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Abstract: Conjectures on permanents are well-known unsettled conjectures in linear algebra. Let A
be an n X n matrix and S, be the symmetric group on n element set. The permanent of A is defined as

n
perA= Y TI Big (i) The Merris conjectured that for all n X n doubly stochastic matrices (denoted
oeS, i=1

n
by Q,), nperA > 12113 Y. perA(j|i), where A(j|i) denotes the matrix obtained from A by deleting
<isnj—1

the jth row and ith column. Foregger raised a question whether per(¢J, + (1 — t)A) < perA for

0<t< n”j and for all A € ), where ], is a doubly stochastic matrix with each entry % The
Merris conjecture is one of the well-known conjectures on permanents. This conjecture is still open
for n > 4. In this paper, we prove the Merris inequality for some classes of matrices. We use the
sub permanent inequalities to prove our results. Foregger’s inequality is also one of the well-known
inequalities on permanents, and it is not yet proved for n > 5. Using the concepts of elementary
symmetric function and subpermanents, we prove the Foregger’s inequality for n = 5in [0.25, 0.6248].
Let 03 (A) be the sum of all subpermanents of order k. Holens and Dokovic proposed a conjecture
(Holen-Dokovic conjecture), which states thatif A € ), A # ], and k is an integer, 1 < k < n, then

o (A) > Wqu (A). In this paper, we disprove the conjecture for n = k = 4.

Keywords: doubly stochastic matrices; permanent; Merris conjecture; Foregger’s inequality

1. Introduction

Let S, be the symmetric group on n element set and let A be an n x n matrix. The
permanent of A is defined as

n
perA = Z H”ia(i)-

ceS,i=1
A matrix A is said to be doubly stochastic if it is a real non-negative matrix with
each row sum and column sum equal to 1. Let (), denote the set of all n x n doubly
stochastic matrices. For positive integers n and k with (1 < k < n), Qk n denotes the set
{(G1,...,ik)/1 < iy < ... <ix < n}. Fora, B € Qk,, let A(a/B) be the submatrix of A
obtained by deleting the rows indexed by « and columns indexed by  and A[«x/p] be the

submatrix of A with rows and columns indexed by a« and f, respectively.

For1 < k < n, the kth order subpermanent of A isdefinedby o3 (A) = Y, perAla/p].

a/,BGQk,n
In this paper, we use the following results quoted by Minc [1]: If A and B are two n x n

matrices and 1 < k < 7, then

perA= Y perAla/BlperA(a/p), fora € Qx,,
ﬁer,n

and

per(A+B) = i Sk(A,B), (1)
k=0
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where Si(A,B) = Y. perAla/BlperB(a/B), perAla/B] = 1 when k = 0 and per
#,BEQk
B(a/B) =1whenk = n.

Elliott H. Lieb [2] gave proofs of some conjectures on permanents. S G Hwang [3]
proved that [, = (%)nxn is the unique ¢-maximizing matrix on K,. Lih and Wang [4]
proved the monotonicity conjecture for n = 3. A survey on conjectures on permanents are
given in [5,6].

n
Merris [7] conjectured that if A € ), then nperA > 1r£1j£1 Y. perA(j|i). He also
<i<n j—1

suggested a method to prove this conjecture. The conjecture is still open for n > 4.
Subramanian and Somasundaram [8] have proved that if A € (), and the polynomial

n
(Z;f,) ! 07(A — Ju)"~% has no root in (0,1) then A satisfies Merris conjecture. Further-

r
;n?)re, they proved some sufficient conditions for matrices in Fz to satisfy the Merris
conjecture, where I'}! denote the set of X n non-negative matrices with each row sum and
column sum equal to k.

In Section 2, we prove the Merris inequality for all # X n non-negative matrices
with minimum entry greater than or equal to 2. We prove that if A is an n x 1 non-
negative matrix with minimum entry greater than or equal to 2 and maximum entry less
than or equal to 1, then n? perA > ¥ A;, where As are the eigenvalues of [a;; perA(ilf)].
Furthermore, we give a sufficient condition for a doubly stochastic matrix A to satisfy the
Merris conjecture.

Foregger [9] raised a question whether per(t], 4 (1 —t)S) < perS for 0 < t < g,
and S € Q.. He proved in [9] that for n = 3, per(t]3 + (1 — t)S < perS for 0 < t < 3 for
S € O3 with equality iff S = J3 or t = 3 and S is (up to permutations of rows and columns)
3(I+ P), where P is a full-cycle permutation matrix. In addition, he proved in [10] that
if S € Q4 has all its off-diagonal entries less than or equal to 29—0 and fp <t < %, where tg
is the unique real root of 106t> — 418t> + 465t — 100 then per(t]; + (1 — t)S) < perS with
equality if and only if S = J4.

Subramanian and Somasundaram [8] proved that if A € Q,,2 < k < n, and the

k
polynomial ;2 rc;07(A — ], )2 hasno root in (0,1), where ¢, = (’;k__r,)' (2::)21 then o} (tA +

r=
(1—1)Ju) < ox(A) forall t € [0,1]. In Section 3, we prove that for all S € Q5 and all t such
that 0.25 < t < 0.6248, per(tJs + (1 — t)S) < perS.

Holens [11] and Dokovic [12] proposed a conjecture (Holen—-Dokovic conjecture),

which states that if A € O,,A # ], and k is an integer, 1 < k < n, then 03(A) >

(n_zljl)Z 0r_1(A). S G Hwang [13] proved the conjecture for an n — 2 dimensional face of

). Wanless [14] disproved this conjecture by providing a counterexample of order 22. The
smallest order of a counterexample has not been established. In Section 3, we prove that
the Holen—-Dokovic conjecture fails for # = k = 4 and thus established that the smallest
order of a counterexample to Holen—-Dokovic conjecture is 4.

2. Merris Conjecture

Let I'}! denote the set of n X n non-negative matrices with each row sum and column
sum equal to k. Merris [7] conjectured that for all n x n doubly stochastic matrices,

n
A > mi A(jli).
nperA > min ]; perA(j|i)
He also raised a question whether

n
A > A(jli) forall A € Q).
nperA = max ]; perA(jli) fora SEOM
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The Merris conjecture is one of the well-known conjectures in linear algebra, in
particular on permanent. The conjecture is still open for n > 4. There is not much progress
in this conjecture Subramanian and Somasundaram [8] have proved that if A € (0, and

the polynomial Z r n,, ! 07(A — J,)"~2 has no root in (0,1) then A satisfies the Merris

r

conjecture, and they also proved some sufficient conditions for matrices in I'}! to satisfy the
Merris conjecture.

A matrix is said to be a positive matrix if all its entries are non-negative [15]. Let A; be
k x kmatrix, i = 1,2,...,n. The direct sum of the matrices A; is defined as follows:

AL 0 ... 0
0 Ay ... 0
@, A; =diag(A1, Ay,..., Ay) = . ) ) , where 0 is the zero matrix.
0 0o ... Ay

Lemma 1. If A isan x n positive matrix with minimum entry greater than or equal to 1, then

1. nperA > max Z perA(jli).

171]

2. nperA > min ): perA(j|i).

<1<n

3. n’perA > Z perA(ilf).
ij=1

Proof.

n
1.  Weneed to find max Y. perA(j|i). Let the maximum sum be attained in the kth col-
<i<n j=1

n
umn, i.e., max Y. perA(jli) = ;7:1 perA(jlk), where 1 < k < n. Let the entries of the
<i<n j—1
kth column be k1, ky, . . ., k. This implies that % < kjforeach! =1,2,...,n and hence
1 < nk; foreach! =1,2,...,n. Taking the permanent along the kth column, perA =

E kiper(ilk). Multiplying byn on both sides, nperA = Z nk;perA(ilk). Since nk; > 1
for eachl =1,2,. n and since each of the subpermanents is non—negatlve, this im-

plies that nperA > Z perA(ilk). This implies that nperA > max Z perA(jli).
i=1 <i<n j=1

n
2. From the inequality 1, nperA > min Y. perA(j|i).
1<i<n =1
n
3. From the proof of the inequality 1, nperA > Y perA(j|i) for eachi = 1,2,...,n
=1
n n
Taking summation over i,i running from 1 to n, n’perA > Y. Y perA(jli). =
i=1j=1

n’perA > Z perA(ilf).
ij=1
O

Theorem 1. If A is a n X n positive matrix with constant columns and maximum entry greater
than or equal to % then A satisfies the inequality

n
A> mi A(jli).
nper _ggngper (1)
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Proof. Suppose A = (a;j) = kj, for all i. Then perA = nlkiky ... ky. Z perA(jli) = n(n —
]_

Dtkiky .. Kiotkivr-. ke = nkika. o kioikipy .k = B2 min zperA(]|) = B2,
=

where k; = max{ky, ky,...k,}. Since, k; > -, we have nperA — min Z perA(jli) >

p?{—m — min Z perA(jli) = 0. Therefore, nperA > min Z perA(jli). O
! 1<i<n j=1 1<i<n j=1

Theorem 2. If A is a n x n matrix whose minimum entry is greater than or equal to % and
maximum entry is less than or equal to 1 then n’perA > Y A;, where A; is an eigenvalue of

[aijper A(i]f)].

Proof. If A is an n X n non-negative matrix whose minimum entry is greater than or equal

to 1 then from Lemma 1, n? perA > Z perA(ilj).
i,j=1

= perA > -5 Z perA(ilf).
l ]_
Let a;,, be the max1mum entry of A. Multiplying on both sides by a;,,

A PerA > 5 2 ajmperA(ilj) > n2 2 al]perA( ilf).
1]7

= perA > —;— Z aljperA( ilf).
By the assumption ap, <1,= — > 1.

alm -
= perA > -5 Z a;jperA(ilj) > 2 '21 ajperA(ili).
,]— =
= n? perA > tr([ajperA(il})]).
= n’perA > Sum of eigenvalues of [a;;perA(i[j)]. O
n
Theorem 3. Let A € Qy and P = (perA(i/j)) = (pij). If kth row of P gives the max Y p;; and
i =1
min{ay;} = L then

n
A > mi A(ilf).
nperA > 12‘21 ]; perA(i|f)

n n n
: _\n _ : 1
Proof. miin];1 pij < max j; Pij = Yj—1 Pkj < nj; axjPkj = nperA, since ag; > 5. O

1 1 1
BEIVCE e
Examplel. A= |5 5 5| @({ 7 ) where is the direct sum.
11 1 7 7
3 3 3
74 74 74
‘ 41 11 3l 4 2 ‘ .
Itiseasy toseethat P = | 2t 7t ZL\ @3 & ). Maximum row sum of P = 7%
74 74 7 & o

and the minimum element of the row corresponding to the maximum row sum of P = % > %

5
Therefore, 5perA > min Y- perA(ilj).
1§1§5]':1

3. Foregger’s Inequality

Let ], denote the n x n matrix with each entry equal to % Several authors have con-
sidered the problem of finding an upper bound for the permanent of a convex combination
of J, and S, where S € ). Lih and Wang [16] discussed convexity inequality on the
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permanent of doubly stochastic matrices. For example, Marcus and Minc conjectured [17]
thatif S € O, n > 2, then per(%) < perS, equality holds when n = 2. If n > 3 then
inequality holds iff S = J,. They established in [17] that the conjecture is true for n = 2, or
if S is positive semi-definite symmetric, or if S is in a sufficiently small neighborhood of J,.

E.T.H.Wang conjectured [18] that per( "{l’fls ) < perS and proved the Marcus and Minc
conjecture for n = 3, with a revised statement of the case of equality.

Foregger [9] raised a question whether per(t], 4+ (1 —1)S) < perS for 0 < t < I,
and S € Q). He proved in [9] that for n = 3, per(t]3 + (1 — #)S < perS for 0 < t < % for
S € (3 with equality iff S = Jz or t = % and S is (up to permutations of rows and columns)

$(I+ P), where P is a full-cycle permutation matrix. In addition, he proved in [10] that
if S € Q4 has all its off-diagonal entries less than or equal to 29—0 and tg <t < %, where £
is the unique real root of 106t> — 418t + 465t — 100 then per(t], + (1 — )S) < perS with
equality iff S = J,. This Foregger inequality is not yet proved for n > 5.

Subramanian and Somasundaram [8] proved that if A € ,,2 < k < n and the

polynomial 22 rc;0,(A — J,)t" =2 has no root in (0,1) where ¢, = (kk ,) (b ) then oy (tA +

(1—1)Jn) < 0x(A) forall t € [0,1]. In this paper, we prove that for all S € ()5 and all ¢
such that 0.25 < t < 0.6248, per(tJs + (1 — t)S) < perS. The following theorem is from
Ebelein (Theorem 1, [19]).

Theorem 4. Let ¢(x1,x2,...,xn) be a real symmetric polynomial of degree at most one in each
n

variable defined for 0 < x; < land Y x; = 7y (7 is a real constant), then the maximum and
1—1

minimum of ¢(x) on the set C = { x| Z x; = yand fori = 1,2,...,n,x; € [a;, Bi], where

[, Bi] is any closed interval contained i m [0 1] } and is assumed at least among the points whose
components which are not end points are all equal. Moreover, if the maximum or minimum is
Y
attained only in the interior of C then it is assumed uniquely at the point (1,1, 1),
Let x be an n-dimensional vector. Then the elementary symmetric function of x
denoted by e,(x) is the sum of products of coordinates of x taken r at a time. Let
x = (x1,x2,...,%,). Then e, (x) = e,(x1,x2,...,%,), v =1,2,...,1

Theorem 5. Let S € Qs have all its off-diagonal entries less than or equal to % and 0.25 < t < 0.6248.
Then per(t]s + (1 —t)S) < perS.

Proof. Let S(t) = t]J5 + (1 —t)S. Then by Eberlein and Mudholkar ([20], p. 393)

perS(t) = -9+ Z (—ep +e3 —eqg+2e5)(x) + Z (ep —e3 +e4 — 2e5)(x),
T1(S(t)) To(S(t)

where e, is the rth elementary symmetric function and T,(B) is the set of sums of columns
of B, taken r at a time. If x € Ty(S(t)) then x = t£ + (1 —t)s where s € T{(S) and
e=1[1,1,1,1,1]T. Hence,

ex(x) = %t2+t(1—t) +(1 ft) 2

s),
= AP+ £2(1—1t)+1 t(1—t)2

e3(x) 2(s) + (1 —£)3e3(s),
eq(x) = %t‘* + 125t3(1 — 1)+ 5 t2(1 — £)%e(s) + £+(1 — £)3e3(S) + (1 — t)*eq(s),
es(x) = gst® + ostt(1— 1) + 125153(1—15) e2(s) + 55 t2(1—)3e3(s) + 2t(1 — t)*es(s)

Similarly if x € T»(S(t)) then there exists r € T»(S) such that x = 2te + (1 — t)r.
Hence

ea(x) =82+ t(1 — 1) + (1 — t)%er(r),

e3(x) = 283+ 2121 — 1) + 2t(1 — 1)2ex(r) + (1 — t)3e3(r),
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ea(x) = $5t* + SEB(1 —t) + £ 12(1 — t)%ea(r) + 2t(1 — 1)%es(r) + (1 — t)*es(r),

e5(x) = 3217+ 281 — 1) + 5131 — 1)%er(r) + 512 (1 — t)3e3(r) + 2(1 — t)%ea(r)
+(1—)%s(r).

After substitution and simplification we have

perS(t) = perS+ p1(t) + Y (pa(t)es + pa(t)es + pa(t)es + ps(t)es)(x)+
T1(S)

Y (pe(thez+ pr(tes + ps(tles + po(t)es)(x),

T>(s)
where
__ 724645 2901 (4 1426 43 448 (2 76
AR A M
SRR PN A - P
PRI Rt SR Sl
ps(t) = —2t° 4+ 10t* — 2013 + 20£2 — 10t,
_ —16/5, 5244 56,3, 49,2 12
AT A S
PO P WA A S
po(t) = 2> — 10t* + 2013 — 20¢> + 10t.
Now use the identities ([20], p. 391)
Y ex(x)=3 ) exx)+10and Y es(x)= ) es(x)+3 ) exx)
T (A) T:(A) T>(A) T:(A) T1(A)
to write

10
perS(t) = perS + Fat prt)+ Y, (pp+a+p+3y)ea+ (p3+7+ 2)83 + pa(t)es + ps(t)es)+
Ti(S)

Y (polt) — Sea + (pr(t) — & —)es) + ps(t)es + po(t)es)
T>(S)

for any polynomials «,  and *.

perS(t) = perS + c(t) + 2 fi(s) + 2 gt(r),

Ti(S) T2(S)

where f; = P5(t>€5 + P4(t)€4 + (PS + 0+ ,3/3)63 + (Pz + a4+ B+ 3’)’)62,
8t = (po(t) —a/3)ex + (p7(t) — B/3 — v)es + ps(t)es + po(t)es) and c(t) = 10/3a + p1(t).

We assume that all vectors in Tj satisfy the condition 0 < x; < 1,0 < x; < %,
i = 2,3,4,5. The functions f; and g; are linear combinations of elementary symmetric
functions.

From Theorem 4, possible points of maximum of f; are [%, %, %, %, %], [%, %, 0,0,0],
3520+ 20-0,0), [0 &0 5020 O (50 50+ 80 50+ 20 [ 3 33,01, 3, 3, 3,0,01, 1,0,0,0,0],
[%, %, %,O, 0,], [%.%, %, %,0], [%, %, 29—0, 31—0, %] and possible points of maximum of g;
are (3,2,2,3,2)[1,3,1,1,013.3,3,0,0, (11,000, 1,3, 1, 3,0, (1.}, 1, 1. 1)
[1,3,2,0,0] [15, 59, 10/ 15 75

For each t, a set of linear inequalities must be satisfied in order for (%, %, %, %, %) to
be a maximum for f; and for (%, %, %, %, %) to be a maximum for g;. These inequalities are
solved numerically for various values of t and then interpolated to find @ and B (details are
shown in Appendix A). Substituting the values of « and  we obtain the values for f;(s)
and g;(s) at different points. We have shown the values of f;(s) for different values of s
and g;(r) for different values of r are given in the next two tables, respectively.



Symmetry 2021, 13, 1782 7 of 11
s fr(s)
1:1i1 8t4/3125 — 7t%/625 + 29/125001> — 194/ 625t + 75397 /187500t — 2609 /375000
[3.5,0,0,0] 0.00396t° — 0.01782* + 0.0647955¢> — 0.35641> + 0.38741175¢ — 0.0043065
(35 15+ 25.0.0] 979/400000£° — 6633/800000t* + 175813/80000007 — 68013/20000t> —+

127003657 /320000000t — 1798797 /320000000
201/78125£° — 6061/625000t* + 717247/50000000t> — 5068/156252 +
58906841 /150000000t — 1817611 /300000000

[Q I 11 9 0]
607 607 607 207

ErE L 0.0026t° — 0.0104t* + 0.0095t> — 0.311744+> + 0.3884t — 0.0063

15510 81° /3125 — 241/25000£* 4 1627/200000£° — 8179,/25000£ + 969949 /2400000t —
3131/480000

11,3300 8/3375t> — 26/3375t* + 2581/135000£3 — 232/675t> + 32663/81000t —
4697 /810000

[1,1,0,0,0] 1/250t> — 9/500#* 4 1309,/20000£° — 9/25¢2 + 15653 /40000¢ — 87 /20000

[1,0,0,0,0] 0

191/62500° — 379/312508* + 78449/20000001° — 5414/1562512 +
14733359t /37500000 — 1526647 /300000000

—197/25000£° + 1953/50000t* — 275569/1000000# + 2349/5000t2 —
606491 /2000000¢ — 1281 /250000

[ 15669 /50000001> — 63953 /5000000t* 4 972461 /2500000013 — 171569 /500000¢ +
117437989 /300000000¢ — 1543843 /300000000

2
Bl
Bl
°
=

24
24
2
=)

r gt(r)
2 2 2 2 2 256 ;5 144 4 1257 ,3 152 ,2 86134 291
e e L
[g' 332 J — 5171%21 Jr5 2000 24;(;3 194000t 1;;0%1t — 601()50902:9i 00 o573
5,5,5,0,0] _29115265%950t + &s000f T s0000000¢ T T25000¢° — Toooooooo! T
37500000
T 11 674 I BRI VL % SR € 741 W R X 7 WO S F\ S
(1, 3,3,3/0] *2%5,9639?’5 + &2s000! + Sooooo00f T S0000f — Bo000000f T
T T 11 T BT 3 EBI T 5 28T
1, i ] _225o%ot _é_ 12500 ;77+3zonngg tz + ;ggggt - ggnnoot + Ts0000
[1,3,2,0,0] —o5t” + 5" + gom0f” + 255 — o000t t goom0
L9 9 T 1 BN /A7 B2 X S R /10 o R 22 /)T
15/ 10/ 10+ 157 15 31700 1250000 50000000 31250 300000000
18750000

In calculating the elementary symmetric functions and f;(s) and g;(r) at different
points, MATLAB programs were used.

In the Appendix A, we have shown the curves f;(s) and g;(r) in Figures A1 and A2,
respectively. From the figures, f;(s) < ft(%, %, %, %, %) in (0.25,0.98). Furthermore, g:(r) <
gt(l,%,}p %,%) in (0.1,0.65) and g¢(r) < gt(%,%,%,%,%) in (0.65,1). Therefore, in the
interval (0.25, 0.65),

111

< e R S /] C = .
perS(t) < Tg)gt(1,4,4,4, )+ Y ft(5,5,5,5,5) + perS + ¢(t)

1=

perS(t) < TZ gt(g, 555 g) + ) ft(g’ 555 E) + perS +c(t).
2(5) T, (S)

Substituting the values, we obtain perS(t) < perS in (0.25,0.6248). [

Holens [11] and Dokovic [12] proposed a conjecture (Holen—Dokovic conjecture),

which states that if A € O,,A # J, and k is an integer, 1 < k < n, then ox(A) >

%Ukil (A). Dokovic proved that the conjecture is true for k < 3. Kopotun [? | proved

that the conjecture is true for k = 4 and n > 5. Wanless [14] disproved this conjecture
by providing a counterexample of order 22. The smallest order of a counterexample has
not been established. In Theorem 6, we prove that the Holen-Dokovic conjecture fails
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for n = k = 4. Before that, we recall that Foregger [10] proved that if A € ()4 has all its
off-diagonal entries less than or equal to % and tp <t < %, where £y is the unique real root
of 1063 — 418t + 465t — 100, then per(t]4 + (1 — t)A) < perS with equality if and only if
A=

Theorem 6. The Holen—Dokovic conjecture fails for n = k = 4.

Proof. Let A(t) = perA —per(tJy + (1 —t)A).
Foregger [10] proved that A(t) > 0in [to, %] and ty is the unique real root of 106¢> — 418> +
465t — 100.

4
Now, A(t) = perA — ¥ ¢,(1 —t)*"t'o,(A), where ¢, = %
r=0
Here, A(1) = 0 and

A1) = - Z cror(A)[(1 =+ (1= 177 (1)1
= —4C4P€I‘A + c303(A)

= —dperA + Lo3(A)
A'(1) = —dperA + 1o3(A)

A1) = 11rr11 f(tl)

A (1) <O0iff A(t) > Oforallt € [1 —¢,1] and A(f) < Oforall t € [1,1 + €], which is not
the case since A(t) > 0 forall t € [ty, 3].

2
Hence, for some A € Qy, 0 (A) < ("jﬁkﬂ) or_1(A). O

4. Conclusions

The Merris conjecture is one of the well-known conjectures in linear algebra and it is
still open for n > 4. We proved the Merris inequality for all # X n non-negative matrices
with minimum entry greater than or equal to 2. Furthermore, we gave a sufficient condition
for a doubly stochastic matrix A to satisfy the Merris conjecture. Secondly, we proved the
Foregger’s inequality. That is, for all S € Q5 with off-diagonal entries less than or equal to
5 and all ¢ such that 0.25 < t < 0.6248, per(tJs + (1 — t)S) < perS. Finally, we proved that
the Holen—-Dokovic conjecture fails for n = k = 4 and thus established that the smallest
order of a counterexample to the Holen—-Dokovic conjecture is n = 4.
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Appendix A

In this Appendix, we have shown various calculations of &, 8 and -y values.

The inequahties ft(%’ %’ %’ %’ %) > ft(s) and 8t(%/ %/ %/ %/ %) = gt(T’) att =1
400 2405 + 7 > —0.10546
1162030“ + 986805010/3 + 850 > 006386625
600"‘ +0.061154320998 + 0.183462963y > —0.0678099537
128"‘ + 315792 B+ 1103294’7 > —0.03263519287
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400‘ + 1200}8 + 400')’ > —0.02405375
5“ + 2106245ﬁ + é?‘;v > —0.0566637037
s+ 300[5 + 1007 > —0.10296
Va+ 2B+ 2y > 03529

fo30 11250209013 + B8y > —0.08071
200"‘ + 5B + 1037 = —0.08046
Sa+ 8+ 3y > 00775237037

— 4166666667 02002037037;% 0.20020370377 > —0.1736953067

—%zx - %,B 277 > 0.01284375

—ga— FZp — B2y > —0.004136296296
—ta—18p— ’y> —0.01984.

— & — %30 — 257 > —0.00070984375.
—0.1389a — 0.15128 — 0.4537~ > —0.1070
If y =5, = —3s, thena > —0.6864.

We can take o = —0.6864,v =1, ,B = -3

400 240ﬁ + ’Y > —0. 0604625
1162030 9%80530,3 + 528050107 > —0.03212203125

600a +0.061154320996 + 0.183462963y > —0.01752152778

uga + 3103792/5 + 11032947 > —0.01331022355
0% + B + gy = —0.0103815625
15a + ;062@5 + é%’y > —0.02689111111
2004 + 300/3 + 1007 > —0.05853

50c+ 2B+ 3%y > —0.25178

400"‘ + 112502090/3 + 13007 > —0.04359875
zooa + BB+ 13y > —0.0427715625
50+ 5r P+ 3y > —0.04248444444

—0 00138888889lx — 0.0667345679p — 0.2002037037y > —0.1962603704

—da— LB — Ty > —0.03498

— 350 — 5555 é% 7 = 0.10752

—ta— 18— 18y > —0.17248

— 2 — 1;30 — w5 > —0.00748375
—0.1389« — 0.15128 — 0.4537y > —0.2793
If y =s,8 = —3s, thena > —0.3391263441.
We can take « = —0.3391263441,v =2, = —6

The inequalitiesft(% % % % %) > fi(s) and 8t(§,

Slat 43p+ 430 > 002987980469
T 986805(}Oﬁ + 8510 > _0,01508300537

%880( + 0.36551234578 + 1.096537037 > —0.1335164742

11280c + 593792[3 +31;)3294'y > —0.009529170096
e+ @5 T > —0.004418186035
5%+ 205 + g7y 2 ~0.0121374537
2004 + 300/3 + 1007 > —0.02871890625
2o+ 328+ 32y > —0.14480875

530 + B B+ 1528y > —0.02107509766
F& + 12058 + G007 = —0.02128248291

21870 +0.3979320988 + 1.193796296 > —0.1489750101
—0.001388888889 — 12002057037 g _ (0.20020370377 > —0.1169795821

— 550 — 1258 — %57 = —0.1006621875
— 0 — 3 — B2y > —0.2591237037
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—ia— 28— 28y > —0.60142

—130% — Ta3B — 1577 > —0.02454455811
—0.1389a — 0.15128 — 0.4537~ > —0.0044

If y =5, = —3s, then v > —0.1767274414.

We can take & = —0.1767274414,v = 3,8 = —9.

Interpolating the values of a, 8,y att =1, %, % we obtain
a = —0.034213 — 0.6346t — 0.0175
v = 1.5238t3 — 4.6667t + 4.1429
B= —4.571413 4 14t — 12.4286.

Figures A1 and A2 are showing f;(s) and g;(r) for different values of s and r.

I
S -
W5+ -
G —
{12512 282500 19425 TSRO GT 0089 TENCN)
—— 00036600182 H0 0647860 A% 817340 CO43065
s AT 0000YGRYB000C) (7531000001 GROT000)PHZTNBBETIZ0000NOL TOGTOTPO0NENY) |
(2017312516061 825000717247 500300005068 5625) 58805841 15000000} 13761 103000000)
T 000260 0104 Y0000 317440 308400053
82525000 4627000007000+ 693401 DC000)-3180000)
BT B30T 5O MBSO TS 26RO 4B 000
o {0} 10920000 25 156500 BT20000) i
—
JA{19112500 375250 A9 2000000 (51415625 4 M7 3335013700000 125647300000000) \
— y={197125000){1653B0003) (75560000} H2 5000} {0RS 20000t 2811250000
{1 SERBO000CON) B SCOD000 H 97246125000 7 1S 9ECONCO 1743700000000 154384350000000)
o5 ‘ ‘
0 05 1 15

Figure Al. Curves f(s).
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B0 OO H TS OO0 25 OO 2 600N 311500 / / / /
08 [ 1851162508 625000+ 700461500000 94925000191 04527 1 CLOCONOD L9TLEQRTEN0N00) / /) / /,/ g
2552125280001 4925 BT O 200 / / ///
TS50 2B B25000 11255000000 HE0750000 4180551500000t 232957 300NO0NCO) // /
B3SO 7505517 200000 6251950000 2323200000 2316C00) / / / /
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Figure A2. Curves g;(r).
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