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Abstract: We study the eigenfunctions and eigenvalues of the boundary value problem for the
nonlocal Laplace equation with multiple involution. An explicit form of the eigenfunctions and
eigenvalues for the unit ball are obtained. A theorem on the completeness of the eigenfunctions of
the problem under consideration is proved.
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1. Introduction and the Problem Statement

The notion of a nonlocal operator and the related notions of a nonlocal differen-
tial equation appeared relatively recently in the theory of differential equations. In [1],
loaded equations, equations containing fractional derivatives of the unknown function,and
equations with deviating arguments are considered. Equations in which the unknown
function and its derivatives enter for different values of arguments are called nonlocal
differential equations.

Special place among nonlocal differential equations, is occupied by equations in which
the deviation of arguments has an involutive character. An involution is called a function
that is its own inverse S2(x) = S(S(x)) = x. Differential equations containing an involutive
deviation in the unknown function or its derivative are some model equations with an
alternating deviation of the argument. Such equations can be classified as functional
differential equations.

Mathematicians have been studying differential equations with involution for a long
time. For example, in 1816, Babbage [2] considered algebraic and differential equations
with involution. The monographs of D. Przeworska-Rolewicz [3] and J. Wiener [4] are
devoted to the theory of solvability of various differential equations with involution. In
papers [5–14], spectral problems for differential operators of the first and second orders
with involution were studied. In [15–22], the results of studying spectral problems with
involution are used to solve inverse problems. A series of works by the authors Alberto
Cabada and F. Adrian F. Tojo are devoted to the creation of the theory of the Green’s
function for one-dimensional differential equations with involution (see, for example, Refs
[23,24] as well as the bibliography in these papers). The papers [25–28] are devoted to
questions of the theory of solvability of some partial differential equations with involution.
Elliptic functional differential equations with mappings of compression and extension type
are considered in [29–31]. In addition, in [32–34], some classes of functional differential
equations with deviating arguments are investigated. In [35], for the following ODE:

y′′(t) + ay′′(−t) = λy(t), −π < t < π
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the boundary value problem with Dirichlet conditions y(−π) = y(π) = 0 is studied. It is
shown that the eigenfunctions and eigenvalues of this problem have the form:

yk(t) = sin kt, λk = −(1 + a)k2; ym(t) = cos
(

m− 1
2

)
t, λm = −(1 + a)

(
m− 1

2

)2
,

where k, m ∈ N. This system is complete in L2[−π, π]. Note that the eigenfunctions of this
problem for a = 0 coincide with the eigenfunctions of the classical equation and differ only
in eigenvalues.

In the present paper, generalizing the problems considered in [36], to the case of
multiple involution, we introduce the concept of a nonlocal analogue of the Laplace
operator. In Section 2, matrices of a special form arising in this operator are investigated.
Then, in Section 3, we study the structure of the eigenfunctions and eigenvalues of the
Dirichlet problem. In Section 4, the eigenfunctions and eigenvalues of the Dirichlet problem
for the nonlocal Laplace equation in the unit ball are constructed in an explicit form and
the completeness of the system of eigenfunctions is proved.

Let Ω = {x ∈ Rl : |x| < 1} be the unit ball in Rl , l ≥ 2, and ∂Ω = {x ∈ Rl : |x| = 1}
be the unit sphere. Let also S1, . . . , Sn, be a set of real symmetric commutative matrices
SiSj = SjSi such that S2

i = I. Note that since |x|2 = (Si
2x, x) = (Six, Six) = |Six|2, then

x ∈ Ω⇒ Six ∈ Ω and y ∈ ∂Ω⇒ Siy ∈ ∂Ω. For example, matrix S1 can be a matrix of the
following linear mapping S1x = (−x1, x2, . . . , xl), because:

S1 =

(
−1 01×(l−1)

0(l−1)×1 Il−1

)
.

Let n ∈ N0 and a0, a1, a2, a3, . . ., a2n−1 be a set of real numbers. If we write the
summation index i in the binary number system (in . . . i1)2 ≡ i, where ik = 0, 1 for
k = 1, . . . , n, then the coefficients ak can be written as a(0...00)2

, a(0...01)2
, a(0...10)2

, a(0...11)2
,

. . . , a(1...11)2
.

Let us introduce the following nonlocal differential operator:

Lnu ≡
2n−1

∑
i=0

ai∆u(Sin
n . . . Si1

1 x)

and consider the following boundary value problem.
Problem S. Find a function u(x) 6= 0 from the class u ∈ C(Ω̄) ∩ C2(Ω), satisfying the

conditions:

Lnu(x) + λu(x) = 0, x ∈ Ω, (1)

u(x) = 0, x ∈ ∂Ω, (2)

where λ ∈ R.
If n > 0, a0 = 1, aj = 0, j = 1, . . . , 2n − 1, then this problem coincides with the spectral

Dirichlet problem for the classical Laplace operator.

2. Preliminaries

To study the above problems (1) and (2), we need some auxiliary statements. Let us
introduce the function:

v(x) =
(1...1)2

∑
i≡(in ...i1)2=0

aiu(Sin
n . . . Si1

1 x), (3)

where the summation is taken in the ascending order with respect to the index i. From this
equality it is easy to conclude that functions of the form v(Sjn

n . . . Sj1
1 x), where j = 0, . . . , 2n − 1

can be linearly expressed in terms of functions u(Sin
n . . . Si1

1 x). If we consider the following
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vectors U(x) =
(

u(Sin
n . . . Si1

1 x)
)T

i=0,...,2n−1
, V(x) =

(
v(Sin

n . . . Si1
1 x)

)T

i=0,...,2n−1
of order 2n,

then this dependence can be expressed in the matrix form:

V(x) = AnU(x), (4)

where An =
(
ai,j
)

i,j=0,...,2n−1 is the matrix of order 2n × 2n.
Let us investigate the structure of matrices of the form An.

Theorem 1. The matrix An from the equality (4) can be represented in the form:

An =
(
ai,j
)

i,j=0,...,2n−1 =
(
ai⊕j

)
i,j=0,...,2n−1, (5)

where the operation in the subscript of the matrix coefficients is understood in the following sense
i ⊕ j ≡ (i)2 ⊕ (j)2 = ((in + jn mod 2) . . . (i1 + j1 mod 2))2, where (i)2 = (in . . . i1)2 is a
representation of the index in the binary number system. The linear combination of matrices of the
form (5) is a matrix of the form (5).

Proof. Let n = 1, then we have:

A1 =

(
a0⊕0 a0⊕1
a1⊕0 a1⊕1

)
=

(
a0 a1
a1 a0

)
,

and if n = 2, then we get:

A2 =


a(00)2⊕(00)2

a(00)2⊕(01)2
a(00)2⊕(10)2

a(00)2⊕(11)2
a(01)2⊕(00)2

a(01)2⊕(01)2
a(01)2⊕(10)2

a(01)2⊕(11)2
a(10)2⊕(00)2

a(10)2⊕(01)2
a(10)2⊕(10)2

a(10)2⊕(11)2
a(11)2⊕(00)2

a(11)2⊕(01)2
a(11)2⊕(10)2

a(11)2⊕(11)2

 =


a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

.

Consider the function v(Sin
n . . . Si1

1 x), whose coefficients at u(Sjn
n . . . Sj1

1 ) make up the
i ≡ (in . . . i1)2th row of the matrix An:

v(Sin
n . . . Si1

1 x) =
2n−1=(1...1)2

∑
j≡(jn ...j1)2=0

a(jn ...j1)2
u(Sjn

n . . . Sj1
1 Sin

n . . . Si1
1 x)

=
(1...1)2

∑
j≡(jn ...j1)2=0

a(jn ...j1)2
u(Sjn+in mod 2

n . . . Sj1+i1 mod 2
1 x). (6)

Here, the following properties S2
j x = x and SjSix = SiSjx of the matrices S1, . . . , Sn

are taken into account. Let’s replace the index i⊕ j = l. Then l ⊕ i = i⊕ j⊕ i = j, and the
correspondence j ∼ l is one-to-one. Replacement j→ l of the index changes only the order
of summation in the sum (6). For example, if i = 1, then the sequence j : 0, 1, 2, 3, 4, 5, . . .
goes to l = 1⊕ j : 1, 0, 3, 2, 5, 4, . . .. After replacing the index, we get:

v(Sin
n . . . Si1

1 x) =
(1...1)2

∑
l=0

a(in+ln mod 2...i1+l1 mod 2)2
u(Sln

n . . . Sl1
1 x),

whence ai,l = a(in+ln mod 2...i1+l1 mod 2)2
= ai⊕l which proves (4).

It is clear that if α, β are constants, then:

α
(
ai⊕j

)
i,j=0,...,2n−1 + β

(
bi⊕j

)
i,j=0,...,2n−1 =

(
αai⊕j + βbi⊕j

)
i,j=0,...,2n−1.

The theorem is proved.
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We present important information for the further analysis corollaries of Theorem 1.

Corollary 1. The matrix An is uniquely determined by its first row (a0, a1, . . . , a2n−1).

Indeed, the ith row of the matrix An can be written through its 1st row in the form(
ai⊕0, ai⊕1, . . . , ai⊕(2n−1)

)
.

This property of the matrix An we denote by the equality An ≡ An(a0, . . . , a2n−1).

Corollary 2. The matrix An has the symmetry property:(
ai,j
)

i,j=0,...,2n−1 =
(
aj,i
)

i,j=0,...,2n−1 (7)

and it can be written as:

An =

(
An−1(a0, . . . , a2n−1−1) An−1(a2n−1 , . . . , a2n−1)
An−1(a2n−1 , . . . , a2n−1) An−1(a0, . . . , a2n−1−1)

)
, (8)

or more generally in the form of a block matrix An−m consisting of matrices Am:

An = An−m

(
A(0...0)2

m , . . . , A(kn ...km+1)2
m , . . . , A(1...1)2

m

)
, (9)

where A(kn ...km+1)2
m (a(kn ...km+10...0)2

, . . . , a(kn ...km+11...1)2
) is a matrix of the form (4) of order 2m.

Proof. Indeed, since the binary operation i⊕ j is commutative:

i⊕ j = (in + jn mod 2 . . . i1 + j1 mod 2)2 = (jn + in mod 2 . . . j1 + i1 mod 2)2 = j⊕ i,

then property (7) holds true, and:(
ai,j
)

i,j=0,...,2n−1 =
(
ai⊕j

)
i,j=0,...,2n−1 =

(
aj⊕i

)
i,j=0,...,2n−1 =

(
aj,i
)

i,j=0,...,2n−1.

Further, it is easy to see the validity of the equalities:(
a(0in−1 ...i1)2⊕(0jn−1 ...j1)2

)
i,j=0,...,2n−1−1

=
(

a(1in−1 ...i1)2⊕(1jn−1 ...j1)2

)
i,j=0,...,2n−1−1

(10)

and: (
a(0in−1 ...i1)2⊕(1jn−1 ...j1)2

)
i,j=0,...,2n−1−1

=
(

a(1in−1 ...i1)2⊕(0jn−1 ...j1)2

)
i,j=0,...,2n−1−1

, (11)

from which the property (8) follows. Indeed, if we divide the matrix An into four equally
sized square blocks and consider the lower right block, then its indices are located in the
range (10 . . . 0)2 ≤ i, j ≤ (11 . . . 1)2, which means that this block, by virtue of (10), has
the form:(

a(1in−1 ...i1)2⊕(1jn−1 ...j1)2

)
i,j=0,...,2n−1−1

=
(

a(0in−1 ...i1)2⊕(0jn−1 ...j1)2

)
i,j=0,...,2n−1−1

= An−1(a0, . . . , a2n−1−1),

i.e., the diagonal blocks of the matrix An are of the form An−1(a0, . . . , a2n−1−1). Similarly, the
top right block of An has the indices in the range (00 . . . 0)2 ≤ i ≤ (01 . . . 1)2, (10 . . . 0)2 ≤
j ≤ (11 . . . 1)2, which means this block has the form:(

a(0in−1 ...i1)2⊕(1jn−1 ...j1)2

)
i,j=0,...,2n−1−1

= An−1(a2n−1 , . . . , a2n−1).
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By equality (10), the lower left block of An has the form:(
a(1in−1 ...i1)2⊕(0jn−1 ...j1)2

)
i,j=0,...,2n−1−1

=
(

a(0in−1 ...i1)2⊕(1jn−1 ...j1)2

)
i,j=0,...,2n−1−1

= An−1(a2n−1 , . . . , a2n−1).

Equality (8) is proved. Now consider a block matrix of the form:

An−m

(
A(0...0)2

m , . . . , A(kn ...km+1)2
m , . . . , A(1...1)2

m

)
=
(

A(in ...im+1)2⊕(jn ...jm+1)2
m

)
i,j=0,...,2n−m−1

.

The elements of its block matrix with the number (kn . . . km+1)2 can be written as:

A(kn ...km+1)2
m (a(kn ...km+10...0)2

, . . . , a(kn ...km+11...1)2
) =

(
a(kn ...km+1(im ...i1)2⊕(jm ...j1)2)

)
i,j=0,...,2m−1

.

Consider the element ai,j of the block matrix:

An−m

(
A(0...0)2

m , . . . , A(kn ...km+1)2
m , . . . , A(1...1)2

m

)
.

It is located in the block with indices (in . . . im+1)2, (jn . . . jm+1)2, and this means it is

in the block A(in ...im+1)2⊕(jn ...jm+1)2
m , and therefore has the form:

ai,j = a((in ...im+1)2⊕(jn ...jm+1)2(im ...i1)2⊕(jm ...j1)2)2
= ai⊕j.

This coincides with Formula (5). Therefore, the corollary is proved.

Example 1. Property (8) of the matrix An can be seen on the example of matrices A1, A2 and A3:

A2(a0, a1, a2, a3) =


a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

 =

(
A1(a0, a1) A1(a2, a3)
A1(a2, a3) A1(a0, a1)

)
,

A3 =



a0 a1 a2 a3 a4 a5 a6 a7
a1 a0 a3 a2 a5 a4 a7 a6
a2 a3 a0 a1 a6 a7 a4 a5
a3 a2 a1 a0 a7 a6 a5 a4
a4 a5 a6 a7 a0 a1 a2 a3
a5 a4 a7 a6 a1 a0 a3 a2
a6 a7 a4 a5 a2 a3 a0 a1
a7 a6 a5 a4 a3 a2 a1 a0


=

(
A2(a0, a1, a2, a3) A2(a4, a5, a6, a7)
A2(a4, a5, a6, a7) A2(a0, a1, a2, a3)

)

and property (9) is written as:

A3 = A2

(
A(0,0)2

1 (a0, a1), A(0,1)2
1 (a2, a3), A(1,0)2

1 (a4, a5), A(1,1)2
1 (a6, a7)

)

≡ A2

(
A0

1, A1
1, A2

1, A3
1

)
=


A0

1 A1
1 A2

1 A3
1

A1
1 A0

1 A3
1 A2

1
A2

1 A3
1 A0

1 A1
1

A3
1 A2

1 A1
1 A0

1

.

Let us investigate the product of matrices of the form (5).

Theorem 2. Multiplication of matrices of the form (5) is commutative. The product of matrices of
the form (5) is again a matrix of the form (5).



Symmetry 2021, 13, 1781 6 of 20

Proof. For n = 1 we have:

A1B1 =

(
a0 a1
a1 a0

)(
b0 b1
b1 b0

)
=

(
a0b0 + a1b1 a0b1 + a1b0
a1b0 + a0b1 a1b1 + a0b0

)
= B1 A1.

Assuming that the multiplication of matrices An−1 and Bn−1 of the order n − 1 is
commutative, using the property (8) and equalities similar to the above, it is easy to obtain
AnBn = Bn An.

Thus, it is not hard to see that:

AB =
(
ai⊕j

)
i,j=0,...,2n−1

(
bi⊕j

)
i,j=0,...,2n−1 =

(
2n−1

∑
k=0

ai⊕kbk⊕j

)
i,j=0,...,2n−1

.

In the sum, from the formula above, let us change the index k→ l, as in Theorem 1,
according to equality i⊕ k = l. Then l ⊕ i = i⊕ k⊕ i = i⊕ i⊕ k = k, and it means that
the correspondence k ∼ l is one-to-one. Replacement of the index k→ l changes only the
order of summation in the sum. By virtue of the associativity of the operation ⊕, we have:

AB =

(
2n−1

∑
l=0

alb(l⊕i)⊕j

)
i,j=0,...,2n−1

=

(
2n−1

∑
l=0

albl⊕(i⊕j)

)
i,j=0,...,2n−1

.

The first row of the matrix AB is:

(AB)i=0 =

(
2n−1

∑
k=0

akbk⊕j

)
j=0,...,2n−1

,

and hence, the matrix C of the form (5), constructed by the first row of AB, is written in the
form coinciding with AB:

C ≡
(

2n−1

∑
k=0

akbk⊕(i⊕j)

)
j=0,...,2n−1

= AB.

The theorem is proved.

The following theorem gives an idea of eigenvectors and eigenvalues of matrices of
the form (5).

Theorem 3. The eigenvectors of the matrix An(a0, . . . , a2n−1) can be chosen in the form:

ak
n =

(
ak

n−1,±ak
n−1

)T
, k = 0, . . . , 2n−1 − 1,

where ak
n−1 is the eigenvector of the matrix An−1(a0, . . . , a2n−1−1), k = 0, . . . , 2n−1 − 1 besides

for n = 1 we have a0
1 = (1, 1)T , a1

1 = (1,−1)T . The eigenvectors of the matrix An are orthogonal.
The eigenvalues of the matrix An are of the form:

µk,±
n = µk

n−1 ± µ̂k
n−1, k = 0, . . . , 2n−1 − 1,

where µk
n−1 and µ̂k

n−1 are eigenvalues of the matrices:

An−1(a0, . . . , a2n−1−1) and Ân−1 = An−1(a2n−1 , . . . , a2n−1),

respectively, corresponding to the eigenvector ak
n−1, besides µ0

1 = a0 + a1, µ1
1 = a0 − a1.

Proof. Let us carry out the proof by induction on n. Suppose that the eigenvectors of the
matrix An(a0, . . . , a2n−1) are independent on numbers a0, . . . , a2n−1. For n = 1, it is obvious
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that the eigenvectors of the matrix A1(a0, a1) can be chosen in the form a+1 = (1, 1)T ,
a−1 = (1,−1)T , and the eigenvalues corresponding to them have the form µ+

1 = a0 + a1,
µ−1 = a0 − a1. For the matrix:

A2 =


a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

 =

(
A1(a0, a1) A1(a2, a3)
A1(a2, a3) A1(a0, a1)

)

eigenvectors are:

a(+,+)
2 = (a+1 , a+1 )

T , a(−,+)
2 = (a−1 , a−1 )

T , a(+,−)
2 = (a+1 ,−a+1 )

T , a(−,−)2
2 = (a−1 ,−a−1 )

T ,

or briefly a(±1,±2)
2 = (a±1

1 ,±2 a±1
1 )

T
. Signs + and − in the expressions ±1 and ±2 are taken

values independently of each other. Indeed, the equalities:

A2a(±1,±2)
2 =

(
A1(a0, a1) A1(a2, a3)
A1(a2, a3) A1(a0, a1)

)(
a±1

1
±2a±1

1

)

=

(
A1(a0, a1)a

±1
1 ±2 A1(a2, a3)a

±1
1

A1(a2, a3)a
±1
1 ±2 A1(a0, a1)a

±1
1

)
=

(
(a0±1a1)a

±1
1 ±2(a2±1a3)a

±1
1

(a2±1a3)a
±1
1 ±2(a0±1a1)a

±1
1

)

= (a0±1a1±2(a2±1a3))

(
a±1

1
±2a±1

1

)
= (a0±1a1±2(a2±1a3))a

(±1,±2)
2

are true and hence
(

a±1
1 ,±2a±1

1

)T
, are the eigenvectors for four different combinations of

signs ±1 and ±2. It is seen that the eigenvectors a(±1,±2)
2 = (1,±11,±21,±2±11)T , of the

matrix A2(a0, a1, a2, a3), do not depend on the numbers {ak}.
Furthermore, assuming that the eigenvectors a0

n−1, . . . , a2n−1−1
n−1 , of the matrix An−1 =

An−1 (a0, . . . , a2n−1−1), do not depend on its coefficients, we prove that this property is

also true for the matrix An = An(a0, . . . , a2n−1). Let µ0
n−1, . . . , µ2n−1−1

n−1 be the eigenvalues
corresponding to the above eigenvectors of the matrix An−1(a0, . . . , a2n−1−1), independent

of its coefficients, then vectors of the form ak
n =

(
ak

n−1,±ak
n−1

)T
, where k = 0, . . . , 2n−1− 1,

are the eigenvectors of the matrix An(a0, . . . , a2n−1). Indeed, we have:

Anak
n = An

(
ak

n−1,±ak
n−1

)T

=

(
An−1(a0, . . . , a2n−1−1) An−1(a2n−1 , . . . , a2n−1)
An−1(a2n−1 , . . . , a2n−1) An−1(a0, . . . , a2n−1−1)

)(
ak

n−1
±ak

n−1

)
=

(
An−1(a0, . . . , a2n−1−1)a

k
n−1 ± An−1(a2n−1 , . . . , a2n−1)ak

n−1
An−1(a2n−1 , . . . , a2n−1)ak

n−1 ± An−1(a0, . . . , a2n−1−1)a
k
n−1

)
=

(
µk

n−1ak
n−1 ± µ̂k

n−1ak
n−1

µ̂k
n−1ak

n−1 ± µk
n−1ak

n−1

)
=
(

µk
n−1 ± µ̂k

n−1

)( ak
n−1
±ak

n−1

)
=
(

µk
n−1 ± µ̂k

n−1

)
ak

n,

where µ̂k
n−1 is the eigenvalue of the matrix An−1(a2n−1 , . . . , a2n−1), corresponding to the

eigenvector ak
n−1. Obviously, there are 2n vectors of the form ak

n =
(

ak
n−1,±ak

n−1

)T
.

Therefore, all eigenvalues of the matrix An(a0, . . . , a2n−1), are µk,±
n = µk

n−1 ± µ̂k
n−1.
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Orthogonality. It is obvious that the eigenvectors a+1 = (1, 1)T , and a−1 = (1,−1)T ,
of the matrix A1(a0, a1), are orthogonal. If the eigenvectors ak

n−1, k = 0, . . . , 2n−1 − 1
of the matrix An−1(a2n−1 , . . . , a2n−1) are chosen orthogonal, then the eigenvectors ak

n =(
ak

n−1,±ak
n−1

)T
of the matrix An(a0, . . . , a2n−1) are also orthogonal:

ak1
n ak2

n =
(

ak1
n−1,±ak1

n−1

)T(
ak2

n−1,±ak2
n−1

)T
= ak1

n−1ak2
n−1 + ak1

n−1ak2
n−1 = 0, k1 6= k2

and
(

ak
n−1, ak

n−1

)T(
ak

n−1,−ak
n−1

)T
= 0. The theorem is proved.

Let us give important consequences from Theorem 3 that allow us to build eigenvectors
and eigenvalues of the matrix An.

Corollary 3. Let k = (kn, . . . , k1)2, ki = 0, 1, then the eigenvector of the matrix An, numbered
by k, can be written in the form:

ak
n = (1, (−1)k1 , (−1)k2 , (−1)k2+k1 , (−1)k3 , (−1)k3+k1 , (−1)k3+k2 ,

(−1)k3+k2+k1 , (−1)k4 , . . . , (−1)kn+...+k1)T =
(
(−1)k⊗m

)
m=0,...,2n−1

, (12)

where k⊗ i ≡ (kn . . . k1)2 ⊗ (in . . . i1)2 = knin + . . . + k1i1 is a “scalar” product of the indexes

(k)2 and (i)2. The eigenvalue corresponding to the eigenvector a(kn ...k1)2
n can be written in a

similar form:

µk
n ≡ µ

(kn ...k1)2
n =

2n−1

∑
i=0

(−1)k⊗iai =
2n−1

∑
i=0

(−1)knin+...+k1i1 a(in ...i1)2
. (13)

Proof. Let us prove (12). For n = 1 we have a+1 = a(0)2
1 = ((−1)0⊗0, (−1)0⊗1)

T
, a−1 =

a(1)2
1 = ((−1)1⊗0, (−1)1⊗1)

T
and (12) is true. If Formula (12) is true for the vector a(kn−1 ...k1)2

n−1 ,
then by Theorem 3 we have:(

a(kn−1 ...k1)2
n−1 ,±a(kn−1 ...k1)2

n−1

)T
=
(

a(kn−1 ...k1)2
n−1 , (−1)kn a(kn−1 ...k1)2

n−1

)T

=

((
(−1)(knkn−1 ...k1)2⊗(0mn−1 ...m1)2

)
m=0,...,2n−1−1

,

(
(−1)(knkn−1 ...k1)2⊗(1mn−1 ...m1)2

)
m=0,...,2n−1−1

)T

=

((
(−1)k⊗m

)
m=0,...,2n−1−1

,
(
(−1)k⊗m

)
m=2n−1,...,2n−1

)T

=

((
(−1)k⊗m

)
m=0,...,2n−1

)T
= a(knkn−1 ...k1)2

n

and hence the Formula (12) is also true for the vector a(knkn−1 ...k1)2
n = ak

n.
Let us prove (13). For n = 1 we have:

µk1
1 = a0 + (−1)k1 a1 = (−1)0a(0)2

+ (−1)k1·1a(1)2
,
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where k1 = 0, 1. Assume that the Formula (13) is valid for n = n− 1 and prove its validity
for n. By Theorem 3, changing the notation ± = (−1)kn , we write:

µk,±
n = µk

n−1 ± µ̂k
n−1 =

2n−1−1

∑
i=0

(−1)kn ·0+kn−1in−1+...+k1i1 a(in−1 ...i1)2

+
2n−1−1

∑
i=0

(−1)kn ·1+kn−1in−1+...+k1i1 a(1in−1 ...i1)2
=

2n−1−1

∑
i=0

(−1)knin+kn−1in−1+...+k1i1 a(inin−1 ...i1)2

+
2n−1

∑
i=2n−1

(−1)knin+kn−1in−1+...+k1i1 a(inin−1 ...i1)2
=

2n−1

∑
i=0

(−1)knin+...+k1i1 a(inin−1 ...i1)2
,

which proves (13). The corollary is proved.

Example 2. For n = 2 the matrix:

A2(a0, a1, a2, a3) =


a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

,

according to Corollary 3, has the following four eigenvectors:

ak
2 =

(
1, (−1)k1 , (−1)k2 , (−1)k2+k1

)T
,

where k = (00)2, (01)2, (10)2, (11)2, or:

a0
2 = a(00)2

2 = (1, 1, 1, 1)T , a1
2 = a(01)2

2 = (1,−1, 1,−1)T ,

a2
2 = a(10)2

2 = (1, 1,−1,−1)T , a3
2 = a(11)2

2 = (1,−1,−1, 1)T

and the following eigenvalues:

µ0 = µ(00)2
= a0 + a1 + a2 + a3, µ1 = µ(01)2

= a0 − a1 + a2 − a3,

µ2 = µ(10)2
= a0 + a1 − a2 − a3, µ3 = µ(11)2

= a0 − a1 − a2 + a3,
(14)

where, for convenience, we transfer the superscript of the eigenvalue to the subscript as n = 2 is
fixed. For the matrix A3(a0, a1, a2, a3, a4, a5, a6, a7) from the Formula (11) we obtain eigenvectors
in the form:

ak
3 =

(
1, (−1)k1 , (−1)k2 , (−1)k2+k1 , (−1)k3 , (−1)k3+k1 , (−1)k3+k2 , (−1)k3+k2+k1

)T
.

For example, for (101)2 = 5 we have an eigenvector of the form:

a5
3 = a(101)2

3 = (1,−1, 1,−1,−1, 1,−1, 1)T .

The eigenvalue corresponding to the eigenvector a5
3 = a(101)2

3 is written in a similar form:

µ
(101)2
3 =

7

∑
i=0

(−1)k3i3+k2i2+k1i1 a(i3i2i1)2
= a(0)2

− a(1)2
+ a(10)2

− a(11)2
− a(100)2

+ a(101)2
− a(110)2

+ a(111)2
= a0 − a1 + a2 − a3 − a4 + a5 − a6 + a7.

3. The Main Problem S

To study the Problem S, the following statement is required.
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Lemma 1 ([36] (Lemma 3.1)). Let S be an orthogonal matrix, then the operator ISu(x) = u(Sx)
and the Laplace operator ∆ commute ∆ISu(x) = IS∆u(x) on functions u ∈ C2(Ω). The operator

Λ =
n
∑

i=1
xiuxi (x) and operator IS also commute ΛISu(x) = ISΛu(x) on functions u ∈ C1(Ω̄)

and the equality ∇IS = ISST∇ is valid.

Corollary 4. Equation (1) generates a matrix equation equivalent to it:

An∆U(x) + λU(x) = 0, (15)

where U(x) =
(

u(Sin
n . . . Si1

1 x)
)T

i=0,...,2n−1
.

Proof. Let u(x) satisfy the Equation (1). We denote:

v(x) =
(1...1)2

∑
i≡(in ...i1)2=0

aiu(Sin
n . . . Si1

1 x),

and V(x) =
(

v(Sjn
n . . . Sj1

1 x)
)T

j=0,...,2n−1
. The function v(x) generates the equality (4). Let

us apply the Laplace operator to equality (4). Since the matrices of the form Sin
n . . . Si1

1 are

symmetric and orthogonal, and therefore
(

Sin
n . . . Si1

1

)2
= I, then by virtue of Lemma 1, we

can write:

∆V(x) =
(

∆I
Sjn

n ...S
j1
n

v(x)
)T

j=0,...,2n−1
=
(

I
Sjn

n ...S
j1
n

∆v(x)
)T

j=0,...,2n−1

=

I
Sjn

n ...S
j1
n

(1...1)2

∑
i≡(in ...i1)2=0

ai ISin
n ...S

i1
1

∆u(x)

T

j=0,...,2n−1

=

 (1...1)2

∑
i≡(in ...i1)2=0

ai ISjn+in
n ...S

j1+i1
1

∆u(x)

T

j=0,...,2n−1

=

 (1...1)2

∑
l≡(ln ...l1)2=0

aj⊕l ISln
n ...S

l1
1

∆u(x)

T

l=0,...,2n−1

=

 (1...1)2

∑
l≡(ln ...l1)2=0

aj⊕l∆u(Sln
n . . . Sl1

1 x)

T

j=0,...,2n−1

= An∆U(x).

Hence, using the equality ∆v(Sjn
n . . . Sj1

1 x)+λu(Sjn
n . . . Sj1

1 x) = 0, we obtain Equation (15).
The corollary is proved.

Basing on Lemma 1, we prove the following statement about necessary conditions for
the existence of eigenvalues of problem S.

Theorem 4. Let the function u(x) 6= 0 be an eigenfunction of the problem S, and λ be its

eigenvalue, then the function w(x) = (U(x), ak
n), where U(x) =

(
u(Sin

n . . . Si1
1 x)

)T

i=0,...,2n−1
and

ak
n is an eigenvector of the matrix An(a0, . . . , a2n−1), is a solution to the Dirichlet problem:

∆w(x) + µw(x) = 0, x ∈ Ω, (16)

w(x) = 0, x ∈ ∂Ω, (17)
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where µ = λ/µk
n and µk

n 6= 0 is the eigenvalue of the matrix An(a0, . . . , a2n−1) corresponding to
the vector ak

n.

Proof. Let λ be the eigenvalue of the problem S and u(x) 6= 0 be its eigenfunction. By
Corollary 4, the equality (15) is true. Let’s multiply it scalar by the vector ak

n. Then, we have:(
An∆U(x), ak

n

)
+ λ

(
U(x), ak

n

)
= 0,

whence, using the symmetry of the matrix An(a0, . . . , a2n−1) (see Corollary 2) and the
properties of the vector ak

n, we find:

∆
(

U(x), Anak
n

)
+ λ

(
U(x), ak

n

)
= 0,

whence follows:
µk

n∆w(x) + λw(x) = 0

and since λ = µk
nµ, and µk

n 6= 0, we get (16):

0 = µk
n(∆w(x) + µw(x))⇒ ∆w(x) + µw(x) = 0.

Finally, since u(x) = 0, x ∈ ∂Ω, and x ∈ ∂Ω⇒ Sin
n . . . Si1

1 x ∈ ∂Ω, then U(x) = 0, and
therefore w(x) = (U(x), ak

n) = 0, x ∈ ∂Ω. The theorem is proved.

The following converse statement to Theorem 4 is important, which allows us to
construct solutions to Problem S.

Theorem 5. Let the function w(x) 6= 0 be a solution to the problem (16) and (17):

∆w(x) + µw(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω

for some µ, then the function:
uk(x) = (W(x), ak

n), (18)

where W(x) =
(

w(Sin
n . . . Si1

1 x)
)T

i=0,...,2n−1
and ak

n is an eigenvector of the matrix An = An(a0, . . . ,

a2n−1) with an eigenvalue µk
n 6= 0 is a solution to the Dirichlet problem (1) and (2) for λ = µk

nµ.

Proof. Let w(x) 6= 0 be a solution to problem (16) and (17). Consider the vector W(x) =(
w(Sin

n . . . Si1
1 x)

)T

i=0,...,2n−1
and compose the function uk(x) = (W(x), ak

n), where x ∈ Ω. It

is easy to see that, according to Corollary 3, we have in Ω:

uk(S
jn
n . . . Sj1

1 x) = (W(Sjn
n . . . Sj1

1 x), ak
n)

=

((
w(Sin+jn

n . . . Si1+j1
1 x)

)T

i=0,...,2n−1
,
(
(−1)k⊗i

)
i=0,...,2n−1

)
=

((
w(Sln

n . . . Sl1
1 x)

)T

l=0,...,2n−1
,
(
(−1)k⊗(l⊕j)

)
l=0,...,2n−1

)
= (−1)k⊗j

(
W(x), ak

n

)
= (−1)k⊗juk(x),
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and therefore:

Uk(x) =
(

uk(Sin
n . . . Si1

1 x)
)T

i=0,...,2n−1
=
(
(−1)k⊗juk(x)

)T

i=0,...,2n−1

= uk(x)
(
(−1)k⊗j

)T

i=0,...,2n−1
= uk(x)ak

n.

Thus,
∆Uk(x) = ∆uk(x)ak

n

and hence, since by Lemma 1:

∆W(x) =
(

∆w(Sin
n . . . Si1

1 x)
)T

i=0,...,2n−1
=
(
−µw(Sin

n . . . Si1
1 x)

)T

i=0,...,2n−1
= −µW(x),

we get:

An∆Uk(x) = ∆uk(x)Anak
n = (∆W(x), ak

n)µ
k
nak

n = −µ(W(x), ak
n)µ

k
nak

n

= −µµk
nuk(x)ak

n = −µµk
nUk(x).

Separating the first components of this vector equality, we obtain:

2n−1

∑
i=0

ai∆uk(Sin
n . . . Si1

1 x) = −µµk
nuk(x), x ∈ Ω,

which means that uk(x) is a solution to Equation (1). Let us check the boundary conditions
(2) of the problem S. Since x ∈ ∂Ω⇒ Sin

n . . . Si1
1 x ∈ ∂Ω, then for x ∈ ∂Ω we get:

uk(x) =
((

w(Sin
n . . . Si1

1 x)
)T

i=0,...,2n−1
, ak

n

)
=
(

0, ak
n

)
= 0.

The theorem is proved.

Example 3. Let n = 2. According to Example 2, the eigenvectors of the matrix A2(a0, a1, a2, a3)
have the form:

a0
2 = (1, 1, 1, 1)T , a1

2 = (1,−1, 1,−1)T , a2
2 = (1, 1,−1,−1)T , a3

2 = (1,−1,−1, 1)T

and by Theorem 5 the eigenfunctions of the problem corresponding to the eigenvalue µ and the
eigenfunction wµ(x) of problem (16) and (17) can be taken in the form uk(x) = (W(x), ak

n),
k = 0, 1, 2, 3 or:

u0(x) = wµ(x) + wµ(S1x) + wµ(S2x) + wµ(S1S2x),

u1(x) = wµ(x)− wµ(S1x) + wµ(S2x)− wµ(S1S2x),

u2(x) = wµ(x) + wµ(S1x)− wµ(S2x)− wµ(S1S2x),

u3(x) = wµ(x)− wµ(S1x)− wµ(S2x) + wµ(S1S2x).

In what follows, it will be necessary to expand the polynomials into the sum of the
“generalized parity” polynomials.

Lemma 2. Let H(x) be some function on Ω. We denote:

H(kn ...k1)2(x) =
1
2n

(1...1)2

∑
i≡(in ...i1)2=0

(−1)k⊗i H(Sin
n . . . Si1

1 x), x ∈ Ω.
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Then the function H(kn ...k1)2(x) has the “generalized parity” property:

H(kn ...k1)2(Six) = (−1)ki H(kn ...k1)2(x) (19)

and besides, the following equality:

(1...1)2

∑
i≡(in ...i1)2=0

(−1)m⊗i H(kn ...k1)2(Sin
n . . . Si1

1 x) =

{
H(kn ...k1)2(x) m = k
0 m 6= k

(20)

holds true. Moreover, the function H(x), x ∈ Ω can be represented as:

H(x) =
(1...1)2

∑
k≡(kn ...k1)2=0

H(kn ...k1)2(x), x ∈ Ω. (21)

Proof. It is not hard to see that:

H(kn ...k1)2(Six) =
1
2n

(1...1)2

∑
j≡(jn ...j1)2=0

(−1)k⊗jH(Sjn
n . . . Sji+1

i . . . Sj1
1 x)

=
1
2n

(1...1)2

∑
j≡(jn ...j1)2=0

(−1)kn jn+...+k1 j1+ki H(Sjn
n . . . Sji

i . . . Sj1
1 x) = (−1)ki H(kn ...k1)2(x),

where a change of variables is made under the sum sign, as in Theorem 2. Equality (19)
is proved.

Consider now, equality (21). It is easy to see that for x ∈ Ω:

(1...1)2

∑
k=0

H(kn ...k1)2(x) =
(1...1)2

∑
k=0

1
2n

(1...1)2

∑
i=0

(−1)k⊗i H(Sin
n . . . Si1

1 x)

=
(1...1)2

∑
i=0

H(Sin
n . . . Si1

1 x)
1
2n

(1...1)2

∑
k=0

(−1)k⊗i. (22)

Let us calculate the inner sum from the right-hand side of equalities (22). It is clear
that i 6= 0⇒ ∃j ij 6= 0, and then:

(1...1)2

∑
k=0

(−1)k⊗i =
1

∑
kj=0

(−1)kjij

(
1

∑
kn=0

. . .
1

∑
k1=0

(−1)knin+...+k1i1

)

= (−1)0

 1,...,1

∑
kn=0,...,k1=0, 6kj

(−1)knin+...+k1i1

+ (−1)ij

 1,...,1

∑
kn=0,...,k1=0, 6kj

(−1)knin+...+k1i1

 = 0,

If i = 0, then
(1...1)2

∑
k=0

(−1)k⊗0 = 2n, i.e., 1
2n

(1...1)2
∑

k=0
(−1)k⊗i = δk,0. Therefore, (22) implies

(21). Now let us prove (20). It is not hard to see that:
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(1...1)2

∑
i≡(in ...i1)2=0

(−1)m⊗i H(kn ...k1)2(Sin
n . . . Si1

1 x)

=
(1...1)2

∑
i≡(in ...i1)2=0

(−1)m⊗i 1
2n

(1...1)2

∑
j≡(jn ...j1)2=0

(−1)k⊗j H(Sin+jn
n . . . Si1+j1

1 x)

=
(1...1)2

∑
i≡(in ...i1)2=0

(−1)m⊗i 1
2n

(1...1)2

∑
l≡(ln ...l1)2=0

(−1)k⊗(l⊕i)H(Sln
n . . . Sl1

1 x)

=
(1...1)2

∑
i≡(in ...i1)2=0

(−1)m⊗i+k⊗i 1
2n

(1...1)2

∑
l≡(ln ...l1)2=0

(−1)k⊗l H(Sln
n . . . Sl1

1 x)

= H(kn ...k1)2(x)
1
2n

(1...1)2

∑
i≡(in ...i1)2=0

(−1)(m⊕k)⊗i = H(kn ...k1)2(x)δk,m

Here it is taken into account that m⊕ k = 0⇔ m = k. The lemma is proved.

Example 4. Let l = 2 and n = 2, S1x = (−x1, x2), S2x = (x1,−x2). Then, according to
Lemma 2, the generalized parity components for the function H(x) from expansion (21) have
the form:

H0(x) = H(00)2(x) =
1
4
(H(x1, x2) + H(−x1, x2) + H(x1,−x2) + H(−x1,−x2)),

H1(x) = H(01)2(x) =
1
4
(H(x1, x2) + (−1)(01)2⊗(01)2 H(−x1, x2)

+(−1)(01)2⊗(10)2 H(x1,−x2) + (−1)(01)2⊗(11)2 H(−x1,−x2))

=
1
4
(H(x1, x2)− H(−x1, x2) + H(x1,−x2)− H(−x1,−x2)),

H2(x) = H(10)2(x) =
1
4
(H(x1, x2) + H(−x1, x2)− H(x1,−x2)− H(−x1,−x2)),

H3(x) = H(11)2(x) =
1
4
(H(x1, x2)− H(−x1, x2)− H(x1,−x2) + H(−x1,−x2)).

If, for example, the function H(x) is even in x1 then its components of generalized parity 1
and 3 is zero H1(x) = 0, H3(x) = 0.

Let H(x) = Hm(x) be homogeneous harmonic polynomial of degree m. Then, if (r, ϕ) are
polar coordinates of x = (x1, x2), then:

Hm(x) = α Re (x1 + ix2)
m + β Im (x1 + ix2)

m = rm(α cos mϕ + β sin mϕ)

and:

Hm(−x1, x2) = α Re (−x1 + ix2)
m + β Im (−x1 + ix2)

m = (−r)m(α cos mϕ− β sin mϕ),

Hm(x1,−x2) = α Re (x1 − ix2)
m + β Im (x1 − ix2)

m = rm(α cos mϕ− β sin mϕ),

Hm(−x1,−x2) = (−r)m(α cos mϕ + β sin mϕ).

From these equalities we get:

H0
m(x) =

rm

2
α(1 + (−1)m) cos mϕ, H1

m(x) =
rm

2
α(1− (−1)m) cos mϕ,

H2
m(x) =

rm

2
α(1− (−1)m) sin mϕ, H3

m(x) =
rm

2
α(1 + (−1)m) sin mϕ.
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Therefore, for m ∈ N0:

H0
2m(x) = αr2m cos 2mϕ, H1

2m(x) = 0, H2
2m(x) = βr2m sin 2mϕ, H3

2m(x) = 0,

H0
2m−1(x) = 0, H1

2m(x) = αr2m+1 cos(2m + 1)ϕ,

H2
2m(x) = 0, H3

2m(x) = βr2m+1 sin(2m + 1)ϕ.

4. Eigenfunctions and Eigenvalues of Problem S

Let us transform the result of Theorem 5 to a simpler form.

Theorem 6. The eigenfunctions and eigenvalues of the Dirichlet problem (1) and (2) from Theorem 5
can be represented as:

uk
n(x) =

(1...1)2

∑
i≡(in ...i1)2=0

(−1)k⊗iwµ(Sin
n . . . Si1

1 x), λµ,k = µ
2n−1

∑
i=0

(−1)k⊗iai, (23)

where the function wµ(x) is a solution to the problem (16) and (17):

∆w(x) + µw(x) = 0, x ∈ Ω; w(x) = 0, x ∈ ∂Ω

for some µ ∈ R+. Functions uk
n(x), for k = 0, . . . , 2n − 1 are orthogonal in L2(Ω).

Proof. We prove Formula (23) by induction on n. For n = 1 from (18), taking into account
the equalities a0

1 = (1, 1)T , a1
1 = (1,−1)T from Theorem 3, we obtain:

u0(x) = (W(x), a0
1) = wµ(x) + wµ(S1x) ≡ u0

1(x)

u1(x) = (W(x), a1
1) = wµ(x)− wµ(S1x) ≡ u1

1(x).

We shifted the subscript of the functions uk(x) from (18) to the top to make room for the
n subscript. Suppose that Formula (23) is valid for n = n− 1 and prove its validity for n. In

accordance with Theorems 3 and 5, we have ak
n =

(
ak

n−1,±ak
n−1

)T
and uk(x) = (W(x), ak

n)

and hence the function:

u(knkn−1 ...k1)2
(x) = u(kn−1 ...k1)2

(x) + (−1)kn u(kn−1 ...k1)2
(Snx)

is an eigenfunction of the Dirichlet problem (1) and (2). Using the induction hypothesis,
we transform this function:

u(knkn−1 ...k1)2
(x) =

(01...1)2

∑
i≡(0in−1 ...i1)2=0

(−1)kn0+(kn−1 ...k1)2⊗(in−1 ...i1)2 wµ(S0
nSin−1

n−1 . . . Si1
1 x)

+
(11...1)2

∑
i≡(1in−1 ...i1)2=0

(−1)kn1+(kn−1 ...k1)2⊗(in−1 ...i1)2 wµ(SnSin−1
n−1 . . . Si1

1 x)

=
(11...1)2

∑
i≡(inin−1 ...i1)2=0

(−1)(knkn−1 ...k1)2⊗(inin−1 ...i1)2 wµ(Sin
n Sin−1

n−1 . . . Si1
1 x) ≡ u(kn ...k1)2

n (x),

which proves Formula (23). The eigenvalues of the Dirichlet problem (1) and (2) corre-
sponding to eigenfunction uk

n(x), by Corollary 3, have the form:

λµ,k = µµk
n = µ

2n−1

∑
i=0

(−1)k⊗iai.
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Now let us prove that the functions uk
n(x) = u(kn ...k1)2

n (x) for different k are orthogonal
in L2(Ω). Indeed, if k 6= m, then there exists i such that ki 6= mi and hence ki + mi 6=
0 mod 2. According to Lemma 4.1 from [37] the following equality holds true for g ∈ C(Ω):∫

Ω
g(Siξ) dξ =

∫
Ω

g(ξ) dξ.

Therefore using equality (19) from Lemma 2 we get:

∫
Ω

u(kn ...k1)2
n (x)u(mn ...m1)2

n (x) dx =
∫
Ω

u(kn ...k1)2
n (Six)u

(mn ...m1)2
n (Six) dx =

= (−1)ki+mi
∫
Ω

u(kn ...k1)2
n (x)u(mn ...m1)2

n (x) dx =−
∫
Ω

u(kn ...k1)2
n (x)u(mn ...m1)2

n (x) dx. (24)

This immediately implies the orthogonality:∫
Ω

u(kn ...k1)2
n (x)u(mn ...m1)2

n (x) dx = 0.

The theorem is proved.

Corollary 5. If H(x) is a harmonic polynomial, then the polynomials H(kn ...k1)2(x) for different k
are orthogonal on ∂Ω and therefore these polynomials are linearly independent.

Proof. Indeed, for k 6= m, similarly to (24), by Lemma 4.1 from [37], we obtain:

∫
∂Ω

H(kn ...k1)2(x)H(mn ...m1)2(x) ds =
∫

∂Ω

H(kn ...k1)2(Six)H(mn ...m1)2(Six) ds

= (−1)ki+mi
∫

∂Ω

H(kn ...k1)2(x)H(mn ...m1)2(x) ds = −
∫

∂Ω

H(kn ...k1)2(x)H(mn ...m1)2(x) ds,

whence the assertion of the corollary follows.

Remark 1. If we denote:

Un(x) =
(

ui
n(x)

)T

i=0,...,2n−1
, Wn(x) =

(
wµ(Sin

n . . . Si1
1 x)

)T

i=0,...,2n−1
,

Vn =
(

ai
n

)T

i=0,...,2n−1
=
(
(−1)i⊗j

)
i,j=0,...,2n−1

,

then equalities (23) can be written in the matrix form Un = VnWn, where the matrix Vn is
symmetric and orthogonal.

Indeed the symmetry of Vn follows from the equality (−1)i⊗j = (−1)j⊗i and the
orthogonality is proved in Theorem 3.

Example 5. For n = 2, according to Example 3, the matrix V2 has the form:

V2 =
(

ai
2

)T

i=0,...,3
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

.

It is seen that the matrix V2 is symmetric and orthogonal.
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Now, we transform the results of Theorem 6 and investigate the completeness of the
eigenfunctions of Problem S.

Theorem 7. Let µk
n 6= 0, k = 0, . . . , 2n − 1. Then the system of eigenfunctions of the Dirichlet

problem (1) and (2) is complete in L2(Ω) and has the form:

uµ,m,k,j
n (x) =

1
|x|l/2−1 Jm+l/2−1(

√
µ|x|)H(kn ...k1)2,j

m (x/|x|), (25)

where Jν(t) is the Bessel function of the first kind,
√

µ is a root of the Bessel function Jm+l/2−1(t),{
H(kn ...k1)2,j

m (ξ) : j = 1, . . . , jk
}

is a system of orthogonal on ∂Ω homogeneous harmonic poly-
nomials of degree m and generalized parity k = (kn . . . k1)2. The eigenvalues of problem S are

λµ,k = µ
2n−1

∑
i=0

(−1)k⊗iai.

Proof. Since the eigenfunctions of problem (16) and (17) have the form (see, for example,
Refs. [38,39]):

w(µ,m,j)(x) =
1

|x|l/2−1 Jm+l/2−1(
√

µ|x|)H j
m

(
x
|x|

)
, (26)

where
{

H j
m(x) : j = 1, . . . , hm

}
, hm = 2m+l−2

l−2 (m+l−3
l−3 ) (l > 2) is the system of homogeneous

harmonic polynomials of degree m orthogonal on ∂Ω (see, for example, Ref. [40]) and
|x| = |Six|, then the expansion (23) rather refers to homogeneous harmonic polynomials
H j

m(x). We decompose the entire space of homogeneous harmonic polynomials of degree
m into the sum of subspaces of the same “generalized parity” (kn . . . k1)2 (see equality
(19)). This is possible due to the proof in Corollary 5, orthogonality on ∂Ω of harmonic
polynomials of different “generalized parity” k, and then in each subspace we choose a

complete system
{

H(kn ...k1)2,j
m (x) : j = 1, . . . , jk

}
of homogeneous harmonic polynomials

orthogonal on ∂Ω. Note that for some k it is possible jk = 0, that is, for such k components

H(kn ...k1)2,j
m (x) are missing (see Example 4). Taking into account the notations of Lemma 2

and adding the “generalized parity” index k, we obtain the functions (25):

uµ,m,k,j
n (x) =

(1...1)2

∑
(in ...i1)2=0

(−1)k⊗i

|Sin
n . . . Si1

1 x|m+l/2−1
Jm+l/2−1

(√
µ|Sin

n . . . Si1
1 x|
)

Hk,j
m

(
Sin

n . . . Si1
1 x
)

=
1

|x|l/2−1 Jm+l/2−1(
√

µ|x|)H(kn ...k1)2,j
m (x/|x|).

In Theorem 6 it is shown that the functions uµ,m,k,j
n (x) are orthogonal for fixed µ and

m. Moreover, since the Bessel functions Jm+l/2−1(
√

µt) are orthogonal in L2((0, 1); t) for

each fixed m ∈ N0 and different µ, and the polynomials
{

H(kn ...k1)2,j
m (x)

}
are orthogonal

in L2(∂Ω) for different (m, k, j), then the functions uµ,m,k,j
n (x) from (25) are orthogonal in

L2(Ω). Indeed, for different (µ, m, k, j) we have the equality:

∫
Ω

uµ1,m1,k1,j1
n (x)uµ2,m2,k2,j2

n (x) dx

=

1∫
0

ρJm1+l/2−1(
√

µρ)Jm2+l/2−1(
√

µρ)dρ ·
∫

∂Ω

Hk1,j1
m1 (ξ)Hk2,j2

m2 (ξ) dsξ = 0.

For µ1 6= µ2 and m1 = m2, due to the properties of the Bessel functions, the first factor
is zero. If m1 6= m2, by the property of harmonic polynomials, the second factor from the
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right is zero. If m1 = m2 and µ1 = µ2, then for (k1, j1) 6= (k2, j2) the second factor from the
right, is zero by the construction of the polynomials Hk,j

m (x) and in view of Corollary 5.
The constructed system of functions (25) is complete in L2(Ω) = L2((0, 1)× ∂Ω) by

Lemma 2 from [41] (p. 33): the system
{

Jm+l/2−1(
√

µρ) : Jm+l/2−1(
√

µ) = 0
}

is orthogonal

and complete in L2((0, 1); t) for each m, and the system
{

Hk,j
m (ξ)

}
is orthogonal and

complete in L2(∂Ω) for different {m, k, j}. The theorem is proved.

Example 6. Let l = 2, n = 2, S1x = (−x1, x2), S2x = (x1,−x2) then problem S has the form:

a0∆u(x1, x2) + a1∆u(−x1, x2) + a2∆u(x1,−x2) + a3∆u(−x1,−x2) + λu(x) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

Let us find the eigenfunctions of the problem (1) and (2) using Example 4. The eigenfunctions
of the Dirichlet problem (16) and (17) in the polar coordinate system are determined according to
equality (26) (see also [41]) (p. 392) in the form:

w(µ,m,0)(x) = Jm(
√

µr) cos mϕ, w(µ,m,1)(x) = Jm(
√

µr) sin mϕ, m ∈ N0,

where
√

µ is a positive root of the Bessel function Jm(t):

Jm(t) =
∞

∑
j=0

(−1)j

(j + m)!j!

(
t
2

)2j+m
.

Using Formula (25), we write:

uµ,m,k,j
2 (x) = Jm(

√
µ|x|)H(k2k1)2,j

m (x/|x|), j = 1, . . . , jk.

According to Example 4, for m even j0 = j2 = 1, j1 = j3 = 0 and for m odd j0 = j2 = 0,
j1 = j3 = 1. Therefore, taking into account (13), we write:

uµ,2m,0,1
2 (x) = J2m(

√
µr) cos 2mϕ, λµ,k = µ(a0 + a1 + a2 + a3)

uµ,2m+1,2,1
2 (x) = J2m+1(

√
µr) sin(2m + 1)ϕ, λµ,k = µ(a0 + a1 − a2 − a3)

uµ,2m+1,1,1
2 (x) = J2m+1(

√
µr) cos(2m + 1)ϕ, λµ,k = µ(a0 − a1 + a2 − a3)

uµ,2m,3,1
2 (x) = J2m(

√
µr) sin 2mϕ, λµ,k = µ(a0 − a1 − a2 + a3),

where
√

µ is a root of the corresponding Bessel function and m ∈ N0. The obtained functions are
complete in L2(Ω).

5. Conclusions

Summarizing the investigation carried out, we note that due to the properties of the
special form matrices An from the equality (4), studied in Theorems 1–3, we managed
in Theorem 5, Theorem 6, and then in Theorem 7 to write out the complete system of
eigenfunctions and eigenvalues of the nonlocal problem S. If we consider possible further
applications of the proposed method, we note that a similar method can be used to study the
eigenfunctions and eigenvalues of the Neumann and Robin boundary value problems in a
ball. Moreover, we hope that the proposed method also allows for a given nonlocal Laplace
operator to investigate the spectral problem in l-dimensional parallelepiped and to find an
explicit form of the eigenfunctions and eigenvalues of the Dirichlet and Neumann boundary
value problems, as well as for problems with periodic conditions. Described problems are
the subject of further work and we are going to consider them in our next articles.
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