of symmetry on the
category theory level.

By giving new versions of Stone Duality, we have developed some theory of locally
small spaces (often used in the literature without naming these structures) and important
classes of mappings between them, which is a contribution to a new chapter in general topol-
ogy. In particular, Kolmogorov locally small spaces have been considered as patch dense
subsets in spectral or up-spectral spaces (Theorems 1 and 7), while morphisms between
them were seen as restrictions of spectral or strongly spectral mappings (Corollaries 1 and 2
and a similar corollary from Theorem 7). The special case of Kolmogorov small spaces was
covered separately (Theorem 2).

We have also distinguished the interesting class of strongly spectral mappings re-
specting the decent subsets between up-spectral spaces (Definition 29) and the class of
dominating and respecting the decent set of prime filters homomorphisms of distributive
lattices with zeros (Definition 30) as those that correspond to the class of bounded strongly
continuous mappings between Kolmogorov locally small spaces (Theorem 7).

In consequence, we have also widened the method of taking spectra of algebraic
structures (known from algebraic and analytic geometry) or spaces of types (known from
model theory or o-minimality). Taking spectra of small or locally small spaces (using
functor S̄Ā from the proof of Theorem 1) is an extension of this method. Spectralifications of
topological spaces form an interesting topic for further research as a sort of non-Hausdorff
compactifications.
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